3.5 Marginal Distributions

Size: px
Start display at page:

Download "3.5 Marginal Distributions"

Transcription

1 STAT 421 Lecture Notes Marginal Distributions Definition Suppose that X and Y have a joint distribution. The c.d.f. of X derived by integrating (or summing) over the support of Y is called the marginal c.d.f. of X. The p.f. or p.d.f. associated with the marginal c.d.f. is called the marginal p.f. (or p.d.f.) Theorem If X and Y have a discrete joint distribution with p.f. f, then the marginal p.f. of X is The notation y positive. f 1 (x) = y f(x, y). implies that the summation is over all values of y such that f(x, y) is Recall the urn example in which an urn contains 4 green, 6 red and 10 black balls. Two balls are drawn randomly and without replacement. Let X count the number of green balls and Y count the number of reds. The (joint) probability distribution for (X, Y ) is determined by counting the number of ways to draw 0 x 2 from 4 (reds) and 0 y 2 from 6 (greens) and the number of ways to draw 2 x y from 10, given that x + y 2. The joint probability function is ( 4 )( 6 10 ) x y)( 2 x y ( f(x, y) = 20 ), x, y {0, 1, 2} and x + y 2, 2 0 otherwise. The p.f. may also be presented by enumerating all possible values of (X, Y ) and their probabilities. Table 1 illustrates. (1) Table 1: The joint probability function for the number of red (X) and green (Y ) balls from the urn example. y x The marginal distributions of X and Y can be obtained by summing along rows (yielding the marginal p.f. of X) and along columns (yielding the marginal p.f. of Y ). The result is displayed in Table 2.

2 STAT 421 Lecture Notes 53 Table 2: Joint and marginal probability functions for the number of red (X) and green (Y ) balls from the urn example. y x f 1 (x) f 2 (y) Theorem If X and Y have a continuous joint distribution with p.d.f. f, then the marginal p.f. f 1 of X is f 1 (x) = f(x, y) dy for < x <. The proof is based on recognizing that a probability involving X alone, say Pr(X x), is equivalent to Pr(X x, Y < ). The condition that Y may take on any value y R leads to the integral Pr(X x, Y < ) = x f(x, y) dydx = Example Suppose that X and Y have the following joint p.d.f.: 21 4 f(x) = x2 y, for x 2 y 1, 0, otherwise. x f 1 (x) dx. To find the marginals, the support of X and Y must be determined from the condition x 2 y 1. Obviously, the support is limited to y 1. Furthermore, 0 x 2 0 y. Finally, x 2 y implies that y x y. The support is shown in red: y x

3 STAT 421 Lecture Notes 54 Then 1 f 1 (x) = 21 x 2 y dy 4 x 2 = 21 x 2 y x = (x2 x 4 ), for 1 x 1, 0, otherwise. The marginal p.d.f. of Y is f 2 (y) = 21 4 y y y x 2 y dx = x3 y y 7 2 = y5/2, for 0 < y < 1, 0, otherwise. Notice that the bounds of integration are determined by the inequality x 2 y y x y. Theorem Suppose that X is discrete and Y is continuous, and the joint p.f./p.d.f. is f. Then, the marginal p.f. of X is f 1 (x) = The marginal p.d.f. of Y is f(x, y) dy, for all x. f 2 (y) = x f(x, y), for y R. Example Suppose that X is discrete and Y is continuous, and the joint p.f./p.d.f. is xy x 1, for x {1, 2, 3}, 0 < y < 1, f(x, y) = 3 0, otherwise. Then, the marginal p.f. of X is f 1 (x) = 1 xy x dy = yx, for x {1, 2, 3} 0 1, for x {1, 2, 3}, 3 = 0, otherwise.

4 STAT 421 Lecture Notes 55 It s useful to establish some notation not used by DeGroot and Schervish. Let I A denote an indicator function of the set A. The function is defined according to 1, if x A, I A (x) = 0, if x A. Now, f 1 can be defined without separate cases: f 1 (x) = 1 3 I {1,2,3}(x). Returning to the example, the marginal p.d.f. of Y is 3 f 2 (y) = = 1 3 x=1 xy x 1 3 ( 1 + 2y + 3y 2 ) I (0,1) (y). While it is theoretically possible to compute marginal distributions from the joint distribution, the reverse is sometimes false. The joint p.f./p.d.f. s of random variables X and Y cannot be derived from the marginal distributions of X and Y unless X and Y are independent random variables. Definition Random variables X and Y are independent if for every two sets of real numbers A and B, Pr(X A, Y B) = Pr(X A) Pr(Y B). If X and Y are independent, then Pr(X x, Y y) = Pr(X x) Pr(Y y) F (x, y) = F 1 (x)f 2 (y). Thus, when X and Y are independent, the joint cumulative distribution function of X and Y can be constructed as the product of the univariate cumulative distribution functions. Theorem X and Y are independent if and only if F (x, y) = F 1 (x)f 2 (y) for all real numbers x and y. The next theorem is very useful for proving that two (or more) random variables are independent.

