Probability Rules. 2) The probability, P, of any event ranges from which of the following?


 Clarence Blair
 4 years ago
 Views:
Transcription
1 Name: WORKSHEET : Date: Answer the following questions. 1) Probability of event E occurring is... P(E) = Number of ways to get E/Total number of outcomes possible in S, the sample space....if. 2) The probability, P, of any event ranges from which of the following? 3) If E c represents the complement of event E then P(E c ) equals which of the following? 4) The probability distribution for an experiment is a table or chart giving the probability associated with all the unique events in an experiment. There are 2 criteria required for the probability distribution. 1. Each event in the distribution must be mutually exclusive (no overlapping outcomes). 2. The sum of probabilities of all events must be 1. What is the probability distribution of an experiment to calculate the sum of two fair, sixsided dice when rolled? 5) The sample space from an experimental roll of two dice includes how many outcomes? 6) Tree diagrams are a useful tool to directly compute the. 7) If an experiment is designed to find the sum of the rolls of two fair, sixsided dice then how many compound events result? 8) If event E is mutually exclusive with event F (no overlapping outcomes), then the probability of event E or event F, P(E F), occurring is equal to which of the following?
2 WORKSHEET: Solve the following problems. 1) If the probability of Event A is 25%, then what is the probability of not Event A? 2) If the letters to the word PROBABILITY are placed in a bag and randomly selected, what is the probability of not selecting a B on the first draw? 3) Two fair dice are thrown. What is the probability that the sum does not add to 4? 4) What is the probability of getting all heads on three coin flips in a row? 5) What is the probability of getting at least one head on three coin flips in a row? 6) Jan selects marbles randomly from a bag that contains only 40 white marbles, 24 green marbles, and 16 blue marbles. If he picks 10 marbles, how many marbles of each color did Jan most likely pick? 7) A bag contains only blue marbles and green marbles. Sixty of the marbles are green. If a marble is randomly drawn from the bag, there is a 60% chance that it will be blue. How many blue marbles are in the bag? 8) The probability of drawing a green candy from a jar of 20 candies is 1/4. How many yellow candies should be added to the jar in order to reduce the probability to 1/6? 9) A box contains 19 marbles 9 blue and 10 white. Seven of these marbles are removed at random. If the probability of drawing a blue marble is now 1/3, how many white marbles were removed from the box? 10) Of 27 marbles in a can, 7 were black, 4 were yellow, and the rest were red. Jay removed 3 black marbles, then one more marble at random. What is the probability that it was red?
3 ANSWERS : 1) Probability of event E occurring is... P(E) = Number of ways to get E/Total number of outcomes possible in S, the sample space....if there is a uniform sample space where every outcome is equally likely. 2) The probability, P, of any event ranges from which of the following? 0 P(E) 1 3) If E c represents the complement of event E then P(E c ) equals which of the following? 1  P(E) 4) The probability distribution for an experiment is a table or chart giving the probability associated with all the unique events in an experiment. There are 2 criteria required for the probability distribution. 1. Each event in the distribution must be mutually exclusive (no overlapping outcomes). 2. The sum of probabilities of all events must be 1. What is the probability distribution of an experiment to calculate the sum of two fair, sixsided dice when rolled? 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 5) The sample space from an experimental roll of two dice includes how many outcomes? 36 6) Tree diagrams are a useful tool to directly compute the sample space. 7) If an experiment is designed to find the sum of the rolls of two fair, sixsided dice then how many compound events result? 11 (see answer to #4) 8) If event E is mutually exclusive with event F (no overlapping outcomes), then the probability of event E or event F, P(E F), occurring is equal to which of the following? P(E) + P(F)
