SOFIST ver.2 for the ILC vertex detector

Size: px
Start display at page:

Download "SOFIST ver.2 for the ILC vertex detector"

Transcription

1 SOFIST ver.2 for the ILC vertex detector Proposal of SOI sensor for ILC: SOFIST SOI sensor for Fine measurement of Space and Time Miho Yamada (KEK) IHEP Mini Workshop at IHEP Beijing 2016/07/15

2 SOFIST ver.2 ARITOP_SOFIST2 Layout Chip size: mm 2 Active area: mm 2 (64 50 pixels) Time Stamp pixel: pixels Analog pixel: pixels Submitted in June 2016

3 Introduction SOFIST: Vertex detector (Inner most and 2nd layer) for the International Linear Collider experiment ILC Experiment: Precise measurement of the Higgs boson and search for BSM etc. Requirements: 1) Single point resolution: better than 3 μm 2) Time resolution: single-crossing (366 ns interval) time resolution 3) Low material budget: X % X0 / Layer corresponds to ~ μm Si, including supports, cables and cooling low-power ASICs (~ 50 mw/cm 2 ) + gas-flow cooling 4) Radiation hardness: TID : < 1 kgy / year NIEL: < MeV neq / cm 2 / year Focus on 1) and 2) for design of SOFST ver.2 for 3) Sensor will be thinned to 50 μm. However power and cooling of the chip do not study yet. for 4) TID will be resolving by double-soi (Univ. Tsukuba), high dose LDD (I. Karachi) and FN tunneling (M. Yamada). Ref.: ILC TDR v4 Detector LC Vertex / Tracking R&D 2nd Nov. 2015

4 Introduction Necessary functions for the ILC vertex detector: Single point resolution Pixel size: less than 25 μm Calculate weighted center of charges (Charges are spread among multi pixels). Record an analog signal of a hit Timing resolution Bunch crossing occurs every 366 ns in 1-msec-long bunch trains with an interval 200 ms. Identify a collision bunch of a hit to reconstruct a event. Record a time stamp of a hit. High speed data transfer Data have to be send to backend before next bunch train injection. Reduce a data to transfer. Ono, Shun, et al. "Development of a pixel sensor with fine space-time resolution based on SOI technology for the ILC vertex detector., Nucl. Instrum. Methods. Phys. Res. A, 2016.

5 Implemented functions in SOFIST ver.2 SOFIST ver.2 designed by S. Ono (KEK) In a Pixel - Pre-amplifier 0.6 V voltage swing (detect ~3 MIP) - Comparator Keep the analog signal and time stamp if a signal exceeds a threshold Vth. - Shift register Latch for two buffers. - Analog signal memory Store signal charges up to two hits. - Time stamp circuit Store time stamps up to two hits. On Chip - Column ADC (currently 8 bit) Digitize analog signal and time stamp. - Zero-Suppression logic Extract hit pixels and reduce the data to transfer to backend. Pixels for the analog memories (Analog pixel) and the time stamps (Time Stamp pixel) are separated to evaluate the functions individually.

6 Time Stamp Pixel designed by S. Ono (KEK) - Pre-amplifier Charge Sensitive Amp. - Comparator Chopper Inverter type - Shift register D-FF 1) Input a RAMP waveform. 2) Open a store switch (ST1) when a comparator changes to High. 3) Keep the voltage of RAMP to the analog memory (DMOS) as a time stamp. 4) in the same way for 2nd hit. Outside of the chip CMOS SW + DMOS (25 ff)

7 Analog Pixel designed by S. Ono (KEK) - Pre-amplifier Charge Sensitive Amp. - Comparator Chopper Inverter type - Shift register D-FF 1) Input a analog signal. 2) Open a store switch (ST1) when a comparator changes to High. 3) Keep the analog signal to the analog memory (DMOS). 4) in the same way for 2nd hit. NMOS SF CMOS SW + DMOS (25 ff) Implement all the functions of Time stamp pixel / Analog pixel in μm 2 pixel.

8 Pixel Layout Unitized active merge and share contact to minimize an area of circuit. Ex. Comparator (Chopper Inverter Type) CMOS SW Inverter (S-Tie type 2) CMOS SW (Floating body type) MIM-cap 50 ff Inverter Active merge of S-Tie type 2 (L=0.5, W=1.0 μm) Active merge of Floating body type (L=0.2, W=0.5 μm) INV + COMP μm

9 Pixel Layout Unitized active merge and share contact to minimize an area of circuit. Ex. Comparator (Chopper Inverter Type) D-FF (Floating body type) 11 MOSFETs are included. designed by Y. Arai μm Used for Shift Register

10 Layout of Analog Pixel Pixel Size: μm Wafer: Double-SOI, p-type substrate Time stamp pixel is the same layout but no NMOS SF. Comparator D-FF ( 2) NMOS SF CDS Pre-amp Analog memories ( 2) MET2-5 are not displayed.

11 Layout of Analog Pixel Pixel Size: μm Wafer: Double-SOI, p-type substrate Comparator D-FF ( 2) The contact to DSOI is effective to shield interference between an analog and digital circuit etc. Pre-amp and Comparator Pre-amp and D-FF Comparator and D-FF D-FF and Analog memories CDS Pre-amp Analog memories ( 2)

12 Analog Pixel Transient analysis 1 μs 55 na, 10 ns ~3700 e Signal (Simulation) correspond to 1 MIP (50 μm) Pre.-amp (focus) 0.72 V Pre.-amp 0.3 V COMP 0.42 V DFF ST1 DFF ST2 Analog signal of 1st hit Analog signal of 2nd hit

13 Time Stamp Pixel Transient analysis 1 μs 55 na, 10 ns ~3700 e Signal (Simulation) correspond to 1 MIP (50 μm) Pre.-amp COMP RAMP DFF ST1 DFF ST2 Time stamp of 1st hit Time stamp of 2nd hit

14 For SOFIST ver.3 Implement two (or more) buffers for the analog signal and time stamp in a single pixel. Optimization of the pixel size and the circuit. 1) Remove 2nd capacitance of comparator and reset. 2) BPW size (12, 14, 16 μm) for evaluation of a noise and a charge collection efficiency. TEG are implemented in SOFIST ver.2 3) CMOS SW (for a reset, store and read) NMOS 1 Tr + level shifter? (ref: boot strap circuit for DRAM) Layout of CMOS SW itself is small (2.6 x 1.8 μm), however there are two contact (gate poly) and we have to input RST and RST_X. We should decrease number of contact and global line for a small size pixel.