5 STAT 421 Lecture Notes 56 Theorem Suppose that X and Y have a joint p.f./p.d.f. f. Then, X and Y are independent if and only if f(x, y) = h 1 (x)h 2 (y) x, y R, (2) where h 1 is a nonnegative function of x alone and where h 2 is a nonnegative function of y alone. Corollary extends Theorem Corollary X and Y are independent if and only if where f 1 and f 2 are the marginal p.f./p.d.f. s of X and Y. f(x, y) = f 1 (x)f 2 (y) x, y R, (3) Simply factoring f does not necessarily yield the marginals f 1 and f 2 since h 1 may differ from f 1 by a multiplicative constant (and similarly, factoring may yield h 2 (y) = cf 2 (y) for some c 1). A more intuitive definition of independent random variables is presented in the next section on conditional probability, but looking ahead, it will be stated that X and Y are independent discrete random variables if knowing that y is the realized value of Y does not change the probability that X takes on any particular value. Mathematically, X and Y are independent if and only if Pr(X = x Y = y) = Pr(X = x) for all x and y. The definition extends to continuous random variables by replacing the events {X = x} and {Y = y} with events {X A} and {Y B} where A and B are sets such that Pr(X A) > 0 and Pr(Y B) > 0. Example Consider discrete random variables X and Y counting the number of heads when coins A and B are tossed at the same time. Coin B is fair, but A is not and yields Pr(X = 0) = 1/2, Pr(X = 1) = 1/4 = Pr(X = 2). The marginal p.d.f.s are shown in the margins of Table 3. The body of Table 3 gives the joint p.d.f. of (X, Y ). Each entry was obtained by computing Pr(X = x, Y = y) = Pr(X = x) Pr(Y = y). Notice that 2 x=0 Pr(X = x, Y = y) = Pr(Y = y) and 2 y=0 Pr(X = x, Y = y) = Pr(X = x).

6 STAT 421 Lecture Notes 57 Table 3: The joint and marginal p.d.f s of X and Y. Values in the body of the Table are Pr(X = x, Y = y). y x f 1 (x) 0 1/8 1/4 1/8 1/2 1 1/16 1/8 1/16 1/4 2 1/16 1/8 1/16 1/4 f 2 (y) 1/4 1/2 1/4 Example The data in Table 4 enumerates the outcomes of the Titanic passengers and crew. Table 5 contains the proportion of all passengers and crew cross-classified into a particular cell (e.g., Pr(Survived, First) = 203/2201 =.092). Table 4: Titanic data. Class First Second Third Crew Total Survived Died Total Table 5: Outcome probabilities for the Titanic passengers and crew. Class First Second Third Crew Pr(Outcome) Survived Died Pr(Class) The survivorship random variable with marginal p.d.f. Pr(Survived) =.323 and Pr(Died) =.677 is not independent of the class random variable since product of the marginal probabilities Pr(First) =.148 and Pr(Survived) =.323 is = = Pr(Survived, First). Example Suppose that X and Y are independent random variables and g(x) = 2xI [0,1] (x) is the p.d.f. of both random variables. Recall that 1, if x [0, 1], I [0,1] (x) = 0, if x [0, 1].

7 STAT 421 Lecture Notes 58 The probability Pr(X + Y 1) is computed as follows: 1. f(x, y) = 4xyI [0,1] (x)i [0,1] (y) = 4xyI [0,1] [0,1] (x, y) 2. Let S 0 = {X + Y 1} = {(x, y) 0 x 1 y}. Then Pr[(X, Y ) S 0 ] = = 1 1 y xy dxdy 2(1 y) 2 y dy = 1 6. Example Consider the joint p.d.f. of (X, Y ): kx 2 y 2, x 2 + y 2 1, f(x, y) = 0, otherwise. It might appear that X and Y are independent random variables since kx 2 y 2 is easily factored as two functions, each of which depend only on one variable. However, the support of (X, Y ) is not rectangular with edges parallel to the x- and y-axes, so there is no possibility of defining the support of X without reference to Y. Another view of this complication writes f using an indicator function to explicitly identify the support: f(x, y) = kx 2 y 2 I {(r,s) r 2 +s 2 1}(x, y). There is no possibility of factoring I {(r,s) r 2 +s 2 1}(x, y) as two indicator functions each of which involves only one variable. Factorization could be accomplished if the support were rectangular with edges parallel to the x- and y-axes, say I {(r,s) r 1,s 2} (x, y) = I [0,1] (r)i [0,2] (s). If this were true of f(x, y), then X and Y are independent. DeGroot and Schervish establish lack of independence of X and Y by making the rectangular support argument. Then they give Theorem which states that the support must be rectangular with edges parallel to the x- and y-axes for independence to hold. Example Suppose that X and Y have joint p.d.f. ke (x+2y), 0 x, 0 y, f(x, y) = 0, otherwise. Theorem and can be used to establish that X and Y are independent. Alternatively, write f(x, y) = ke (x+2y) I {(r,s) 0 r,0 s} (x, y) = h 1 (x)h 2 (y).

