Lecture 19 - Partial Derivatives and Extrema of Functions of Two Variables

Size: px
Start display at page:

Download "Lecture 19 - Partial Derivatives and Extrema of Functions of Two Variables"

Transcription

1 Lecture 19 - Partial Derivatives and Extrema of Functions of Two Variables 19.1 Partial Derivatives We wish to maximize functions of two variables. This will involve taking derivatives. Example: Consider the function given by Suppose we were to fix y at 3. Then z = f(x, y) = x 2 y 3 + xy + 4y 2 f(x, 3) = 27x 2 + 3x + 36 As a function of one variable we can take its ordinary derivative to get 54x + 3 Now, without replacing y by a specific number, we can repeat this. Take the derivative of f(x, y), treating y as a constant. We get 2xy 3 + y This is called the partial derivative of f with respect to x. We denote this by f x, z x or f x where is the Greek letter small delta. Similarly, we could take the derivative with respect to y while pretending x is a constant. The result is 3x 2 y 2 + x + 4y 2 This is called the partial derivative of f with respect to y. We denote this by f y, z y or f y When calculating partial derivatives, just keep the following in mind: When calculating f, pretend y is a constant and take the ordinary derivative with x respect to x. When calculating f, pretend x is a constant and take the ordinary derivative with y respect to y. Note that there are definitions of partial derivatives as limits, but we won t need those. It is also extremely important to remember that this is not the same as implicit differentiation! When finding f x you treat y as a constant and not as a function of x.

2 Examples: Find the partial derivatives of the following functions. 1. f(x, y) = x 2 y 2 = (x 2 y 2 ) 1/2 For each of the partial derivatives we use the general power rule: f x = 1 2 (x2 y 2 ) 1/2 (2x), f y = 1 2 (x2 y 2 ) 1/2 ( 2y) 2. f(x, y) = 4x 2 y + x 3 y 3 + y f x = 8xy + 3x 2 y 3 + 0, f y = 4x 2 + 3x 3 y f(x, y) = e 2x+3y f x = e 2x+3y (2), f y = e 2x+3y (3) 4. f(x, y) = e xy 5. f(x, y) = x ln(xy) f x = e xy (y), f y = e xy (x) 1 f x = ln(xy) + x xy y = ln(xy) f y = x xy x = x y The geometric interpretation of partial derivatives is similar to that of the ordinary derivative of a function of one variable. f x represents the slope of the surface pointing in the x direction while f y represents the slope of the surface pointing in the y direction. Second-Order Partial Derivatives Since a function of two variables has two first derivatives, it has four second derivatives. They are f xx = 2 f x 2 f yy = 2 f y 2 f xy = 2 f y x f yx = 2 f x y = take partial derivative with respect to x twice. = take partial derivative with respect to y twice. = take partial derivative with respect to x, then y. = take partial derivative with respect to y, then x. FACT - for any reasonable function, f xy = f yx.

3 Examples: 1. Let f(x, y) = 3xy 2 + 2xy + x 2. Calculate the 4 second derivatives. f x = 3y 2 + 2y + 2x f y = 6xy + 2x And so we have f xx = 2 f yy = 6x f xy = 6y + 2 f yx = 6y + 2 Notice that f xy = f yx as expected. 2. Let f(x, y) = x 2 y 3 + x 4 y + xe y. Calculate the 4 second derivatives. f x = 2xy 3 + 4x 3 y + e y f y = 3x 2 y 2 + x 4 + xe y And so we have f xx = 2y x 2 y f yy = 6x 2 y + xe y f xy = 6xy 2 + 4x 3 + e y f yx = 6xy 2 + 4x 3 + e y Again f xy = f yx.