4 ANSWERS : Solve the following problems. 1) If the probability of Event A is 25%, then what is the probability of not Event A? 75% 2) If the letters to the word PROBABILITY are placed in a bag and randomly selected, what is the probability of not selecting a B on the first draw? 9/11 3) Two fair dice are thrown. What is the probability that the sum does not add to 4? 11/12 4) What is the probability of getting all heads on three coin flips in a row? 1/8 5) What is the probability of getting at least one head on three coin flips in a row? 7/8 6) Jan selects marbles randomly from a bag that contains only 40 white marbles, 24 green marbles, and 16 blue marbles. If he picks 10 marbles, how many marbles of each color did Jan most likely pick? 5 white, 3 green and 2 blue 7) A bag contains only blue marbles and green marbles. Sixty of the marbles are green. If a marble is randomly drawn from the bag, there is a 60% chance that it will be blue. How many blue marbles are in the bag? 90 8) The probability of drawing a green candy from a jar of 20 candies is 1/4. How many yellow candies should be added to the jar in order to reduce the probability to 1/6? 10 9) A box contains 19 marbles 9 blue and 10 white. Seven of these marbles are removed at random. If the probability of drawing a blue marble is now 1/3, how many white marbles were removed from the box? 2 10) Of 27 marbles in a can, 7 were black, 4 were yellow, and the rest were red. Jay removed 3 black marbles, then one more marble at random. What is the probability that it was red? 2/3
5 KEY CONCEPTS:. 1. Sample Spaces & Events  An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an outcome of the experiment. The sample space of an experiment is the set of all possible outcomes. It is important to keep in mind what is being observed or recorded in the experiment. Example: Determine the sample space, S, for the following experiments. Flipping a coin and observing whether it lands heads or tails. Rolling a fair die and observing the number that is rolled. Rolling two fair dice and observing the sum of the numbers rolled. An event is a subset of the sample space of an experiment. An elementary (or simple) event is an eventthat consists of a single outcome. Example: Consider the experiment of rolling two fair dice and observing the numbers that are rolled on each die. The sample space S for this experiment is S = (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6) The first coordinate of these ordered pairs represents the first die and the second coordinate represents the second die. (3, 5) and (5, 3) are different outcomes because in (3, 5), the first die rolls a 3, but in (5, 3) the second die rolls a 3. If it helps, think of one die as red and the other as green. 2. Probability Basics  Definition: A sample space S in which all outcomes are equally likely is called a uniform sample space. If S is a finite uniform sample space and E is any event, then the probability of E, P(E), is given by: P(E) = Number of ways for E to occur / Total number of possible outcomes in S = n(e) / n(s)
6 Note: Probabilities will ALWAYS be between 0 and 1, inclusive. The larger the probability, the more likely it is to occur. Example: Suppose a fair die is rolled and the number that lands up is recorded. The sample space for this experiment is S = {1, 2, 3, 4, 5, 6}. Sometimes experiments are run to help estimate the probability of certain events. Probabilities that are based on collected data are called empirical probabilities. If an experiment is performed n times and an event E occurs m times, then the relative frequency of the event E is m/n P(E) 1 for any event E in a sample space S. In particular P( ) = 0 and P(S) = If E and F are mutually exclusive events, then P(E F) = P(E) + P(F) 3. Union rule for probability: If E and F are ANY two events (not necessarily mutually exclusive), then P(E F) = P(E) + P(F) P(E F) Note: This formula is consistent with (2) because if two events are mutually exclusive, then E F = and thus P(E F) = P( ) = Complement Principle: P(E c ) = 1 P(E) or P(E) = 1 P(E c )
7.1 Experiments, Sample Spaces, and Events
7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment
More informationMath 1313 Section 6.2 Definition of Probability
Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability
More information4.1 Sample Spaces and Events
4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an
More informationChapter 1: Sets and Probability
Chapter 1: Sets and Probability Section 1.31.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping
More informationSection Introduction to Sets
Section 1.1  Introduction to Sets Definition: A set is a welldefined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase
More informationName. Is the game fair or not? Prove your answer with math. If the game is fair, play it 36 times and record the results.