15 For SOFIST ver.3 Remove 2nd capacitance for the comparator (chopper inverter type). Currently there are three MIM-cap (50 ff, 5.77 x 5.77 μm) for the CDS and comparator. We have a possibility to remove 2nd capacitance that if the ktc nose is small. CMOS SW 2nd MIM-cap MIM-cap 1st MIM-cap Remove 2nd capacitance and reset (CMOS SW). This pixel is implemented as TEG in SOFIST ver.2 (Time stamp pixel) MIM-cap (CDS)

16 For SOFIST ver.3 Remove 2nd capacitance for comparator (chopper inverter type). Currently there are three MIM-cap (50 ff, 5.77 x 5.77 μm) for the CDS and comparator. We have a possibility to remove 2nd capacitor that if the ktc nose is small. CMOS SW 2nd RST CMOS SW MIM-cap 1st MIM-cap Remove 2nd capacitance and reset (CMOS SW). This pixel is implemented as TEG in SOFIST ver.2 (Time stamp pixel) MIM-cap (CDS)

17 For SOFIST ver.3 Variation of BPW size for evaluation of a noise and a charge collection efficiency (12, 14, 16 μm). 12 μm 14 μm 16 μm These pixels (Analog pixel) are implemented as TEG in SOFIST ver.2

18 For SOFIST ver.3 There are 8 CMOS SW (for a reset, store and read). CMOS SW itself is small (2.6 x 1.8 um), however there are two contact (gate poly) and we have to input RST and RST_X. We should decrease number of contact and global line for a small size pixel.

19 For SOFIST ver.3 There are 8 CMOS SW (for a reset, store and read). CMOS SW itself is small (2.6 x 1.8 um), however there are two contact (gate poly) and we have to input RST and RST_X. We should decrease number of contact and global line for a small size pixel. RST RST_X RST and RST_X are input from outside of pixel. CMOS SW NMOS 1 Tr + level shifter? (ref: boot strap circuit for DRAM)

20 Summary We are developing prototype pixel detector SOFIST for the ILC experiment. SOFIST ver.2 has almost all necessary functions in a single pixel and on the chip. On simulation, the analog pixel and time stamp pixel are well working. Analog signals and time stamps are kept to DMOS respectively for store 1 and 2. Some TEGs are implemented in SOFIST ver.2 for study of a noise and charge collection efficiency. We do not study the occupancy yet. How much do we need the buffers for the analog memory? If we need multiple buffers (more than three? four?) for the analog signal and time stamp respectively, we have to consider solution e.g. 3D integration, new architecture etc.

21 Backup

22 Time Stamp Pixel

23 Analog Pixel

24 Pre-amplifier Cpara. ~0.7 ff DMOS 1 ff

25 Analog Memory DMOS 25 ff DMOS 25 ff

26 CSA Cf Pre. amp ~0.7 ff 5 ff 50 μm 1 MIP: 3667 e DMOS 4.2 ff PCell V = Q C = =0.12 V Sense Node 3 MIP 0.6 V 1 MIP 0.2 V Cf = 3 ff 3 ff A-R-Tec

A monolithic pixel sensor with fine space-time resolution based on silicon-on-insulator technology for the ILC vertex detector

A monolithic pixel sensor with fine space-time resolution based on silicon-on-insulator technology for the ILC vertex detector A monolithic pixel sensor with fine space-time resolution based on silicon-on-insulator technology for the ILC vertex detector, Miho Yamada, Toru Tsuboyama, Yasuo Arai, Ikuo Kurachi High Energy Accelerator

More information

Chapter 4 Vertex. Qun Ouyang. Nov.10 th, 2017Beijing. CEPC detector CDR mini-review

Chapter 4 Vertex. Qun Ouyang. Nov.10 th, 2017Beijing. CEPC detector CDR mini-review Chapter 4 Vertex Qun Ouyang Nov.10 th, 2017Beijing Nov.10 h, 2017 CEPC detector CDR mini-review CEPC detector CDR mini-review Contents: 4 Vertex Detector 4.1 Performance Requirements and Detector Challenges

More information

Development of a monolithic pixel sensor based on SOI technology for the ILC vertex detector

Development of a monolithic pixel sensor based on SOI technology for the ILC vertex detector Accepted Manuscript Development of a monolithic pixel sensor based on SOI technology for the ILC vertex detector Shun Ono, Miho Yamada, Manabu Togawa, Yasuo Arai, Toru Tsuboyama, Ikuo Kurachi, Yoichi Ikegami,

More information

SOI Monolithic Pixel Detector Technology

SOI Monolithic Pixel Detector Technology Yasuo Arai 1, on behalf of the SOIPIX Collaboration High Energy Accelerator Research Organization (KEK) & The Okinawa Institute of Science and Technology (OIST) 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

More information

Progress on Silicon-on-Insulator Monolithic Pixel Process

Progress on Silicon-on-Insulator Monolithic Pixel Process Progress on Silicon-on-Insulator Monolithic Pixel Process Sep. 17, 2013 Vertex2013@Lake Starnberg Yasuo Arai, KEK yasuo.arai@kek.jp http://rd.kek.jp/project/soi/ 1 Outline Introduction Basic SOI Pixel

More information

Monolithic Pixel Detector in a 0.15µm SOI Technology

Monolithic Pixel Detector in a 0.15µm SOI Technology Monolithic Pixel Detector in a 0.15µm SOI Technology 2006 IEEE Nuclear Science Symposium, San Diego, California, Nov. 1, 2006 Yasuo Arai (KEK) KEK Detector Technology Project : [SOIPIX Group] Y. Arai Y.