8 STAT 421 Lecture Notes 59 where h 1 (x) = e x I [0, ) (x) h 2 (y) = ke 2y I [0, ) (y). The function h 1 is a p.d.f. (it integrates to 1), but h 2 is not, at least until k is replaced by 1 2.

Joint Distributions, Independence Class 7, Jeremy Orloff and Jonathan Bloom

Joint Distributions, Independence Class 7, Jeremy Orloff and Jonathan Bloom Learning Goals Joint Distributions, Independence Class 7, 8.5 Jeremy Orloff and Jonathan Bloom. Understand what is meant by a joint pmf, pdf and cdf of two random variables. 2. Be able to compute probabilities

More information

Topic 6: Joint Distributions

Topic 6: Joint Distributions Topic 6: Joint Distributions Course 003, 2017 Page 0 Joint distributions Social scientists are typically interested in the relationship between many random variables. They may be able to change some of

More information

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs.

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs. 10-11-2010 HW: 14.7: 1,5,7,13,29,33,39,51,55 Maxima and Minima In this very important chapter, we describe how to use the tools of calculus to locate the maxima and minima of a function of two variables.

More information

Mixture of Discrete and Continuous Random Variables

Mixture of Discrete and Continuous Random Variables Mixture of Discrete and Continuous Random Variables What does the CDF F X (x) look like when X is discrete vs when it s continuous? A r.v. could have a continuous component and a discrete component. Ex

More information

Conditional Distributions

Conditional Distributions Conditional Distributions X, Y discrete: the conditional pmf of X given Y y is defined to be p X Y (x y) P(X x, Y y) P(Y y) p(x, y) p Y (y), p Y (y) > 0. Given Y y, the randomness of X is described by

More information

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem INTEGRATION OVER NON-RECTANGULAR REGIONS Contents 1. A slightly more general form of Fubini s Theorem 1 1. A slightly more general form of Fubini s Theorem We now want to learn how to calculate double

More information

Intro to Probability Instructor: Alexandre Bouchard

Intro to Probability Instructor: Alexandre Bouchard www.stat.ubc.ca/~bouchard/courses/stat302-sp2017-18/ Intro to Probability Instructor: Alexandre Bouchard Announcements Webwork out Graded midterm available after lecture Regrading policy IF you would like

More information

CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri

CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri CSE 151 Machine Learning Instructor: Kamalika Chaudhuri Probability Review Probabilistic Events and Outcomes Example: Sample space: set of all possible outcomes of an experiment Event: subspace of a sample

More information

NON-OVERLAPPING PERMUTATION PATTERNS. To Doron Zeilberger, for his Sixtieth Birthday

NON-OVERLAPPING PERMUTATION PATTERNS. To Doron Zeilberger, for his Sixtieth Birthday NON-OVERLAPPING PERMUTATION PATTERNS MIKLÓS BÓNA Abstract. We show a way to compute, to a high level of precision, the probability that a randomly selected permutation of length n is nonoverlapping. As

More information

Lecture 1, CS 2050, Intro Discrete Math for Computer Science

Lecture 1, CS 2050, Intro Discrete Math for Computer Science Lecture 1, 08--11 CS 050, Intro Discrete Math for Computer Science S n = 1++ 3+... +n =? Note: Recall that for the above sum we can also use the notation S n = n i. We will use a direct argument, in this

More information

Functions of several variables

Functions of several variables Chapter 6 Functions of several variables 6.1 Limits and continuity Definition 6.1 (Euclidean distance). Given two points P (x 1, y 1 ) and Q(x, y ) on the plane, we define their distance by the formula

More information

Lecture 19 - Partial Derivatives and Extrema of Functions of Two Variables

Lecture 19 - Partial Derivatives and Extrema of Functions of Two Variables Lecture 19 - Partial Derivatives and Extrema of Functions of Two Variables 19.1 Partial Derivatives We wish to maximize functions of two variables. This will involve taking derivatives. Example: Consider

More information

Multiple Integrals. Advanced Calculus. Lecture 1 Dr. Lahcen Laayouni. Department of Mathematics and Statistics McGill University.

Multiple Integrals. Advanced Calculus. Lecture 1 Dr. Lahcen Laayouni. Department of Mathematics and Statistics McGill University. Lecture epartment of Mathematics and Statistics McGill University January 4, 27 ouble integrals Iteration of double integrals ouble integrals Consider a function f(x, y), defined over a rectangle = [a,

More information

Non-overlapping permutation patterns

Non-overlapping permutation patterns PU. M. A. Vol. 22 (2011), No.2, pp. 99 105 Non-overlapping permutation patterns Miklós Bóna Department of Mathematics University of Florida 358 Little Hall, PO Box 118105 Gainesville, FL 326118105 (USA)

More information

MATHEMATICS ON THE CHESSBOARD

MATHEMATICS ON THE CHESSBOARD MATHEMATICS ON THE CHESSBOARD Problem 1. Consider a 8 8 chessboard and remove two diametrically opposite corner unit squares. Is it possible to cover (without overlapping) the remaining 62 unit squares

More information

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text.