Homework 5.1C You must complete table. Use math to decide if the game is fair or not. If Period the game is not fair, change the point system to make it fair. Game 1 Circle one: Fair or Not 2 six sided
More informationSection 6.1 #16. Question: What is the probability that a fivecard poker hand contains a flush, that is, five cards of the same suit?
Section 6.1 #16 What is the probability that a fivecard poker hand contains a flush, that is, five cards of the same suit? page 1 Section 6.1 #38 Two events E 1 and E 2 are called independent if p(e 1
More informationProbability Models. Section 6.2
Probability Models Section 6.2 The Language of Probability What is random? Empirical means that it is based on observation rather than theorizing. Probability describes what happens in MANY trials. Example
More informationProbability and Statistics. Copyright Cengage Learning. All rights reserved.
Probability and Statistics Copyright Cengage Learning. All rights reserved. 14.2 Probability Copyright Cengage Learning. All rights reserved. Objectives What Is Probability? Calculating Probability by
More informationIntermediate Math Circles November 1, 2017 Probability I
Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.
More informationWEEK 7 REVIEW. Multiplication Principle (6.3) Combinations and Permutations (6.4) Experiments, Sample Spaces and Events (7.1)
WEEK 7 REVIEW Multiplication Principle (6.3) Combinations and Permutations (6.4) Experiments, Sample Spaces and Events (7.) Definition of Probability (7.2) WEEK 87.3, 7.4 and Test Review THE MULTIPLICATION
More informationIndependent Events B R Y
. Independent Events Lesson Objectives Understand independent events. Use the multiplication rule and the addition rule of probability to solve problems with independent events. Vocabulary independent
More information4.3 Rules of Probability
4.3 Rules of Probability If a probability distribution is not uniform, to find the probability of a given event, add up the probabilities of all the individual outcomes that make up the event. Example:
More informationINDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2
INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 WARM UP Students in a mathematics class pick a card from a standard deck of 52 cards, record the suit, and return the card to the deck. The results
More informationIf you roll a die, what is the probability you get a four OR a five? What is the General Education Statistics
If you roll a die, what is the probability you get a four OR a five? What is the General Education Statistics probability that you get neither? Class Notes The Addition Rule (for OR events) and Complements
More informationA Probability Work Sheet
A Probability Work Sheet October 19, 2006 Introduction: Rolling a Die Suppose Geoff is given a fair sixsided die, which he rolls. What are the chances he rolls a six? In order to solve this problem, we
More informationPROBABILITY. 1. Introduction. Candidates should able to:
PROBABILITY Candidates should able to: evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events (e.g for the total score when two fair dice are thrown), or by calculation
More informationProbability. The MEnTe Program Math Enrichment through Technology. Title V East Los Angeles College
Probability The MEnTe Program Math Enrichment through Technology Title V East Los Angeles College 2003 East Los Angeles College. All rights reserved. Topics Introduction Empirical Probability Theoretical
More informationSection 6.5 Conditional Probability
Section 6.5 Conditional Probability Example 1: An urn contains 5 green marbles and 7 black marbles. Two marbles are drawn in succession and without replacement from the urn. a) What is the probability
More informationProbability. Ms. Weinstein Probability & Statistics
Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random
More informationBasic Probability. Let! = # 8 # < 13, # N ,., and / are the subsets of! such that  = multiples of four. = factors of 24 / = square numbers
Basic Probability Let! = # 8 # < 13, # N ,., and / are the subsets of! such that  = multiples of four. = factors of 24 / = square numbers (a) List the elements of!. (b) (i) Draw a Venn diagram to show
More informationProbability. March 06, J. Boulton MDM 4U1. P(A) = n(a) n(s) Introductory Probability
Most people think they understand odds and probability. Do you? Decision 1: Pick a card Decision 2: Switch or don't Outcomes: Make a tree diagram Do you think you understand probability? Probability Write