More information

arxiv: v1 [physics.ins-det] 24 Jul 2015

arxiv: v1 [physics.ins-det] 24 Jul 2015 May 7, 2018 TID-Effect Compensation and Sensor-Circuit Cross-Talk Suppression in Double-SOI Devices arxiv:1507.07035v1 [physics.ins-det] 24 Jul 2015 Shunsuke Honda A, Kazuhiko Hara A, Daisuke Sekigawa

More information

Measurement results of DIPIX pixel sensor developed in SOI technology

Measurement results of DIPIX pixel sensor developed in SOI technology Measurement results of DIPIX pixel sensor developed in SOI technology Mohammed Imran Ahmed a,b, Yasuo Arai c, Marek Idzik a, Piotr Kapusta b, Toshinobu Miyoshi c, Micha l Turala b a AGH University of Science

More information

CMOS Detectors Ingeniously Simple!

CMOS Detectors Ingeniously Simple! CMOS Detectors Ingeniously Simple! A.Schöning University Heidelberg B-Workshop Neckarzimmern 18.-20.2.2015 1 Detector System on Chip? 2 ATLAS Pixel Module 3 ATLAS Pixel Module MCC sensor FE-Chip FE-Chip

More information

First Results of 0.15µm CMOS SOI Pixel Detector

First Results of 0.15µm CMOS SOI Pixel Detector First Results of 0.15µm CMOS SOI Pixel Detector Y. Arai, M. Hazumi, Y. Ikegami, T. Kohriki, O. Tajima, S. Terada, T. Tsuboyama, Y. Unno, H. Ushiroda IPNS, High Energy Accelerator Reserach Organization

More information

MAPS-based ECAL Option for ILC

MAPS-based ECAL Option for ILC MAPS-based ECAL Option for ILC, Spain Konstantin Stefanov On behalf of J. Crooks, P. Dauncey, A.-M. Magnan, Y. Mikami, R. Turchetta, M. Tyndel, G. Villani, N. Watson, J. Wilson v Introduction v ECAL with

More information

Initial Characteristics and Radiation Damage Compensation of Double Silicon-on-Insulator Pixel Device

Initial Characteristics and Radiation Damage Compensation of Double Silicon-on-Insulator Pixel Device Initial Characteristics and Radiation Damage Compensation of Double Silicon-on-Insulator Pixel Device a, M. Asano a, S. Honda a, N. Tobita a, Y. Arai b, I. Kurachi b, S. Mitsui b, T. Miyoshi b, T. Tsuboyama

More information

Low Power Sensor Concepts

Low Power Sensor Concepts Low Power Sensor Concepts Konstantin Stefanov 11 February 2015 Introduction The Silicon Pixel Tracker (SPT): The main driver is low detector mass Low mass is enabled by low detector power Benefits the

More information

Development of Integration-Type Silicon-On-Insulator Monolithic Pixel. Detectors by Using a Float Zone Silicon

Development of Integration-Type Silicon-On-Insulator Monolithic Pixel. Detectors by Using a Float Zone Silicon Development of Integration-Type Silicon-On-Insulator Monolithic Pixel Detectors by Using a Float Zone Silicon S. Mitsui a*, Y. Arai b, T. Miyoshi b, A. Takeda c a Venture Business Laboratory, Organization

More information

Status of Front-end chip development at Paris ongoing R&D at LPNHE-Paris

Status of Front-end chip development at Paris ongoing R&D at LPNHE-Paris Status of Front-end chip development at Paris ongoing R&D at LPNHE-Paris Paris in the framework of the SiLC R&D Collaboration Jean-Francois Genat, Thanh Hung Pham, Herve Lebbolo, Marc Dhellot and Aurore

More information

First Results of 0.15μm CMOS SOI Pixel Detector

First Results of 0.15μm CMOS SOI Pixel Detector First Results of 0.15μm CMOS SOI Pixel Detector International Symposium on Detector Development SLAC, CA, April 5, 2006 KEK Detector Technology Project : [SOIPIX Group] Yasuo Arai (KEK) Y. Arai Y. Ikegami

More information

arxiv: v1 [physics.ins-det] 21 Jul 2015

arxiv: v1 [physics.ins-det] 21 Jul 2015 July 22, 2015 Compensation for TID Damage in SOI Pixel Devices arxiv:1507.05860v1 [physics.ins-det] 21 Jul 2015 Naoshi Tobita A, Shunsuke Honda A, Kazuhiko Hara A, Wataru Aoyagi A, Yasuo Arai B, Toshinobu

More information

Front-End and Readout Electronics for Silicon Trackers at the ILC

Front-End and Readout Electronics for Silicon Trackers at the ILC 2005 International Linear Collider Workshop - Stanford, U.S.A. Front-End and Readout Electronics for Silicon Trackers at the ILC M. Dhellot, J-F. Genat, H. Lebbolo, T-H. Pham, and A. Savoy Navarro LPNHE

More information

arxiv: v2 [physics.ins-det] 14 Jul 2015

arxiv: v2 [physics.ins-det] 14 Jul 2015 April 11, 2018 Compensation of radiation damages for SOI pixel detector via tunneling arxiv:1507.02797v2 [physics.ins-det] 14 Jul 2015 Miho Yamada 1, Yasuo Arai and Ikuo Kurachi Institute of Particle and

More information

Design and characterisation of a capacitively coupled HV-CMOS sensor for the CLIC vertex detector

Design and characterisation of a capacitively coupled HV-CMOS sensor for the CLIC vertex detector CLICdp-Pub-217-1 12 June 217 Design and characterisation of a capacitively coupled HV-CMOS sensor for the CLIC vertex detector I. Kremastiotis 1), R. Ballabriga, M. Campbell, D. Dannheim, A. Fiergolski,

More information

ATLAS ITk and new pixel sensors technologies

ATLAS ITk and new pixel sensors technologies IL NUOVO CIMENTO 39 C (2016) 258 DOI 10.1393/ncc/i2016-16258-1 Colloquia: IFAE 2015 ATLAS ITk and new pixel sensors technologies A. Gaudiello INFN, Sezione di Genova and Dipartimento di Fisica, Università

More information

Design and Fabrication of a Radiation-Hard 500-MHz Digitizer Using Deep Submicron Technology