4 19.2 Extrema of Functions of Two Variables Let f be a function defined on a region containing (x 0, y 0 ). Then f has a local max at (x 0, y 0 ) if there is a circular region R centered at (x 0, y 0 ) such that f(x, y) f(x 0, y 0 ) for every (x, y) in R. This means that there is a region around (x 0, y 0 ) such that the graph of f looks like this Similarly, f has a local min at (x 0, y 0 ) if there is a circular region R centered at (x 0, y 0 ) such that f(x, y) f(x 0, y 0 ) for every (x, y) in R. This means that there is a region around (x 0, y 0 ) such that the graph of f looks like this Local maxes and mins are examples of critical points just as in the one variable case. We say that (x 0, y 0 ) is a critical point of f if f x (x 0, y 0 ) or f y (x 0, y 0 ) does not exist, or f x (x 0, y 0 ) = 0 and f y (x 0, y 0 ) = 0 We will only deal with the second case. So to find critical points of f(x, y), calculate f x and f y, set both equal to 0 and solve.

5 Examples: 1. Find all critical points of f(x, y) = 2x 2 + y 2 + 8x 6y We find the partial derivatives and set them equal to 0 f x = 4x + 8 = 0 f y = 2y 6 = 0 These imply that x = 2 and y = 3. So f has one critical point at ( 2, 3). 2. Find all critical points of f(x, y) = x 2 5y 2 + 8x 10y 13. We find the partial derivatives and set them equal to 0 f x = 2x + 8 = 0 f y = 10y 10 = 0 These imply that x = 4 and y = 1. So f has one critical point at (4, 1). 3. Find all critical points of f(x, y) = x 2 + 6xy + 10y 2 4y + 4 We find the partial derivatives and set them equal to 0 f x = 2x + 6y = 0 f y = 6x + 20y 4 = 0 This one is more difficult because there are x s and y s in both equations. To solve we multiply the first equation by 3 and add the two equations together: 6x 18y = 0 6x + 20y 4 = 0 2y 4 = 0 thus y = 2. If we put this in the first equation we get that 2x + 12 = 0 or x = 6. So f has one critical point at ( 6, 2). 4. Find all critical points of f(x, y) = e (x2 +y 2). We find the partial derivatives and set them equal to 0 f x = e (x2 +y 2) ( 2x) = 0 f y = e (x2 +y 2) ( 2y) = 0 Since e (x2 +y 2) can t be 0, the only critical point we have is (0, 0). Now that we know how to find critical points, we would like to classify them. For our purposes, if (x 0, y 0 ) is a critical point but neither a local max nor a local min we will say that it is a saddle point. Then we have the following theorem

6 Theorem 19.1 Suppose f(x, y) is a function and that (a, b) is a critical point of f. Define D = f xx (a, b)f yy (a, b) [f xy (a, b)] 2 Then 1. There is a local max at (a, b) if D > 0 and f xx (a, b) < There is a local min at (a, b) if D > 0 and f xx (a, b) > There is a saddle point at (a, b) if D < If D = 0, WHO KNOWS!?!?! Example: Recall our first example f(x, y) = 2x 2 + y 2 + 8x 6y We had one critical point at ( 2, 3). f x = 4x + 8 So f y = 2y 6 f xx = 4 f yy = 2 f xy = 0 So D = 4(2) 0 = 8 > 0 and f xx > 0. Thus ( 2, 3) is a local min.

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs.

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs. 10-11-2010 HW: 14.7: 1,5,7,13,29,33,39,51,55 Maxima and Minima In this very important chapter, we describe how to use the tools of calculus to locate the maxima and minima of a function of two variables.