More informationSection Summary. Finite Probability Probabilities of Complements and Unions of Events Probabilistic Reasoning
Section 7.1 Section Summary Finite Probability Probabilities of Complements and Unions of Events Probabilistic Reasoning Probability of an Event PierreSimon Laplace (17491827) We first study PierreSimon
More informationStat210 WorkSheet#2 Chapter#2
1. When rolling a die 5 times, the number of elements of the sample space equals.(ans.=7,776) 2. If an experiment consists of throwing a die and then drawing a letter at random from the English alphabet,
More informationExam III Review Problems
c Kathryn Bollinger and Benjamin Aurispa, November 10, 2011 1 Exam III Review Problems Fall 2011 Note: Not every topic is covered in this review. Please also take a look at the previous WeekinReviews
More informationDefine and Diagram Outcomes (Subsets) of the Sample Space (Universal Set)
12.3 and 12.4 Notes Geometry 1 Diagramming the Sample Space using Venn Diagrams A sample space represents all things that could occur for a given event. In set theory language this would be known as the
More informationGrade 7/8 Math Circles February 25/26, Probability
Faculty of Mathematics Waterloo, Ontario N2L 3G1 Probability Grade 7/8 Math Circles February 25/26, 2014 Probability Centre for Education in Mathematics and Computing Probability is the study of how likely
More informationRaise your hand if you rode a bus within the past month. Record the number of raised hands.
166 CHAPTER 3 PROBABILITY TOPICS Raise your hand if you rode a bus within the past month. Record the number of raised hands. Raise your hand if you answered "yes" to BOTH of the first two questions. Record
More informationSection 7.1 Experiments, Sample Spaces, and Events
Section 7.1 Experiments, Sample Spaces, and Events Experiments An experiment is an activity with observable results. 1. Which of the follow are experiments? (a) Going into a room and turning on a light.
More informationProbability. Dr. Zhang Fordham Univ.
Probability! Dr. Zhang Fordham Univ. 1 Probability: outline Introduction! Experiment, event, sample space! Probability of events! Calculate Probability! Through counting! Sum rule and general sum rule!
More informationThe study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability
The study of probability is concerned with the likelihood of events occurring Like combinatorics, the origins of probability theory can be traced back to the study of gambling games Still a popular branch
More information8.2 Union, Intersection, and Complement of Events; Odds
8.2 Union, Intersection, and Complement of Events; Odds Since we defined an event as a subset of a sample space it is natural to consider set operations like union, intersection or complement in the context
More informationConditional Probability Worksheet
Conditional Probability Worksheet EXAMPLE 4. Drug Testing and Conditional Probability Suppose that a company claims it has a test that is 95% effective in determining whether an athlete is using a steroid.
More informationUnit 14 Probability. Target 3 Calculate the probability of independent and dependent events (compound) AND/THEN statements
Target 1 Calculate the probability of an event Unit 14 Probability Target 2 Calculate a sample space 14.2a Tree Diagrams, Factorials, and Permutations 14.2b Combinations Target 3 Calculate the probability
More informationCSC/MTH 231 Discrete Structures II Spring, Homework 5
CSC/MTH 231 Discrete Structures II Spring, 2010 Homework 5 Name 1. A six sided die D (with sides numbered 1, 2, 3, 4, 5, 6) is thrown once. a. What is the probability that a 3 is thrown? b. What is the
More informationLenarz Math 102 Practice Exam # 3 Name: 1. A 10sided die is rolled 100 times with the following results:
Lenarz Math 102 Practice Exam # 3 Name: 1. A 10sided die is rolled 100 times with the following results: Outcome Frequency 1 8 2 8 3 12 4 7 5 15 8 7 8 8 13 9 9 10 12 (a) What is the experimental probability
More informationUnit 1 Day 1: Sample Spaces and Subsets. Define: Sample Space. Define: Intersection of two sets (A B) Define: Union of two sets (A B)
Unit 1 Day 1: Sample Spaces and Subsets Students will be able to (SWBAT) describe events as subsets of sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions,
More informationChapter 5  Elementary Probability Theory
Chapter 5  Elementary Probability Theory Historical Background Much of the early work in probability concerned games and gambling. One of the first to apply probability to matters other than gambling
More informationProbability I Sample spaces, outcomes, and events.