Design and Fabrication of a Radiation-Hard 500-MHz Digitizer Using Deep Submicron Technology Design and Fabrication of a Radiation-Hard 500-MHz Digitizer Using Deep Submicron Technology Project Summary K.K. Gan *, M.O. Johnson, R.D. Kass, J. Moore Department of Physics, The Ohio State University

More information

Development and Performance of. Kyoto s X-ray Astronomical SOI pixel sensor Sensor

Development and Performance of. Kyoto s X-ray Astronomical SOI pixel sensor Sensor Development and Performance of 1 Kyoto s X-ray Astronomical SOI pixel sensor Sensor T.G.Tsuru (tsuru@cr.scphys.kyoto-u.ac.jp) S.G. Ryu, S.Nakashima, Matsumura, T.Tanaka (Kyoto U.), A.Takeda, Y.Arai (KEK),

More information

The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment

The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment Shruti Shrestha On Behalf of the Mu3e Collaboration International Conference on Technology and Instrumentation in Particle Physics

More information

The Architecture of the BTeV Pixel Readout Chip

The Architecture of the BTeV Pixel Readout Chip The Architecture of the BTeV Pixel Readout Chip D.C. Christian, dcc@fnal.gov Fermilab, POBox 500 Batavia, IL 60510, USA 1 Introduction The most striking feature of BTeV, a dedicated b physics experiment

More information

Monolithic Pixel Sensors in SOI technology R&D activities at LBNL

Monolithic Pixel Sensors in SOI technology R&D activities at LBNL Monolithic Pixel Sensors in SOI technology R&D activities at LBNL Lawrence Berkeley National Laboratory M. Battaglia, L. Glesener (UC Berkeley & LBNL), D. Bisello, P. Giubilato (LBNL & INFN Padova), P.

More information

Qpix v.1: A High Speed 400-pixels Readout LSI with 10-bit 10MSps Pixel ADCs

Qpix v.1: A High Speed 400-pixels Readout LSI with 10-bit 10MSps Pixel ADCs Qpix v.1: A High Speed 400-pixels Readout LSI with 10-bit 10MSps Pixel ADCs Fei Li, Vu Minh Khoa, Masaya Miyahara and Akira Tokyo Institute of Technology, Japan on behalf of the QPIX Collaboration PIXEL2010

More information

arxiv: v2 [physics.ins-det] 15 Nov 2017

arxiv: v2 [physics.ins-det] 15 Nov 2017 Development of depleted monolithic pixel sensors in 150 nm CMOS technology for the ATLAS Inner Tracker upgrade arxiv:1711.01233v2 [physics.ins-det] 15 Nov 2017 P. Rymaszewski a, M. Barbero b, S. Bhat b,

More information

Status of Front End Development

Status of Front End Development Status of Front End Development Progress of CSA and ADC studies Tim Armbruster tim.armbruster@ziti.uni-heidelberg.de CBM-XYTER Family Planning Workshop Schaltungstechnik und 05.12.2008 Introduction Previous

More information

Muon detection in security applications and monolithic active pixel sensors

Muon detection in security applications and monolithic active pixel sensors Muon detection in security applications and monolithic active pixel sensors Tracking in particle physics Gaseous detectors Silicon strips Silicon pixels Monolithic active pixel sensors Cosmic Muon tomography

More information

Tests of monolithic CMOS SOI pixel detector prototype INTPIX3 MOHAMMED IMRAN AHMED. Supervisors Dr. Henryk Palka (IFJ-PAN) Dr. Marek Idzik(AGH-UST)

Tests of monolithic CMOS SOI pixel detector prototype INTPIX3 MOHAMMED IMRAN AHMED. Supervisors Dr. Henryk Palka (IFJ-PAN) Dr. Marek Idzik(AGH-UST) Internal Note IFJ PAN Krakow (SOIPIX) Tests of monolithic CMOS SOI pixel detector prototype INTPIX3 by MOHAMMED IMRAN AHMED Supervisors Dr. Henryk Palka (IFJ-PAN) Dr. Marek Idzik(AGH-UST) Test and Measurement

More information

Belle Monolithic Thin Pixel Upgrade -- Update

Belle Monolithic Thin Pixel Upgrade -- Update Belle Monolithic Thin Pixel Upgrade -- Update Gary S. Varner On Behalf of the Pixel Gang (Marlon, Fang, ) Local Belle Meeting March 2004 Univ. of Hawaii Today s delta Have shown basic scheme before Testing

More information

RD53 status and plans

RD53 status and plans RD53 status and plans Luigi Gaioni a,b On behalf of the RD53 Collaboration a University of Bergamo b INFN Pavia The 25 th International Workshop on Vertex Detectors VERTEX 2016 25-30 September 2016 - La

More information

Tomoyuki Saito (Tohoku Univ.) Outline

Tomoyuki Saito (Tohoku Univ.) Outline 1 Development of Readout system for FPCCD Vertex Detector Tomoyuki Saito (Tohoku Univ.) H. Ikeda A, K. Itagaki, A. Miyamoto B, Y. Takubo, Y. Sugimoto B, H. Yamamoto Outline FPCCD Vertex Detector Readout

More information

Design and Test of a 65nm CMOS Front-End with Zero Dead Time for Next Generation Pixel Detectors

Design and Test of a 65nm CMOS Front-End with Zero Dead Time for Next Generation Pixel Detectors Design and Test of a 65nm CMOS Front-End with Zero Dead Time for Next Generation Pixel Detectors L. Gaioni a,c, D. Braga d, D. Christian d, G. Deptuch d, F. Fahim d,b. Nodari e, L. Ratti b,c, V. Re a,c,

More information

Development of Readout ASIC for FPCCD Vertex Detector

Development of Readout ASIC for FPCCD Vertex Detector 1 Development of Readout ASIC for FPCCD Vertex Detector Tomoyuki Saito (Tohoku University) Y. Sugimoto, A. Miyamoto, Y. Takubo (KEK) H. Ikeda (JAXA), H. Sato (Shinsyu) K. Itagaki, H. Yamamoto (Tohoku)