More information

Unit 7 Partial Derivatives and Optimization

Unit 7 Partial Derivatives and Optimization Unit 7 Partial Derivatives and Optimization We have learned some important applications of the ordinary derivative in finding maxima and minima. We now move on to a topic called partial derivatives which

More information

Math 233. Extrema of Functions of Two Variables Basics

Math 233. Extrema of Functions of Two Variables Basics Math 233. Extrema of Functions of Two Variables Basics Theorem (Extreme Value Theorem) Let f be a continuous function of two variables x and y defined on a closed bounded region R in the xy-plane. Then

More information

Section 15.3 Partial Derivatives

Section 15.3 Partial Derivatives Section 5.3 Partial Derivatives Differentiating Functions of more than one Variable. Basic Definitions In single variable calculus, the derivative is defined to be the instantaneous rate of change of a

More information

11.7 Maximum and Minimum Values

11.7 Maximum and Minimum Values Arkansas Tech University MATH 2934: Calculus III Dr. Marcel B Finan 11.7 Maximum and Minimum Values Just like functions of a single variable, functions of several variables can have local and global extrema,

More information

Functions of several variables

Functions of several variables Chapter 6 Functions of several variables 6.1 Limits and continuity Definition 6.1 (Euclidean distance). Given two points P (x 1, y 1 ) and Q(x, y ) on the plane, we define their distance by the formula

More information

Similarly, the point marked in red below is a local minimum for the function, since there are no points nearby that are lower than it:

Similarly, the point marked in red below is a local minimum for the function, since there are no points nearby that are lower than it: Extreme Values of Multivariate Functions Our next task is to develop a method for determining local extremes of multivariate functions, as well as absolute extremes of multivariate functions on closed

More information

CHAPTER 11 PARTIAL DERIVATIVES

CHAPTER 11 PARTIAL DERIVATIVES CHAPTER 11 PARTIAL DERIVATIVES 1. FUNCTIONS OF SEVERAL VARIABLES A) Definition: A function of two variables is a rule that assigns to each ordered pair of real numbers (x,y) in a set D a unique real number

More information

Math 32, October 22 & 27: Maxima & Minima

Math 32, October 22 & 27: Maxima & Minima Math 32, October 22 & 27: Maxima & Minima Section 1: Critical Points Just as in the single variable case, for multivariate functions we are often interested in determining extreme values of the function.

More information

Math 2411 Calc III Practice Exam 2

Math 2411 Calc III Practice Exam 2 Math 2411 Calc III Practice Exam 2 This is a practice exam. The actual exam consists of questions of the type found in this practice exam, but will be shorter. If you have questions do not hesitate to

More information

Calculus II Fall 2014

Calculus II Fall 2014 Calculus II Fall 2014 Lecture 3 Partial Derivatives Eitan Angel University of Colorado Monday, December 1, 2014 E. Angel (CU) Calculus II 1 Dec 1 / 13 Introduction Much of the calculus of several variables

More information

MULTI-VARIABLE OPTIMIZATION NOTES. 1. Identifying Critical Points

MULTI-VARIABLE OPTIMIZATION NOTES. 1. Identifying Critical Points MULTI-VARIABLE OPTIMIZATION NOTES HARRIS MATH CAMP 2018 1. Identifying Critical Points Definition. Let f : R 2! R. Then f has a local maximum at (x 0,y 0 ) if there exists some disc D around (x 0,y 0 )

More information

Section 14.3 Partial Derivatives

Section 14.3 Partial Derivatives Section 14.3 Partial Derivatives Ruipeng Shen March 20 1 Basic Conceptions If f(x, y) is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant.

More information

LECTURE 19 - LAGRANGE MULTIPLIERS

LECTURE 19 - LAGRANGE MULTIPLIERS LECTURE 9 - LAGRANGE MULTIPLIERS CHRIS JOHNSON Abstract. In this lecture we ll describe a way of solving certain optimization problems subject to constraints. This method, known as Lagrange multipliers,

More information

FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION

FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION 1. Functions of Several Variables A function of two variables is a rule that assigns a real number f(x, y) to each ordered pair of real numbers

More information

MATH 105: Midterm #1 Practice Problems

MATH 105: Midterm #1 Practice Problems Name: MATH 105: Midterm #1 Practice Problems 1. TRUE or FALSE, plus explanation. Give a full-word answer TRUE or FALSE. If the statement is true, explain why, using concepts and results from class to justify

More information

Exam 2 Summary. 1. The domain of a function is the set of all possible inputes of the function and the range is the set of all outputs.