Probability I Sample spaces, outcomes, and events. When we perform an experiment, the result is called the outcome. The set of possible outcomes is the sample space and any subset of the sample space is
More informationUnit 6: Probability Summative Assessment. 2. The probability of a given event can be represented as a ratio between what two numbers?
Math 7 Unit 6: Probability Summative Assessment Name Date Knowledge and Understanding 1. Explain the difference between theoretical and experimental probability. 2. The probability of a given event can
More information, x {1, 2, k}, where k > 0. (a) Write down P(X = 2). (1) (b) Show that k = 3. (4) Find E(X). (2) (Total 7 marks)
1. The probability distribution of a discrete random variable X is given by 2 x P(X = x) = 14, x {1, 2, k}, where k > 0. Write down P(X = 2). (1) Show that k = 3. Find E(X). (Total 7 marks) 2. In a game
More informationECON 214 Elements of Statistics for Economists
ECON 214 Elements of Statistics for Economists Session 4 Probability Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh College of Education School of Continuing
More informationProbability is the likelihood that an event will occur.
Section 3.1 Basic Concepts of is the likelihood that an event will occur. In Chapters 3 and 4, we will discuss basic concepts of probability and find the probability of a given event occurring. Our main
More informationChapter 1. Probability
Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.
More informationCHAPTER 7 Probability
CHAPTER 7 Probability 7.1. Sets A set is a welldefined collection of distinct objects. Welldefined means that we can determine whether an object is an element of a set or not. Distinct means that we can
More informationMost of the time we deal with theoretical probability. Experimental probability uses actual data that has been collected.
AFM Unit 7 Day 3 Notes Theoretical vs. Experimental Probability Name Date Definitions: Experiment: process that gives a definite result Outcomes: results Sample space: set of all possible outcomes Event:
More informationProbability Test Review Math 2. a. What is? b. What is? c. ( ) d. ( )
Probability Test Review Math 2 Name 1. Use the following venn diagram to answer the question: Event A: Odd Numbers Event B: Numbers greater than 10 a. What is? b. What is? c. ( ) d. ( ) 2. In Jason's homeroom
More informationLesson Lesson 3.7 ~ Theoretical Probability
Theoretical Probability Lesson.7 EXPLORE! sum of two number cubes Step : Copy and complete the chart below. It shows the possible outcomes of one number cube across the top, and a second down the left
More informationSection 7.3 and 7.4 Probability of Independent Events
Section 7.3 and 7.4 Probability of Independent Events Grade 7 Review Two or more events are independent when one event does not affect the outcome of the other event(s). For example, flipping a coin and
More informationMutually Exclusive Events Algebra 1
Name: Mutually Exclusive Events Algebra 1 Date: Mutually exclusive events are two events which have no outcomes in common. The probability that these two events would occur at the same time is zero. Exercise
More informationChapter 1. Probability
Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.