More information

Towards Monolithic Pixel Detectors for ATLAS HL-LHC Upgrades

Towards Monolithic Pixel Detectors for ATLAS HL-LHC Upgrades Towards Monolithic Pixel Detectors for ATLAS HL-LHC Upgrades Hans Krüger Bonn University FEE 2016 Meeting, Krakow Outline Comparison of Pixel Detector Technologies for HL-LHC upgrades (ATLAS) Design Challenges

More information

ILC VTX Issues being Addressed

ILC VTX Issues being Addressed ILC VTX Issues being Addressed Sensor Design Optimization studies for thin pixel device for Super-B upgrade Study of radiation hardness/max storage density High Performance/IR Design Experience with low

More information

A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC

A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC Jean-Francois Genat Thanh Hung Pham on behalf of W. Da Silva 1, J. David 1, M. Dhellot 1, D. Fougeron 2, R. Hermel 2, J-F. Huppert

More information

3D activities and plans in Italian HEP labs Valerio Re INFN Pavia and University of Bergamo

3D activities and plans in Italian HEP labs Valerio Re INFN Pavia and University of Bergamo 3D activities and plans in Italian HEP labs Valerio Re INFN Pavia and University of Bergamo 1 Vertical integration technologies in Italian R&D programs In Italy, so far interest for 3D vertical integration

More information

Development of CMOS pixel sensors for tracking and vertexing in high energy physics experiments

Development of CMOS pixel sensors for tracking and vertexing in high energy physics experiments PICSEL group Development of CMOS pixel sensors for tracking and vertexing in high energy physics experiments Serhiy Senyukov (IPHC-CNRS Strasbourg) on behalf of the PICSEL group 7th October 2013 IPRD13,

More information

ITk silicon strips detector test beam at DESY

ITk silicon strips detector test beam at DESY ITk silicon strips detector test beam at DESY Lucrezia Stella Bruni Nikhef Nikhef ATLAS outing 29/05/2015 L. S. Bruni - Nikhef 1 / 11 Qualification task I Participation at the ITk silicon strip test beams

More information

Noise Characteristics Of The KPiX ASIC Readout Chip

Noise Characteristics Of The KPiX ASIC Readout Chip Noise Characteristics Of The KPiX ASIC Readout Chip Cabrillo College Stanford Linear Accelerator Center What Is The ILC The International Linear Collider is an e- e+ collider Will operate at 500GeV with

More information

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems 1 Eun-Jung Yoon, 2 Kangyeob Park, 3* Won-Seok Oh 1, 2, 3 SoC Platform Research Center, Korea Electronics Technology

More information

Phase 1 upgrade of the CMS pixel detector

Phase 1 upgrade of the CMS pixel detector Phase 1 upgrade of the CMS pixel detector, INFN & University of Perugia, On behalf of the CMS Collaboration. IPRD conference, Siena, Italy. Oct 05, 2016 1 Outline The performance of the present CMS pixel

More information

Zero Steady State Current Power-on-Reset Circuit with Brown-Out Detector

Zero Steady State Current Power-on-Reset Circuit with Brown-Out Detector Zero Steady State Current Power-on-Reset Circuit with Brown-Out Detector Sanjay Kumar Wadhwa 1, G.K. Siddhartha 2, Anand Gaurav 3 Freescale Semiconductor India Pvt. Ltd. 1 sanjay.wadhwa@freescale.com,

More information

X-ray Detectors: What are the Needs?

X-ray Detectors: What are the Needs? X-ray Detectors: What are the Needs? Sol M. Gruner Physics Dept. & Cornell High Energy Synchrotron Source (CHESS) Ithaca, NY 14853 smg26@cornell.edu 1 simplified view of the Evolution of Imaging Synchrotron

More information

arxiv: v1 [physics.ins-det] 26 Nov 2015

arxiv: v1 [physics.ins-det] 26 Nov 2015 arxiv:1511.08368v1 [physics.ins-det] 26 Nov 2015 European Organization for Nuclear Research (CERN), Switzerland and Utrecht University, Netherlands E-mail: monika.kofarago@cern.ch The upgrade of the Inner

More information

A 1Mjot 1040fps 0.22e-rms Stacked BSI Quanta Image Sensor with Cluster-Parallel Readout

A 1Mjot 1040fps 0.22e-rms Stacked BSI Quanta Image Sensor with Cluster-Parallel Readout A 1Mjot 1040fps 0.22e-rms Stacked BSI Quanta Image Sensor with Cluster-Parallel Readout IISW 2017 Hiroshima, Japan Saleh Masoodian, Jiaju Ma, Dakota Starkey, Yuichiro Yamashita, Eric R. Fossum May 2017

More information

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1 Contents 1 FUNDAMENTAL CONCEPTS 1 1.1 What is Noise Coupling 1 1.2 Resistance 3 1.2.1 Resistivity and Resistance 3 1.2.2 Wire Resistance 4 1.2.3 Sheet Resistance 5 1.2.4 Skin Effect 6 1.2.5 Resistance

More information

High Luminosity ATLAS vs. CMOS Sensors

High Luminosity ATLAS vs. CMOS Sensors High Luminosity ATLAS vs. CMOS Sensors Where we currently are and where we d like to be Jens Dopke, STFC RAL 1 Disclaimer I usually do talks on things where I generated all the imagery myself (ATLAS Pixels/IBL)

More information

The CMS Pixel Detector Phase-1 Upgrade

The CMS Pixel Detector Phase-1 Upgrade Paul Scherrer Institut, Switzerland E-mail: wolfram.erdmann@psi.ch The CMS experiment is going to upgrade its pixel detector during Run 2 of the Large Hadron Collider. The new detector will provide an

More information

Improved Pre-Sample pixel

Improved Pre-Sample pixel Improved Pre-Sample pixel SUMMARY/DIALOGUE 2 PRESAMPLE PIXEL OVERVIEW 3 PRESAMPLE PIXEL SIMULATION: EXAMPLE OPERATION 4 PRESAMPLE PIXEL SIMULATION: SMALL SIGNALS AROUND THRESHOLD 6 PRESAMPLE PIXEL SIMULATION:

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2017/349 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 09 October 2017 (v4, 10 October 2017)

More information

Deep sub-micron FD-SOI for front-end application

Deep sub-micron FD-SOI for front-end application Nuclear Instruments and Methods in Physics Research A ] (]]]]) ]]] ]]] www.elsevier.com/locate/nima Deep sub-micron FD-SOI for front-end application H. Ikeda a,, Y. Arai b, K. Hara c, H. Hayakawa a, K.