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text. TEST #1 STA 5326 September 25, 2008 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. (You will have access

More information

Section 6.1 #16. Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Section 6.1 #16. Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? Section 6.1 #16 What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? page 1 Section 6.1 #38 Two events E 1 and E 2 are called independent if p(e 1

More information

Introduction to probability

Introduction to probability Introduction to probability Suppose an experiment has a finite set X = {x 1,x 2,...,x n } of n possible outcomes. Each time the experiment is performed exactly one on the n outcomes happens. Assign each

More information

Solutions to the problems from Written assignment 2 Math 222 Winter 2015

Solutions to the problems from Written assignment 2 Math 222 Winter 2015 Solutions to the problems from Written assignment 2 Math 222 Winter 2015 1. Determine if the following limits exist, and if a limit exists, find its value. x2 y (a) The limit of f(x, y) = x 4 as (x, y)

More information

Reading 14 : Counting

Reading 14 : Counting CS/Math 240: Introduction to Discrete Mathematics Fall 2015 Instructors: Beck Hasti, Gautam Prakriya Reading 14 : Counting In this reading we discuss counting. Often, we are interested in the cardinality

More information

n! = n(n 1)(n 2) 3 2 1

n! = n(n 1)(n 2) 3 2 1 A Counting A.1 First principles If the sample space Ω is finite and the outomes are equally likely, then the probability measure is given by P(E) = E / Ω where E denotes the number of outcomes in the event

More information

Definitions and claims functions of several variables

Definitions and claims functions of several variables Definitions and claims functions of several variables In the Euclidian space I n of all real n-dimensional vectors x = (x 1, x,..., x n ) the following are defined: x + y = (x 1 + y 1, x + y,..., x n +

More information

ON THE ENUMERATION OF MAGIC CUBES*

ON THE ENUMERATION OF MAGIC CUBES* 1934-1 ENUMERATION OF MAGIC CUBES 833 ON THE ENUMERATION OF MAGIC CUBES* BY D. N. LEHMER 1. Introduction. Assume the cube with one corner at the origin and the three edges at that corner as axes of reference.

More information

Modular arithmetic Math 2320

Modular arithmetic Math 2320 Modular arithmetic Math 220 Fix an integer m 2, called the modulus. For any other integer a, we can use the division algorithm to write a = qm + r. The reduction of a modulo m is the remainder r resulting

More information

Combinatorics and Intuitive Probability

Combinatorics and Intuitive Probability Chapter Combinatorics and Intuitive Probability The simplest probabilistic scenario is perhaps one where the set of possible outcomes is finite and these outcomes are all equally likely. A subset of the

More information

CHAPTER 11 PARTIAL DERIVATIVES

CHAPTER 11 PARTIAL DERIVATIVES CHAPTER 11 PARTIAL DERIVATIVES 1. FUNCTIONS OF SEVERAL VARIABLES A) Definition: A function of two variables is a rule that assigns to each ordered pair of real numbers (x,y) in a set D a unique real number

More information

Unit 7 Partial Derivatives and Optimization

Unit 7 Partial Derivatives and Optimization Unit 7 Partial Derivatives and Optimization We have learned some important applications of the ordinary derivative in finding maxima and minima. We now move on to a topic called partial derivatives which

More information

REU 2006 Discrete Math Lecture 3

REU 2006 Discrete Math Lecture 3 REU 006 Discrete Math Lecture 3 Instructor: László Babai Scribe: Elizabeth Beazley Editors: Eliana Zoque and Elizabeth Beazley NOT PROOFREAD - CONTAINS ERRORS June 6, 006. Last updated June 7, 006 at :4

More information

Pattern Avoidance in Unimodal and V-unimodal Permutations

Pattern Avoidance in Unimodal and V-unimodal Permutations Pattern Avoidance in Unimodal and V-unimodal Permutations Dido Salazar-Torres May 16, 2009 Abstract A characterization of unimodal, [321]-avoiding permutations and an enumeration shall be given.there is

More information

( ) Online MC Practice Quiz KEY Chapter 5: Probability: What Are The Chances?

( ) Online MC Practice Quiz KEY Chapter 5: Probability: What Are The Chances? Online MC Practice Quiz KEY Chapter 5: Probability: What Are The Chances? 1. Research on eating habits of families in a large city produced the following probabilities if a randomly selected household

More information

The probability set-up

The probability set-up CHAPTER 2 The probability set-up 2.1. Introduction and basic theory We will have a sample space, denoted S (sometimes Ω) that consists of all possible outcomes. For example, if we roll two dice, the sample

More information

MULTI-VARIABLE OPTIMIZATION NOTES. 1. Identifying Critical Points

MULTI-VARIABLE OPTIMIZATION NOTES. 1. Identifying Critical Points MULTI-VARIABLE OPTIMIZATION NOTES HARRIS MATH CAMP 2018 1. Identifying Critical Points Definition. Let f : R 2! R. Then f has a local maximum at (x 0,y 0 ) if there exists some disc D around (x 0,y 0 )

More information

FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION

FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION 1. Functions of Several Variables A function of two variables is a rule that assigns a real number f(x, y) to each ordered pair of real numbers