Exam 2 Summary. 1. The domain of a function is the set of all possible inputes of the function and the range is the set of all outputs. Exam 2 Summary Disclaimer: The exam 2 covers lectures 9-15, inclusive. This is mostly about limits, continuity and differentiation of functions of 2 and 3 variables, and some applications. The complete

More information

Solutions to the problems from Written assignment 2 Math 222 Winter 2015

Solutions to the problems from Written assignment 2 Math 222 Winter 2015 Solutions to the problems from Written assignment 2 Math 222 Winter 2015 1. Determine if the following limits exist, and if a limit exists, find its value. x2 y (a) The limit of f(x, y) = x 4 as (x, y)

More information

18.3. Stationary Points. Introduction. Prerequisites. Learning Outcomes

18.3. Stationary Points. Introduction. Prerequisites. Learning Outcomes Stationary Points 8.3 Introduction The calculation of the optimum value of a function of two variables is a common requirement in many areas of engineering, for example in thermodynamics. Unlike the case

More information

EXERCISES CHAPTER 11. z = f(x, y) = A x α 1. x y ; (3) z = x2 + 4x + 2y. Graph the domain of the function and isoquants for z = 1 and z = 2.

EXERCISES CHAPTER 11. z = f(x, y) = A x α 1. x y ; (3) z = x2 + 4x + 2y. Graph the domain of the function and isoquants for z = 1 and z = 2. EXERCISES CHAPTER 11 1. (a) Given is a Cobb-Douglas function f : R 2 + R with z = f(x, y) = A x α 1 1 x α 2 2, where A = 1, α 1 = 1/2 and α 2 = 1/2. Graph isoquants for z = 1 and z = 2 and illustrate the

More information

The Chain Rule, Higher Partial Derivatives & Opti- mization

The Chain Rule, Higher Partial Derivatives & Opti- mization The Chain Rule, Higher Partial Derivatives & Opti- Unit #21 : mization Goals: We will study the chain rule for functions of several variables. We will compute and study the meaning of higher partial derivatives.

More information

Definitions and claims functions of several variables

Definitions and claims functions of several variables Definitions and claims functions of several variables In the Euclidian space I n of all real n-dimensional vectors x = (x 1, x,..., x n ) the following are defined: x + y = (x 1 + y 1, x + y,..., x n +

More information

[f(t)] 2 + [g(t)] 2 + [h(t)] 2 dt. [f(u)] 2 + [g(u)] 2 + [h(u)] 2 du. The Fundamental Theorem of Calculus implies that s(t) is differentiable and

[f(t)] 2 + [g(t)] 2 + [h(t)] 2 dt. [f(u)] 2 + [g(u)] 2 + [h(u)] 2 du. The Fundamental Theorem of Calculus implies that s(t) is differentiable and Midterm 2 review Math 265 Fall 2007 13.3. Arc Length and Curvature. Assume that the curve C is described by the vector-valued function r(r) = f(t), g(t), h(t), and that C is traversed exactly once as t

More information

Review guide for midterm 2 in Math 233 March 30, 2009

Review guide for midterm 2 in Math 233 March 30, 2009 Review guide for midterm 2 in Math 2 March, 29 Midterm 2 covers material that begins approximately with the definition of partial derivatives in Chapter 4. and ends approximately with methods for calculating

More information

Review Sheet for Math 230, Midterm exam 2. Fall 2006

Review Sheet for Math 230, Midterm exam 2. Fall 2006 Review Sheet for Math 230, Midterm exam 2. Fall 2006 October 31, 2006 The second midterm exam will take place: Monday, November 13, from 8:15 to 9:30 pm. It will cover chapter 15 and sections 16.1 16.4,

More information

Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A

Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A Name: ID: Circle your instructor and lecture below: Jankowski-001 Jankowski-006 Ramakrishnan-013 Read all of the following information

More information

MATH 261 EXAM II PRACTICE PROBLEMS

MATH 261 EXAM II PRACTICE PROBLEMS MATH 61 EXAM II PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam typically has 6 problems on it, with no more than one problem of any given type (e.g.,

More information

ANSWER KEY. (a) For each of the following partials derivatives, use the contour plot to decide whether they are positive, negative, or zero.