More information

KLauS4: A Multi-Channel SiPM Charge Readout ASIC in 0.18 µm UMC CMOS Technology

KLauS4: A Multi-Channel SiPM Charge Readout ASIC in 0.18 µm UMC CMOS Technology 1 KLauS: A Multi-Channel SiPM Charge Readout ASIC in 0.18 µm UMC CMOS Technology Z. Yuan, K. Briggl, H. Chen, Y. Munwes, W. Shen, V. Stankova, and H.-C. Schultz-Coulon Kirchhoff Institut für Physik, Heidelberg

More information

CMOS pixel sensors developments in Strasbourg

CMOS pixel sensors developments in Strasbourg SuperB XVII Workshop + Kick Off Meeting La Biodola, May 2011 CMOS pixel sensors developments in Strasbourg Outline sensor performances assessment state of the art: MIMOSA-26 and its applications Strasbourg

More information

http://clicdp.cern.ch Hybrid Pixel Detectors with Active-Edge Sensors for the CLIC Vertex Detector Simon Spannagel on behalf of the CLICdp Collaboration Experimental Conditions at CLIC CLIC beam structure

More information

The Concept of LumiCal Readout Electronics

The Concept of LumiCal Readout Electronics EUDET The Concept of LumiCal Readout Electronics M. Idzik, K. Swientek, Sz. Kulis, W. Dabrowski, L. Suszycki, B. Pawlik, W. Wierba, L. Zawiejski on behalf of the FCAL collaboration July 4, 7 Abstract The

More information

The BaBar Silicon Vertex Tracker (SVT) Claudio Campagnari University of California Santa Barbara

The BaBar Silicon Vertex Tracker (SVT) Claudio Campagnari University of California Santa Barbara The BaBar Silicon Vertex Tracker (SVT) Claudio Campagnari University of California Santa Barbara Outline Requirements Detector Description Performance Radiation SVT Design Requirements and Constraints

More information

SUMMARY/DIALOGUE 2 PRESHAPE PIXEL OVERVIEW 3 BRIEF OPERATING INSTRUCTIONS 3 PRESHAPE PIXEL SIMULATION: EXAMPLE OPERATION 4 PRESHAPE PIXEL SIMULATION:

SUMMARY/DIALOGUE 2 PRESHAPE PIXEL OVERVIEW 3 BRIEF OPERATING INSTRUCTIONS 3 PRESHAPE PIXEL SIMULATION: EXAMPLE OPERATION 4 PRESHAPE PIXEL SIMULATION: SUMMARY/DIALOGUE 2 PRESHAPE PIXEL OVERVIEW 3 BRIEF OPERATING INSTRUCTIONS 3 PRESHAPE PIXEL SIMULATION: EXAMPLE OPERATION 4 PRESHAPE PIXEL SIMULATION: SMALL SIGNALS AROUND THRESHOLD 5 PRESHAPE PIXEL SIMULATION:

More information

Pixel characterization for the ITS/MFT upgrade. Audrey Francisco

Pixel characterization for the ITS/MFT upgrade. Audrey Francisco Pixel characterization for the ITS/MFT upgrade Audrey Francisco QGP France, Etretat, 14/10/2015 Outline 1 The MFT upgrade 2 Pixel sensor Technology choice Full scale prototypes 3 Characterization campaign

More information

Status of ATLAS & CMS Experiments

Status of ATLAS & CMS Experiments Status of ATLAS & CMS Experiments Atlas S.C. Magnet system Large Air-Core Toroids for µ Tracking 2Tesla Solenoid for inner Tracking (7*2.5m) ECAL & HCAL outside Solenoid Solenoid integrated in ECAL Barrel

More information

Towards a 10 μs, thin high resolution pixelated CMOS sensor system for future vertex detectors

Towards a 10 μs, thin high resolution pixelated CMOS sensor system for future vertex detectors Towards a 10 μs, thin high resolution pixelated CMOS sensor system for future vertex detectors Rita De Masi IPHC-Strasbourg On behalf of the IPHC-IRFU collaboration Physics motivations. Principle of operation

More information

Clock-Powered CMOS: A Hybrid Adiabatic Logic Style for Energy-Efficient Computing

Clock-Powered CMOS: A Hybrid Adiabatic Logic Style for Energy-Efficient Computing Clock-Powered CMOS: A Hybrid Adiabatic Logic Style for Energy-Efficient Computing Nestoras Tzartzanis and Bill Athas nestoras@isiedu, athas@isiedu http://wwwisiedu/acmos Information Sciences Institute

More information

Deep N-well CMOS MAPS with in-pixel signal processing and sparsification capabilities for the ILC vertex detector

Deep N-well CMOS MAPS with in-pixel signal processing and sparsification capabilities for the ILC vertex detector Deep N-well CMOS MAPS with in-pixel signal processing and sparsification capabilities for the ILC vertex detector, Massimo Manghisoni, Valerio Re University of Bergamo Via Marconi, 20 Dalmine (BG), Italy.

More information

Results of FE65-P2 Pixel Readout Test Chip for High Luminosity LHC Upgrades

Results of FE65-P2 Pixel Readout Test Chip for High Luminosity LHC Upgrades for High Luminosity LHC Upgrades R. Carney, K. Dunne, *, D. Gnani, T. Heim, V. Wallangen Lawrence Berkeley National Lab., Berkeley, USA e-mail: mgarcia-sciveres@lbl.gov A. Mekkaoui Fermilab, Batavia, USA

More information

Recent Development on CMOS Monolithic Active Pixel Sensors

Recent Development on CMOS Monolithic Active Pixel Sensors Recent Development on CMOS Monolithic Active Pixel Sensors Giuliana Rizzo Università degli Studi di Pisa & INFN Pisa Tracking detector applications 8th International Workshop on Radiation Imaging Detectors

More information

Monolithic Pixel Development in 180 nm CMOS for the Outer Pixel Layers in the ATLAS Experiment

Monolithic Pixel Development in 180 nm CMOS for the Outer Pixel Layers in the ATLAS Experiment Monolithic Pixel Development in 180 nm CMOS for the Outer Pixel Layers in the ATLAS Experiment a, R. Bates c, C. Buttar c, I. Berdalovic a, B. Blochet a, R. Cardella a, M. Dalla d, N. Egidos Plaja a, T.