More informationSection 7.2 Definition of Probability
Section 7.2 Definition of Probability Question: Suppose we have an experiment that consists of flipping a fair 2sided coin and observing if the coin lands on heads or tails? From section 7.1 weshouldknowthatthereare
More informationPart 1: I can express probability as a fraction, decimal, and percent
Name: Pattern: Part 1: I can express probability as a fraction, decimal, and percent For #1 to #4, state the probability of each outcome. Write each answer as a) a fraction b) a decimal c) a percent Example:
More informationProbability. Probabilty Impossibe Unlikely Equally Likely Likely Certain
PROBABILITY Probability The likelihood or chance of an event occurring If an event is IMPOSSIBLE its probability is ZERO If an event is CERTAIN its probability is ONE So all probabilities lie between 0
More informationLesson 3: Chance Experiments with Equally Likely Outcomes
Lesson : Chance Experiments with Equally Likely Outcomes Classwork Example 1 Jamal, a 7 th grader, wants to design a game that involves tossing paper cups. Jamal tosses a paper cup five times and records
More informationMath 1324 Finite Mathematics Sections 8.2 and 8.3 Conditional Probability, Independent Events, and Bayes Theorem
Finite Mathematics Sections 8.2 and 8.3 Conditional Probability, Independent Events, and Bayes Theorem What is conditional probability? It is where you know some information, but not enough to get a complete
More informationChapter 4: Probability and Counting Rules
Chapter 4: Probability and Counting Rules Before we can move from descriptive statistics to inferential statistics, we need to have some understanding of probability: Ch4: Probability and Counting Rules
More informationMath Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.
Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166  Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1  Experiments, Sample Spaces,
More informationMath Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.
Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166  Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1  Experiments, Sample Spaces,
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Statistics Homework Ch 5 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability
More informationTopic : ADDITION OF PROBABILITIES (MUTUALLY EXCLUSIVE EVENTS) TIME : 4 X 45 minutes
Worksheet 6 th Topic : ADDITION OF PROBABILITIES (MUTUALLY EXCLUSIVE EVENTS) TIME : 4 X 45 minutes STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of
More information1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 100 calculators is tested.
1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 0 calculators is tested. Write down the expected number of faulty calculators in the sample. Find
More informationMath 146 Statistics for the Health Sciences Additional Exercises on Chapter 3
Math 46 Statistics for the Health Sciences Additional Exercises on Chapter 3 Student Name: Find the indicated probability. ) If you flip a coin three times, the possible outcomes are HHH HHT HTH HTT THH
More informationProbability: introduction
May 6, 2009 Probability: introduction page 1 Probability: introduction Probability is the part of mathematics that deals with the chance or the likelihood that things will happen The probability of an
More informationFall (b) Find the event, E, that a number less than 3 is rolled. (c) Find the event, F, that a green marble is selected.
Fall 2018 Math 140 WeekinReview #6 Exam 2 Review courtesy: Kendra Kilmer (covering Sections 3.13.4, 4.14.4) (Please note that this review is not all inclusive) 1. An experiment consists of rolling
More informationCounting and Probability Math 2320
Counting and Probability Math 2320 For a finite set A, the number of elements of A is denoted by A. We have two important rules for counting. 1. Union rule: Let A and B be two finite sets. Then A B = A
More informationConditional Probability Worksheet
Conditional Probability Worksheet P( A and B) P(A B) = P( B) Exercises 36, compute the conditional probabilities P( AB) and P( B A ) 3. P A = 0.7, P B = 0.4, P A B = 0.25 4. P A = 0.45, P B = 0.8, P A
More informationProbability and Randomness. Day 1
Probability and Randomness Day 1 Randomness and Probability The mathematics of chance is called. The probability of any outcome of a chance process is a number between that describes the proportion of
More informationInstructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include your name and student ID.
Math 3201 Unit 3 Probability Test 1 Unit Test Name: Part 1 Selected Response: Instructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include
More informationBell Work. WarmUp Exercises. Two sixsided dice are rolled. Find the probability of each sum or 7
WarmUp Exercises Two sixsided dice are rolled. Find the probability of each sum. 1. 7 Bell Work 2. 5 or 7 3. You toss a coin 3 times. What is the probability of getting 3 heads? WarmUp Notes Exercises
More informationGrade 8 Math Assignment: Probability
Grade 8 Math Assignment: Probability Part 1: Rock, Paper, Scissors  The Study of Chance Purpose An introduction of the basic information on probability and statistics Materials: Two sets of hands Paper
More informationBasic Probability Ideas. Experiment  a situation involving chance or probability that leads to results called outcomes.