ANSWER KEY. (a) For each of the following partials derivatives, use the contour plot to decide whether they are positive, negative, or zero. Math 2130-101 Test #2 for Section 101 October 14 th, 2009 ANSWE KEY 1. (10 points) Compute the curvature of r(t) = (t + 2, 3t + 4, 5t + 6). r (t) = (1, 3, 5) r (t) = 1 2 + 3 2 + 5 2 = 35 T(t) = 1 r (t)

More information

Name: ID: Section: Math 233 Exam 2. Page 1. This exam has 17 questions:

Name: ID: Section: Math 233 Exam 2. Page 1. This exam has 17 questions: Page Name: ID: Section: This exam has 7 questions: 5 multiple choice questions worth 5 points each. 2 hand graded questions worth 25 points total. Important: No graphing calculators! Any non scientific

More information

11.2 LIMITS AND CONTINUITY

11.2 LIMITS AND CONTINUITY 11. LIMITS AND CONTINUITY INTRODUCTION: Consider functions of one variable y = f(x). If you are told that f(x) is continuous at x = a, explain what the graph looks like near x = a. Formal definition of

More information

Math 148 Exam III Practice Problems

Math 148 Exam III Practice Problems Math 48 Exam III Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

14.4. Tangent Planes. Tangent Planes. Tangent Planes. Tangent Planes. Partial Derivatives. Tangent Planes and Linear Approximations

14.4. Tangent Planes. Tangent Planes. Tangent Planes. Tangent Planes. Partial Derivatives. Tangent Planes and Linear Approximations 14 Partial Derivatives 14.4 and Linear Approximations Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Suppose a surface S has equation z = f(x, y), where

More information

Exam 2 Review Sheet. r(t) = x(t), y(t), z(t)

Exam 2 Review Sheet. r(t) = x(t), y(t), z(t) Exam 2 Review Sheet Joseph Breen Particle Motion Recall that a parametric curve given by: r(t) = x(t), y(t), z(t) can be interpreted as the position of a particle. Then the derivative represents the particle

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III January 14, 2010 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Math 5BI: Problem Set 1 Linearizing functions of several variables

Math 5BI: Problem Set 1 Linearizing functions of several variables Math 5BI: Problem Set Linearizing functions of several variables March 9, A. Dot and cross products There are two special operations for vectors in R that are extremely useful, the dot and cross products.

More information

14.7 Maximum and Minimum Values

14.7 Maximum and Minimum Values CHAPTER 14. PARTIAL DERIVATIVES 115 14.7 Maximum and Minimum Values Definition. Let f(x, y) be a function. f has a local max at (a, b) iff(a, b) (a, b). f(x, y) for all (x, y) near f has a local min at

More information

Review #Final Exam MATH 142-Drost

Review #Final Exam MATH 142-Drost Fall 2007 1 Review #Final Exam MATH 142-Drost 1. Find the domain of the function f(x) = x 1 x 2 if x3 2. Suppose 450 items are sold per day at a price of $53 per item and that 650 items are

More information

Calculus 3 Exam 2 31 October 2017

Calculus 3 Exam 2 31 October 2017 Calculus 3 Exam 2 31 October 2017 Name: Instructions: Be sure to read each problem s directions. Write clearly during the exam and fully erase or mark out anything you do not want graded. You may use your