More information

(D) 7 4. (H) None of these

(D) 7 4. (H) None of these Math 1 Final Exam Spring 009 May 7, 009 1 1. Evaluate e y dydx. 0 x (A) 1 (B) e (C) 1 e (D) (E) e 1 (F) 1 1 e 1 e (G) e ( ( ). Find the z coordinate of the point on the plane x + y + z = 1 closest to the

More information

2.1 Partial Derivatives

2.1 Partial Derivatives .1 Partial Derivatives.1.1 Functions of several variables Up until now, we have only met functions of single variables. From now on we will meet functions such as z = f(x, y) and w = f(x, y, z), which

More information

Partial Differentiation 1 Introduction

Partial Differentiation 1 Introduction Partial Differentiation 1 Introduction In the first part of this course you have met the idea of a derivative. To recap what this means, recall that if you have a function, z say, then the slope of the

More information

11.2 LIMITS AND CONTINUITY

11.2 LIMITS AND CONTINUITY 11. LIMITS AND CONTINUITY INTRODUCTION: Consider functions of one variable y = f(x). If you are told that f(x) is continuous at x = a, explain what the graph looks like near x = a. Formal definition of

More information

ECE313 Summer Problem Set 4. Reading: RVs, mean, variance, and coniditional probability

ECE313 Summer Problem Set 4. Reading: RVs, mean, variance, and coniditional probability ECE Summer 0 Problem Set Reading: RVs, mean, variance, and coniditional probability Quiz Date: This Friday Note: It is very important that you solve the problems first and check the solutions afterwards.

More information

Determinants, Part 1

Determinants, Part 1 Determinants, Part We shall start with some redundant definitions. Definition. Given a matrix A [ a] we say that determinant of A is det A a. Definition 2. Given a matrix a a a 2 A we say that determinant

More information

November 11, Chapter 8: Probability: The Mathematics of Chance

November 11, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 11, 2013 Last Time Probability Models and Rules Discrete Probability Models Equally Likely Outcomes Probability Rules Probability Rules Rule 1.

More information

Lecture 4 : Monday April 6th

Lecture 4 : Monday April 6th Lecture 4 : Monday April 6th jacques@ucsd.edu Key concepts : Tangent hyperplane, Gradient, Directional derivative, Level curve Know how to find equation of tangent hyperplane, gradient, directional derivatives,

More information

2.5 Sample Spaces Having Equally Likely Outcomes

2.5 Sample Spaces Having Equally Likely Outcomes Sample Spaces Having Equally Likely Outcomes 3 Sample Spaces Having Equally Likely Outcomes Recall that we had a simple example (fair dice) before on equally-likely sample spaces Since they will appear

More information

A NEW COMPUTATION OF THE CODIMENSION SEQUENCE OF THE GRASSMANN ALGEBRA

A NEW COMPUTATION OF THE CODIMENSION SEQUENCE OF THE GRASSMANN ALGEBRA A NEW COMPUTATION OF THE CODIMENSION SEQUENCE OF THE GRASSMANN ALGEBRA JOEL LOUWSMA, ADILSON EDUARDO PRESOTO, AND ALAN TARR Abstract. Krakowski and Regev found a basis of polynomial identities satisfied

More information

Foundations of Computing Discrete Mathematics Solutions to exercises for week 12

Foundations of Computing Discrete Mathematics Solutions to exercises for week 12 Foundations of Computing Discrete Mathematics Solutions to exercises for week 12 Agata Murawska (agmu@itu.dk) November 13, 2013 Exercise (6.1.2). A multiple-choice test contains 10 questions. There are

More information

arxiv: v1 [math.co] 24 Nov 2018

arxiv: v1 [math.co] 24 Nov 2018 The Problem of Pawns arxiv:1811.09606v1 [math.co] 24 Nov 2018 Tricia Muldoon Brown Georgia Southern University Abstract Using a bijective proof, we show the number of ways to arrange a maximum number of

More information

MATH Exam 2 Solutions November 16, 2015

MATH Exam 2 Solutions November 16, 2015 MATH 1.54 Exam Solutions November 16, 15 1. Suppose f(x, y) is a differentiable function such that it and its derivatives take on the following values: (x, y) f(x, y) f x (x, y) f y (x, y) f xx (x, y)

More information

A tournament problem

A tournament problem Discrete Mathematics 263 (2003) 281 288 www.elsevier.com/locate/disc Note A tournament problem M.H. Eggar Department of Mathematics and Statistics, University of Edinburgh, JCMB, KB, Mayeld Road, Edinburgh

More information

Introductory Probability

Introductory Probability Introductory Probability Conditional Probability: Independent Events and Intersections Dr. Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK February 15, 2019 Agenda Independent Events and Intersections

More information

11.7 Maximum and Minimum Values

11.7 Maximum and Minimum Values Arkansas Tech University MATH 2934: Calculus III Dr. Marcel B Finan 11.7 Maximum and Minimum Values Just like functions of a single variable, functions of several variables can have local and global extrema,

More information

The probability set-up

The probability set-up CHAPTER The probability set-up.1. Introduction and basic theory We will have a sample space, denoted S sometimes Ω that consists of all possible outcomes. For example, if we roll two dice, the sample space