Basic Probability Ideas Experiment  a situation involving chance or probability that leads to results called outcomes. Random Experiment the process of observing the outcome of a chance event Simulation
More informationWhat is the probability Jordan will pick a red marble out of the bag and land on the red section when spinning the spinner?
Name: Class: Date: Question #1 Jordan has a bag of marbles and a spinner. The bag of marbles has 10 marbles in it, 6 of which are red. The spinner is divided into 4 equal sections: blue, green, red, and
More informationNovember 6, Chapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance November 6, 2013 Last Time Crystallographic notation Groups Crystallographic notation The first symbol is always a p, which indicates that the pattern
More informationGeorgia Department of Education Georgia Standards of Excellence Framework GSE Geometry Unit 6
How Odd? Standards Addressed in this Task MGSE912.S.CP.1 Describe categories of events as subsets of a sample space using unions, intersections, or complements of other events (or, and, not). MGSE912.S.CP.7
More informationThe probability setup
CHAPTER 2 The probability setup 2.1. Introduction and basic theory We will have a sample space, denoted S (sometimes Ω) that consists of all possible outcomes. For example, if we roll two dice, the sample
More informationThe probability setup
CHAPTER The probability setup.1. Introduction and basic theory We will have a sample space, denoted S sometimes Ω that consists of all possible outcomes. For example, if we roll two dice, the sample space
More informationMiniUnit. Data & Statistics. Investigation 1: Correlations and Probability in Data
MiniUnit Data & Statistics Investigation 1: Correlations and Probability in Data I can Measure Variation in Data and Strength of Association in TwoVariable Data Lesson 3: Probability Probability is a
More informationName: 1. Match the word with the definition (1 point each  no partial credit!)
Chapter 12 Exam Name: Answer the questions in the spaces provided. If you run out of room, show your work on a separate paper clearly numbered and attached to this exam. SHOW ALL YOUR WORK!!! Remember
More informationClassical vs. Empirical Probability Activity
Name: Date: Hour : Classical vs. Empirical Probability Activity (100 Formative Points) For this activity, you will be taking part in 5 different probability experiments: Rolling dice, drawing cards, drawing
More informationDiscrete Structures for Computer Science
Discrete Structures for Computer Science William Garrison bill@cs.pitt.edu 6311 Sennott Square Lecture #23: Discrete Probability Based on materials developed by Dr. Adam Lee The study of probability is
More informationName Date. Sample Spaces and Probability For use with Exploration 12.1
. Sample Spaces and Probability For use with Exploration. Essential Question How can you list the possible outcomes in the sample space of an experiment? The sample space of an experiment is the set of
More informationChapter 3: PROBABILITY
Chapter 3 Math 3201 1 3.1 Exploring Probability: P(event) = Chapter 3: PROBABILITY number of outcomes favourable to the event total number of outcomes in the sample space An event is any collection of
More informationProbability. Sometimes we know that an event cannot happen, for example, we cannot fly to the sun. We say the event is impossible
Probability Sometimes we know that an event cannot happen, for example, we cannot fly to the sun. We say the event is impossible Impossible In summer, it doesn t rain much in Cape Town, so on a chosen
More informationA. 15 B. 24 C. 45 D. 54
A spinner is divided into 8 equal sections. Lara spins the spinner 120 times. It lands on purple 30 times. How many more times does Lara need to spin the spinner and have it land on purple for the relative
More informationKey Concepts. Theoretical Probability. Terminology. Lesson 111
Key Concepts Theoretical Probability Lesson  Objective Teach students the terminology used in probability theory, and how to make calculations pertaining to experiments where all outcomes are equally