More information

The Belle II Vertex Pixel Detector

The Belle II Vertex Pixel Detector The Belle II Vertex Pixel Detector IMPRS Young Scientist Workshop July 16-19, 2014 Ringberg Castle Kreuth, Germany Felix Mueller 1 fmu@mpp.mpg.de Outline SuperKEKB and Belle II Vertex Detector (VXD) Pixel

More information

The Commissioning of the ATLAS Pixel Detector

The Commissioning of the ATLAS Pixel Detector The Commissioning of the ATLAS Pixel Detector XCIV National Congress Italian Physical Society Genova, 22-27 Settembre 2008 Nicoletta Garelli Large Hadronic Collider MOTIVATION: Find Higgs Boson and New

More information

Memory Basics. historically defined as memory array with individual bit access refers to memory with both Read and Write capabilities

Memory Basics. historically defined as memory array with individual bit access refers to memory with both Read and Write capabilities Memory Basics RAM: Random Access Memory historically defined as memory array with individual bit access refers to memory with both Read and Write capabilities ROM: Read Only Memory no capabilities for

More information

Front-End electronics developments for CALICE W-Si calorimeter

Front-End electronics developments for CALICE W-Si calorimeter Front-End electronics developments for CALICE W-Si calorimeter J. Fleury, C. de La Taille, G. Martin-Chassard G. Bohner, J. Lecoq, S. Manen IN2P3/LAL Orsay & LPC Clermont http::/www.lal.in2p3.fr/technique/se/flc

More information

X-ray Radiation Hardness of Fully-Depleted SOI MOSFETs and Its Improvement

X-ray Radiation Hardness of Fully-Depleted SOI MOSFETs and Its Improvement June 4, 2015 X-ray Radiation Hardness of Fully-Depleted SOI MOSFETs and Its Improvement Ikuo Kurachi 1, Kazuo Kobayashi 2, Hiroki Kasai 3, Marie Mochizuki 4, Masao Okihara 4, Takaki Hatsui 2, Kazuhiko

More information

Electronic Readout System for Belle II Imaging Time of Propagation Detector

Electronic Readout System for Belle II Imaging Time of Propagation Detector Electronic Readout System for Belle II Imaging Time of Propagation Detector Dmitri Kotchetkov University of Hawaii at Manoa for Belle II itop Detector Group March 3, 2017 Barrel Particle Identification

More information

THE LHCb experiment [1], currently under construction

THE LHCb experiment [1], currently under construction The DIALOG Chip in the Front-End Electronics of the LHCb Muon Detector Sandro Cadeddu, Caterina Deplano and Adriano Lai, Member, IEEE Abstract We present a custom integrated circuit, named DI- ALOG, which

More information

CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC

CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC 138 CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC 6.1 INTRODUCTION The Clock generator is a circuit that produces the timing or the clock signal for the operation in sequential circuits. The circuit

More information

Radiation hardness improvement of FD-SOI MOSFETs for X-ray detector application

Radiation hardness improvement of FD-SOI MOSFETs for X-ray detector application Radiation hardness improvement of FD-SOI MOSFETs for X-ray detector application Ikuo Kurachi 1, Kazuo Kobayashi 2, Marie Mochizuki 3, Masao Okihara 3, Hiroki Kasai 4, Takaki Hatsui 2, Kazuo Hara 5, Toshinobu

More information

The DMILL readout chip for the CMS pixel detector

The DMILL readout chip for the CMS pixel detector The DMILL readout chip for the CMS pixel detector Wolfram Erdmann Institute for Particle Physics Eidgenössische Technische Hochschule Zürich Zürich, SWITZERLAND 1 Introduction The CMS pixel detector will

More information

MICROWIND2 DSCH2 8. Converters /11/00

MICROWIND2 DSCH2 8. Converters /11/00 8-9 05/11/00 Fig. 8-7. Effect of sampling The effect of sample and hold is illustrated in figure 8-7. When sampling, the transmission gate is turned on so that the sampled data DataOut reaches the value

More information

Ryu et al. IEEE NSS 2010, Conf. Record (2010) Ryu et al. IEEE TNS 58, 2528 (2011) Nakashima et al. TIPP 2011 (2011) Submitted

Ryu et al. IEEE NSS 2010, Conf. Record (2010) Ryu et al. IEEE TNS 58, 2528 (2011) Nakashima et al. TIPP 2011 (2011) Submitted Development and Performance of X-ray Astronomical SOI pixel sensor T.G.Tsuru, S.G.Ryu, S.Nakashima (Kyoto), Y. Arai, A. Takeda, Y.Ikemoto (KEK), A.Iwata, T.Imamura, T.Ohmoto (A-R-Tec) Posters Ryu et al.