More information

CIS 2033 Lecture 6, Spring 2017

CIS 2033 Lecture 6, Spring 2017 CIS 2033 Lecture 6, Spring 2017 Instructor: David Dobor February 2, 2017 In this lecture, we introduce the basic principle of counting, use it to count subsets, permutations, combinations, and partitions,

More information

Game Theory and Algorithms Lecture 19: Nim & Impartial Combinatorial Games

Game Theory and Algorithms Lecture 19: Nim & Impartial Combinatorial Games Game Theory and Algorithms Lecture 19: Nim & Impartial Combinatorial Games May 17, 2011 Summary: We give a winning strategy for the counter-taking game called Nim; surprisingly, it involves computations

More information

DISCRETE STRUCTURES COUNTING

DISCRETE STRUCTURES COUNTING DISCRETE STRUCTURES COUNTING LECTURE2 The Pigeonhole Principle The generalized pigeonhole principle: If N objects are placed into k boxes, then there is at least one box containing at least N/k of the

More information

STAT 3743: Probability and Statistics

STAT 3743: Probability and Statistics STAT 3743: Probability and Statistics G. Jay Kerns, Youngstown State University Fall 2010 Probability Random experiment: outcome not known in advance Sample space: set of all possible outcomes (S) Probability

More information

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees.

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees. 7 Symmetries 7 Permutations A permutation of a set is a reordering of its elements Another way to look at it is as a function Φ that takes as its argument a set of natural numbers of the form {, 2,, n}

More information

Mathematical Foundations HW 5 By 11:59pm, 12 Dec, 2015

Mathematical Foundations HW 5 By 11:59pm, 12 Dec, 2015 1 Probability Axioms Let A,B,C be three arbitrary events. Find the probability of exactly one of these events occuring. Sample space S: {ABC, AB, AC, BC, A, B, C, }, and S = 8. P(A or B or C) = 3 8. note:

More information

INDIAN STATISTICAL INSTITUTE

INDIAN STATISTICAL INSTITUTE INDIAN STATISTICAL INSTITUTE B1/BVR Probability Home Assignment 1 20-07-07 1. A poker hand means a set of five cards selected at random from usual deck of playing cards. (a) Find the probability that it

More information

Elementary Combinatorics

Elementary Combinatorics 184 DISCRETE MATHEMATICAL STRUCTURES 7 Elementary Combinatorics 7.1 INTRODUCTION Combinatorics deals with counting and enumeration of specified objects, patterns or designs. Techniques of counting are

More information

The Independent Chip Model and Risk Aversion

The Independent Chip Model and Risk Aversion arxiv:0911.3100v1 [math.pr] 16 Nov 2009 The Independent Chip Model and Risk Aversion George T. Gilbert Texas Christian University g.gilbert@tcu.edu November 2009 Abstract We consider the Independent Chip

More information

November 8, Chapter 8: Probability: The Mathematics of Chance

November 8, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 8, 2013 Last Time Probability Models and Rules Discrete Probability Models Equally Likely Outcomes Crystallographic notation The first symbol

More information

arxiv: v1 [cs.cc] 21 Jun 2017

arxiv: v1 [cs.cc] 21 Jun 2017 Solving the Rubik s Cube Optimally is NP-complete Erik D. Demaine Sarah Eisenstat Mikhail Rudoy arxiv:1706.06708v1 [cs.cc] 21 Jun 2017 Abstract In this paper, we prove that optimally solving an n n n Rubik

More information

RMT 2015 Power Round Solutions February 14, 2015

RMT 2015 Power Round Solutions February 14, 2015 Introduction Fair division is the process of dividing a set of goods among several people in a way that is fair. However, as alluded to in the comic above, what exactly we mean by fairness is deceptively

More information

Partizan Kayles and Misère Invertibility

Partizan Kayles and Misère Invertibility Partizan Kayles and Misère Invertibility arxiv:1309.1631v1 [math.co] 6 Sep 2013 Rebecca Milley Grenfell Campus Memorial University of Newfoundland Corner Brook, NL, Canada May 11, 2014 Abstract The impartial

More information

Lecture 3 - Regression

Lecture 3 - Regression Lecture 3 - Regression Instructor: Prof Ganesh Ramakrishnan July 25, 2016 1 / 30 The Simplest ML Problem: Least Square Regression Curve Fitting: Motivation Error measurement Minimizing Error Method of

More information

Math Lecture 2 Inverse Functions & Logarithms

Math Lecture 2 Inverse Functions & Logarithms Math 1060 Lecture 2 Inverse Functions & Logarithms Outline Summary of last lecture Inverse Functions Domain, codomain, and range One-to-one functions Inverse functions Inverse trig functions Logarithms

More information

TEST A CHAPTER 11, PROBABILITY

TEST A CHAPTER 11, PROBABILITY TEST A CHAPTER 11, PROBABILITY 1. Two fair dice are rolled. Find the probability that the sum turning up is 9, given that the first die turns up an even number. 2. Two fair dice are rolled. Find the probability

More information

Probability Rules. 2) The probability, P, of any event ranges from which of the following?