More informationPRE TEST. Math in a Cultural Context*
P grade PRE TEST Salmon Fishing: Investigations into A 6P th module in the Math in a Cultural Context* UNIVERSITY OF ALASKA FAIRBANKS Student Name: Grade: Teacher: School: Location of School: Date: *This
More informationTheory of Probability  Brett Bernstein
Theory of Probability  Brett Bernstein Lecture 3 Finishing Basic Probability Review Exercises 1. Model flipping two fair coins using a sample space and a probability measure. Compute the probability of
More informationMath 227 Elementary Statistics. Bluman 5 th edition
Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 4 Probability and Counting Rules 2 Objectives Determine sample spaces and find the probability of an event using classical probability or empirical
More informationSection The Multiplication Principle and Permutations
Section 2.1  The Multiplication Principle and Permutations Example 1: A yogurt shop has 4 flavors (chocolate, vanilla, strawberry, and blueberry) and three sizes (small, medium, and large). How many different
More informationWhen a number cube is rolled once, the possible numbers that could show face up are
C3 Chapter 12 Understanding Probability Essential question: How can you describe the likelihood of an event? Example 1 Likelihood of an Event When a number cube is rolled once, the possible numbers that
More information(A) Incorrect Recalculate the probabilities. Remember that ΣP(x) = 1. (B) Incorrect Recalculate the probabilities. Remember that ΣP(x) = 1.
College Statistics  Problem Drill 11: Probability No. 1 of 10 1. A sample space S consists of six simple events {A,B,C,D,E,F} with these probabilities P(A)=P(B)=0.10, P(C)=0.30, P(D)=2P(E), P(F)=0.20,
More informationMathematical Foundations HW 5 By 11:59pm, 12 Dec, 2015
1 Probability Axioms Let A,B,C be three arbitrary events. Find the probability of exactly one of these events occuring. Sample space S: {ABC, AB, AC, BC, A, B, C, }, and S = 8. P(A or B or C) = 3 8. note:
More informationLISTING THE WAYS. getting a total of 7 spots? possible ways for 2 dice to fall: then you win. But if you roll. 1 q 1 w 1 e 1 r 1 t 1 y
LISTING THE WAYS A pair of dice are to be thrown getting a total of 7 spots? There are What is the chance of possible ways for 2 dice to fall: 1 q 1 w 1 e 1 r 1 t 1 y 2 q 2 w 2 e 2 r 2 t 2 y 3 q 3 w 3
More informationTotal. STAT/MATH 394 A  Autumn Quarter Midterm. Name: Student ID Number: Directions. Complete all questions.
STAT/MATH 9 A  Autumn Quarter 015  Midterm Name: Student ID Number: Problem 1 5 Total Points Directions. Complete all questions. You may use a scientific calculator during this examination; graphing
More informationName: Probability, Part 1 March 4, 2013
1) Assuming all sections are equal in size, what is the probability of the spinner below stopping on a blue section? Write the probability as a fraction. 2) A bag contains 3 red marbles, 4 blue marbles,
More informationSTANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of probability in problem solving.
Worksheet 4 th Topic : PROBABILITY TIME : 4 X 45 minutes STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of probability in problem solving. BASIC COMPETENCY:
More informationSkills we've learned. Skills we need. 7 3 Independent and Dependent Events. March 17, Alg2 Notes 7.3.notebook
7 3 Independent and Dependent Events Skills we've learned 1. In a box of 25 switches, 3 are defective. What is the probability of randomly selecting a switch that is not defective? 2. There are 12 E s
More informationProbability WarmUp 2
Probability WarmUp 2 Directions Solve to the best of your ability. (1) Write out the sample space (all possible outcomes) for the following situation: A dice is rolled and then a color is chosen, blue
More informationInstructions: Choose the best answer and shade the corresponding space on the answer sheet provide. Be sure to include your name and student numbers.
Math 3201 Unit 3 Probability Assignment 1 Unit Assignment Name: Part 1 Selected Response: Instructions: Choose the best answer and shade the corresponding space on the answer sheet provide. Be sure to
More information