More information

i + u 2 j be the unit vector that has its initial point at (a, b) and points in the desired direction. It determines a line in the xy-plane:

i + u 2 j be the unit vector that has its initial point at (a, b) and points in the desired direction. It determines a line in the xy-plane: 1 Directional Derivatives and Gradients Suppose we need to compute the rate of change of f(x, y) with respect to the distance from a point (a, b) in some direction. Let u = u 1 i + u 2 j be the unit vector

More information

Calculus of Several Variables

Calculus of Several Variables Benjamin McKay Calculus of Several Variables Optimisation and Finance February 18, 2018 This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Preface The course is

More information

Differentiable functions (Sec. 14.4)

Differentiable functions (Sec. 14.4) Math 20C Multivariable Calculus Lecture 3 Differentiable functions (Sec. 4.4) Review: Partial derivatives. Slide Partial derivatives and continuity. Equation of the tangent plane. Differentiable functions.

More information

Section 7.2 Logarithmic Functions

Section 7.2 Logarithmic Functions Math 150 c Lynch 1 of 6 Section 7.2 Logarithmic Functions Definition. Let a be any positive number not equal to 1. The logarithm of x to the base a is y if and only if a y = x. The number y is denoted

More information

MATH 234 THIRD SEMESTER CALCULUS

MATH 234 THIRD SEMESTER CALCULUS MATH 234 THIRD SEMESTER CALCULUS Fall 2009 1 2 Math 234 3rd Semester Calculus Lecture notes version 0.9(Fall 2009) This is a self contained set of lecture notes for Math 234. The notes were written by

More information

You could identify a point on the graph of a function as (x,y) or (x, f(x)). You may have only one function value for each x number.

You could identify a point on the graph of a function as (x,y) or (x, f(x)). You may have only one function value for each x number. Function Before we review exponential and logarithmic functions, let's review the definition of a function and the graph of a function. A function is just a rule. The rule links one number to a second

More information

LESSON 18: INTRODUCTION TO FUNCTIONS OF SEVERAL VARIABLES MATH FALL 2018

LESSON 18: INTRODUCTION TO FUNCTIONS OF SEVERAL VARIABLES MATH FALL 2018 LESSON 8: INTRODUCTION TO FUNCTIONS OF SEVERAL VARIABLES MATH 6020 FALL 208 ELLEN WELD. Partial Derivatives We aress how to take a erivative of a function of several variables. Although we won t get into

More information

2.1 Partial Derivatives

2.1 Partial Derivatives .1 Partial Derivatives.1.1 Functions of several variables Up until now, we have only met functions of single variables. From now on we will meet functions such as z = f(x, y) and w = f(x, y, z), which

More information

Partial Differentiation 1 Introduction

Partial Differentiation 1 Introduction Partial Differentiation 1 Introduction In the first part of this course you have met the idea of a derivative. To recap what this means, recall that if you have a function, z say, then the slope of the

More information

Lecture 4 : Monday April 6th

Lecture 4 : Monday April 6th Lecture 4 : Monday April 6th jacques@ucsd.edu Key concepts : Tangent hyperplane, Gradient, Directional derivative, Level curve Know how to find equation of tangent hyperplane, gradient, directional derivatives,

More information

Lecture 15. Global extrema and Lagrange multipliers. Dan Nichols MATH 233, Spring 2018 University of Massachusetts

Lecture 15. Global extrema and Lagrange multipliers. Dan Nichols MATH 233, Spring 2018 University of Massachusetts Lecture 15 Global extrema and Lagrange multipliers Dan Nichols nichols@math.umass.edu MATH 233, Spring 2018 University of Massachusetts March 22, 2018 (2) Global extrema of a multivariable function Definition

More information

MATH 20C: FUNDAMENTALS OF CALCULUS II FINAL EXAM

MATH 20C: FUNDAMENTALS OF CALCULUS II FINAL EXAM MATH 2C: FUNDAMENTALS OF CALCULUS II FINAL EXAM Name Please circle the answer to each of the following problems. You may use an approved calculator. Each multiple choice problem is worth 2 points.. Multiple