Probability Rules. 2) The probability, P, of any event ranges from which of the following? Name: WORKSHEET : Date: Answer the following questions. 1) Probability of event E occurring is... P(E) = Number of ways to get E/Total number of outcomes possible in S, the sample space....if. 2) The probability,

More information

Greedy Flipping of Pancakes and Burnt Pancakes

Greedy Flipping of Pancakes and Burnt Pancakes Greedy Flipping of Pancakes and Burnt Pancakes Joe Sawada a, Aaron Williams b a School of Computer Science, University of Guelph, Canada. Research supported by NSERC. b Department of Mathematics and Statistics,

More information

1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 100 calculators is tested.

1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 100 calculators is tested. 1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 0 calculators is tested. Write down the expected number of faulty calculators in the sample. Find

More information

Math 1313 Section 6.2 Definition of Probability

Math 1313 Section 6.2 Definition of Probability Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability

More information

14.2 Limits and Continuity

14.2 Limits and Continuity 14 Partial Derivatives 14.2 Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Let s compare the behavior of the functions Tables 1 2 show values of f(x,

More information

37 Game Theory. Bebe b1 b2 b3. a Abe a a A Two-Person Zero-Sum Game

37 Game Theory. Bebe b1 b2 b3. a Abe a a A Two-Person Zero-Sum Game 37 Game Theory Game theory is one of the most interesting topics of discrete mathematics. The principal theorem of game theory is sublime and wonderful. We will merely assume this theorem and use it to

More information

Week 1: Probability models and counting

Week 1: Probability models and counting Week 1: Probability models and counting Part 1: Probability model Probability theory is the mathematical toolbox to describe phenomena or experiments where randomness occur. To have a probability model

More information

Lecture 6 Probability

Lecture 6 Probability Lecture 6 Probability Example: When you toss a coin, there are only two possible outcomes, heads and tails. What if we toss a coin two times? Figure below shows the results of tossing a coin 5000 times

More information

Bernoulli Trials, Binomial and Hypergeometric Distrubutions

Bernoulli Trials, Binomial and Hypergeometric Distrubutions Bernoulli Trials, Binomial and Hypergeometric Distrubutions Definitions: Bernoulli Trial: A random event whose outcome is true (1) or false (). Binomial Distribution: n Bernoulli trials. p The probability

More information

November 6, Chapter 8: Probability: The Mathematics of Chance

November 6, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 6, 2013 Last Time Crystallographic notation Groups Crystallographic notation The first symbol is always a p, which indicates that the pattern

More information

Chapter 3: Elements of Chance: Probability Methods

Chapter 3: Elements of Chance: Probability Methods Chapter 3: Elements of Chance: Methods Department of Mathematics Izmir University of Economics Week 3-4 2014-2015 Introduction In this chapter we will focus on the definitions of random experiment, outcome,

More information

Week 1. 1 What Is Combinatorics?

Week 1. 1 What Is Combinatorics? 1 What Is Combinatorics? Week 1 The question that what is combinatorics is similar to the question that what is mathematics. If we say that mathematics is about the study of numbers and figures, then combinatorics

More information

Contents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting - Permutation and Combination 39

Contents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting - Permutation and Combination 39 CHAPTER 2 PROBABILITY Contents 2.1 Basic Concepts of Probability 38 2.2 Probability of an Event 39 2.3 Methods of Assigning Probabilities 39 2.4 Principle of Counting - Permutation and Combination 39 2.5

More information

lecture notes September 2, Batcher s Algorithm

lecture notes September 2, Batcher s Algorithm 18.310 lecture notes September 2, 2013 Batcher s Algorithm Lecturer: Michel Goemans Perhaps the most restrictive version of the sorting problem requires not only no motion of the keys beyond compare-and-switches,

More information

A Probability Work Sheet

A Probability Work Sheet A Probability Work Sheet October 19, 2006 Introduction: Rolling a Die Suppose Geoff is given a fair six-sided die, which he rolls. What are the chances he rolls a six? In order to solve this problem, we

More information

Probability and Statistics. Copyright Cengage Learning. All rights reserved.

Probability and Statistics. Copyright Cengage Learning. All rights reserved. Probability and Statistics Copyright Cengage Learning. All rights reserved. 14.2 Probability Copyright Cengage Learning. All rights reserved. Objectives What Is Probability? Calculating Probability by

More information

3. (8 points) If p, 4p 2 + 1, and 6p are prime numbers, find p. Solution: The answer is p = 5. Analyze the remainders upon division by 5.

3. (8 points) If p, 4p 2 + 1, and 6p are prime numbers, find p. Solution: The answer is p = 5. Analyze the remainders upon division by 5. 1. (6 points) Eleven gears are placed on a plane, arranged in a chain, as shown below. Can all the gears rotate simultaneously? Explain your answer. (4 points) What if we have a chain of 572 gears? Solution:

More information

The number of mates of latin squares of sizes 7 and 8

The number of mates of latin squares of sizes 7 and 8 The number of mates of latin squares of sizes 7 and 8 Megan Bryant James Figler Roger Garcia Carl Mummert Yudishthisir Singh Working draft not for distribution December 17, 2012 Abstract We study the number

More information

Exam 2 Summary. 1. The domain of a function is the set of all possible inputes of the function and the range is the set of all outputs.