More information

ATLAS strip detector upgrade for the HL-LHC

ATLAS strip detector upgrade for the HL-LHC ATL-INDET-PROC-2015-010 26 August 2015, On behalf of the ATLAS collaboration Santa Cruz Institute for Particle Physics, University of California, Santa Cruz E-mail: zhijun.liang@cern.ch Beginning in 2024,

More information

The Medipix3 Prototype, a Pixel Readout Chip Working in Single Photon Counting Mode with Improved Spectrometric Performance

The Medipix3 Prototype, a Pixel Readout Chip Working in Single Photon Counting Mode with Improved Spectrometric Performance 26 IEEE Nuclear Science Symposium Conference Record NM1-6 The Medipix3 Prototype, a Pixel Readout Chip Working in Single Photon Counting Mode with Improved Spectrometric Performance R. Ballabriga, M. Campbell,

More information

Scalable and Synthesizable. Analog IPs

Scalable and Synthesizable. Analog IPs Scalable and Synthesizable Analog IPs Akira Matsuzawa Tokyo Institute of Technology Background and Motivation 1 Issues It becomes more difficult to obtain good analog IPs Insufficient design resources

More information

Layout and prototyping of the new ATLAS Inner Tracker for the High Luminosity LHC

Layout and prototyping of the new ATLAS Inner Tracker for the High Luminosity LHC Layout and prototyping of the new ATLAS Inner Tracker for the High Luminosity LHC Ankush Mitra, University of Warwick, UK on behalf of the ATLAS ITk Collaboration PSD11 : The 11th International Conference

More information

Readout and Data Processing Electronics for the Belle-II Silicon Vertex Detector

Readout and Data Processing Electronics for the Belle-II Silicon Vertex Detector Readout and Data Processing Electronics for the Belle-II Silicon Vertex Detector M. Friedl a, C. Irmler a, M. Pernicka a a Institute of High Energy Physics, Nikolsdorfergasse 18, A-15 Vienna, Austria friedl@hephy.at

More information

Introduction to SoI pixel sensor. 27 Jan T. Tsuboyama (KEK) for KEK Detector R&D group Pixel Subgroup

Introduction to SoI pixel sensor. 27 Jan T. Tsuboyama (KEK) for KEK Detector R&D group Pixel Subgroup Introduction to SoI pixel sensor 27 Jan. 2006 T. Tsuboyama (KEK) for KEK Detector R&D group Pixel Subgroup Collaboration KEK Y. Unno, S. Terada, Y. Ikegami, T. Tsuboyama, M. Hazumi, O. Tajima, Y. Ushiroda,

More information

Development of Silicon-on-Insulator Pixel Devices

Development of Silicon-on-Insulator Pixel Devices Development of Silicon-on-Insulator Pixel Devices Kazuhiko Hara*,1,2, Daisuke Sekigawa 1, Shun Endo 1, Wataru Aoyagi 1, Shunsuke Honda 1, Toru Tsuboyama 3, Miho Yamada 3, Shun Ono 3, Manabu Togawa 3, Yoichi

More information

PoS(Vertex 2011)043. SOI detector developments

PoS(Vertex 2011)043. SOI detector developments a, H. Katsurayama a,y. Ono a, H. Yamamoto a, Y. Arai b, Y. Fujita b, R. Ichimiya b, Y. Ikegami b, Y. Ikemoto b, T. Kohriki b, T. Miyoshi b, K. Tauchi b, S. Terada b, T. Tsuboyama b, Y. Unno b, T. Uchida

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 1 Memory and Advanced Digital Circuits - 2 Chapter 11 2 Figure 11.1 (a) Basic latch. (b) The latch with the feedback loop opened.

More information

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California A 4 GSample/s 8-bit ADC in 0.35 µm CMOS Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California 1 Outline Background Chip Architecture

More information

Quality Assurance for the ATLAS Pixel Sensor

Quality Assurance for the ATLAS Pixel Sensor Quality Assurance for the ATLAS Pixel Sensor 1st Workshop on Quality Assurance Issues in Silicon Detectors J. M. Klaiber-Lodewigs (Univ. Dortmund) for the ATLAS pixel collaboration Contents: - role of

More information

Development of an analog read-out channel for time projection chambers

Development of an analog read-out channel for time projection chambers Journal of Physics: Conference Series PAPER OPEN ACCESS Development of an analog read-out channel for time projection chambers To cite this article: E Atkin and I Sagdiev 2017 J. Phys.: Conf. Ser. 798

More information

Analog Peak Detector and Derandomizer

Analog Peak Detector and Derandomizer Analog Peak Detector and Derandomizer G. De Geronimo, A. Kandasamy, P. O Connor Brookhaven National Laboratory IEEE Nuclear Sciences Symposium, San Diego November 7, 2001 Multichannel Readout Alternatives

More information

Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology

Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology 2009 IEEE Nuclear Science Symposium, Orlando, Florida, October 28 th 2009 Jean-Francois Genat On behalf of Mircea Bogdan 1, Henry J. Frisch

More information

J. E. Brau, N. B. Sinev, D. M. Strom University of Oregon, Eugene. C. Baltay, H. Neal, D. Rabinowitz Yale University, New Haven

J. E. Brau, N. B. Sinev, D. M. Strom University of Oregon, Eugene. C. Baltay, H. Neal, D. Rabinowitz Yale University, New Haven Chronopixe status J. E. Brau, N. B. Sinev, D. M. Strom University of Oregon, Eugene C. Baltay, H. Neal, D. Rabinowitz Yale University, New Haven EE work is contracted to Sarnoff Corporation 1 Outline of

More information

5V, 3A, 1.5MHz Buck Constant Current Switching Regulator for White LED

5V, 3A, 1.5MHz Buck Constant Current Switching Regulator for White LED 5V, 3A, 1.5MHz Buck Constant Current Switching Regulator for White LED General Description The is a PWM control buck converter designed to provide a simple, high efficiency solution for driving high power

More information

Jan Bogaerts imec

Jan Bogaerts imec imec 2007 1 Radiometric Performance Enhancement of APS 3 rd Microelectronic Presentation Days, Estec, March 7-8, 2007 Outline Introduction Backside illuminated APS detector Approach CMOS APS (readout)

More information

8-Bit, high-speed, µp-compatible A/D converter with track/hold function ADC0820

8-Bit, high-speed, µp-compatible A/D converter with track/hold function ADC0820 8-Bit, high-speed, µp-compatible A/D converter with DESCRIPTION By using a half-flash conversion technique, the 8-bit CMOS A/D offers a 1.5µs conversion time while dissipating a maximum 75mW of power.

More information

Development of Ionizing Radiation Detectors Integrated with Readout Electronics

Development of Ionizing Radiation Detectors Integrated with Readout Electronics MIXED DESIGN MIXDES 2013, 20 th International Conference "Mixed Design of Integrated Circuits and Systems", June 20-22, 2013, Gdynia, Poland Development of Ionizing Radiation Detectors Integrated with

More information