Exam 2 Summary. 1. The domain of a function is the set of all possible inputes of the function and the range is the set of all outputs. Exam 2 Summary Disclaimer: The exam 2 covers lectures 9-15, inclusive. This is mostly about limits, continuity and differentiation of functions of 2 and 3 variables, and some applications. The complete

More information

A STUDY OF EULERIAN NUMBERS FOR PERMUTATIONS IN THE ALTERNATING GROUP

A STUDY OF EULERIAN NUMBERS FOR PERMUTATIONS IN THE ALTERNATING GROUP INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A31 A STUDY OF EULERIAN NUMBERS FOR PERMUTATIONS IN THE ALTERNATING GROUP Shinji Tanimoto Department of Mathematics, Kochi Joshi University

More information

Math 1070 Sample Exam 1

Math 1070 Sample Exam 1 University of Connecticut Department of Mathematics Math 1070 Sample Exam 1 Exam 1 will cover sections 4.1-4.7 and 5.1-5.4. This sample exam is intended to be used as one of several resources to help you

More information

Graphs of Tilings. Patrick Callahan, University of California Office of the President, Oakland, CA

Graphs of Tilings. Patrick Callahan, University of California Office of the President, Oakland, CA Graphs of Tilings Patrick Callahan, University of California Office of the President, Oakland, CA Phyllis Chinn, Department of Mathematics Humboldt State University, Arcata, CA Silvia Heubach, Department

More information

On Drawn K-In-A-Row Games

On Drawn K-In-A-Row Games On Drawn K-In-A-Row Games Sheng-Hao Chiang, I-Chen Wu 2 and Ping-Hung Lin 2 National Experimental High School at Hsinchu Science Park, Hsinchu, Taiwan jiang555@ms37.hinet.net 2 Department of Computer Science,

More information

INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2

INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 WARM UP Students in a mathematics class pick a card from a standard deck of 52 cards, record the suit, and return the card to the deck. The results

More information

Review guide for midterm 2 in Math 233 March 30, 2009

Review guide for midterm 2 in Math 233 March 30, 2009 Review guide for midterm 2 in Math 2 March, 29 Midterm 2 covers material that begins approximately with the definition of partial derivatives in Chapter 4. and ends approximately with methods for calculating

More information

33. Riemann Summation over Rectangular Regions

33. Riemann Summation over Rectangular Regions . iemann Summation over ectangular egions A rectangular region in the xy-plane can be defined using compound inequalities, where x and y are each bound by constants such that a x a and b y b. Let z = f(x,

More information

Double Integrals over More General Regions

Double Integrals over More General Regions Jim Lambers MAT 8 Spring Semester 9-1 Lecture 11 Notes These notes correspond to Section 1. in Stewart and Sections 5.3 and 5.4 in Marsden and Tromba. ouble Integrals over More General Regions We have

More information

Probabilities and Probability Distributions

Probabilities and Probability Distributions Probabilities and Probability Distributions George H Olson, PhD Doctoral Program in Educational Leadership Appalachian State University May 2012 Contents Basic Probability Theory Independent vs. Dependent

More information

Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Combinatorics: The Fine Art of Counting Week 6 Lecture Notes Discrete Probability Note Binomial coefficients are written horizontally. The symbol ~ is used to mean approximately equal. Introduction and

More information

LAMC Junior Circle February 3, Oleg Gleizer. Warm-up

LAMC Junior Circle February 3, Oleg Gleizer. Warm-up LAMC Junior Circle February 3, 2013 Oleg Gleizer oleg1140@gmail.com Warm-up Problem 1 Compute the following. 2 3 ( 4) + 6 2 Problem 2 Can the value of a fraction increase, if we add one to the numerator

More information

Such a description is the basis for a probability model. Here is the basic vocabulary we use.

Such a description is the basis for a probability model. Here is the basic vocabulary we use. 5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these

More information

Probability I Sample spaces, outcomes, and events.

Probability I Sample spaces, outcomes, and events. Probability I Sample spaces, outcomes, and events. When we perform an experiment, the result is called the outcome. The set of possible outcomes is the sample space and any subset of the sample space is

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Lecture 7 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 7 1 / 8 Invertible matrices Theorem. 1. An elementary matrix is invertible. 2.

More information

EE 126 Fall 2006 Midterm #1 Thursday October 6, 7 8:30pm DO NOT TURN THIS PAGE OVER UNTIL YOU ARE TOLD TO DO SO

EE 126 Fall 2006 Midterm #1 Thursday October 6, 7 8:30pm DO NOT TURN THIS PAGE OVER UNTIL YOU ARE TOLD TO DO SO EE 16 Fall 006 Midterm #1 Thursday October 6, 7 8:30pm DO NOT TURN THIS PAGE OVER UNTIL YOU ARE TOLD TO DO SO You have 90 minutes to complete the quiz. Write your solutions in the exam booklet. We will

More information