More information

Math 154 :: Elementary Algebra

Math 154 :: Elementary Algebra Math :: Elementary Algebra Section. Section. Section. Section. Section. Math :: Elementary Algebra Section. The Rectangular (Cartesian) Coordinate System. The variable x usually represents the independent

More information

Independence of Path and Conservative Vector Fields

Independence of Path and Conservative Vector Fields Independence of Path and onservative Vector Fields MATH 311, alculus III J. Robert Buchanan Department of Mathematics Summer 2011 Goal We would like to know conditions on a vector field function F(x, y)

More information

MATH 8 FALL 2010 CLASS 27, 11/19/ Directional derivatives Recall that the definitions of partial derivatives of f(x, y) involved limits

MATH 8 FALL 2010 CLASS 27, 11/19/ Directional derivatives Recall that the definitions of partial derivatives of f(x, y) involved limits MATH 8 FALL 2010 CLASS 27, 11/19/2010 1 Directional derivatives Recall that the definitions of partial derivatives of f(x, y) involved limits lim h 0 f(a + h, b) f(a, b), lim h f(a, b + h) f(a, b) In these

More information

Math 206 First Midterm February 1, 2012

Math 206 First Midterm February 1, 2012 Math 206 First Midterm February 1, 2012 Name: Instructor: Section: 1. Do not open this exam until you are told to do so. 2. This exam has 7 pages including this cover AND IS DOUBLE SIDED. There are 8 problems.

More information

Maxima and Minima. Chapter Local and Global extrema. 5.2 Continuous functions on closed and bounded sets Definition of global extrema

Maxima and Minima. Chapter Local and Global extrema. 5.2 Continuous functions on closed and bounded sets Definition of global extrema Chapter 5 Maxima and Minima In first semester calculus we learned how to find the maximal and minimal values of a function y = f(x) of one variable. The basic method is as follows: assuming the independent

More information

4 to find the dimensions of the rectangle that have the maximum area. 2y A =?? f(x, y) = (2x)(2y) = 4xy

4 to find the dimensions of the rectangle that have the maximum area. 2y A =?? f(x, y) = (2x)(2y) = 4xy Optimization Constrained optimization and Lagrange multipliers Constrained optimization is what it sounds like - the problem of finding a maximum or minimum value (optimization), subject to some other

More information

11/18/2008 SECOND HOURLY FIRST PRACTICE Math 21a, Fall Name:

11/18/2008 SECOND HOURLY FIRST PRACTICE Math 21a, Fall Name: 11/18/28 SECOND HOURLY FIRST PRACTICE Math 21a, Fall 28 Name: MWF 9 Chung-Jun John Tsai MWF 1 Ivana Bozic MWF 1 Peter Garfield MWF 1 Oliver Knill MWF 11 Peter Garfield MWF 11 Stefan Hornet MWF 12 Aleksander

More information

Free extrema of two variables functions

Free extrema of two variables functions Free extrema of two variables functions Apellidos, Nombre: Departamento: Centro: Alicia Herrero Debón (aherrero@mat.upv.es) Departamento de Matemática Aplicada Instituto de Matemática Multidisciplnar Escuela

More information

Multivariate Calculus

Multivariate Calculus Multivariate Calculus Partial Derivatives 1 Theory Recall the definition of the partial derivatives of a function of two variables, z = f(x, y): f x = lim f(x + x, y) f(x, y) x 0 x f y f(x, y + y) f(x,

More information

Section 1.3. Slope formula: If the coordinates of two points on the line are known then we can use the slope formula to find the slope of the line.

Section 1.3. Slope formula: If the coordinates of two points on the line are known then we can use the slope formula to find the slope of the line. MATH 11009: Linear Functions Section 1.3 Linear Function: A linear function is a function that can be written in the form f(x) = ax + b or y = ax + b where a and b are constants. The graph of a linear

More information

Partial derivatives and their application.

Partial derivatives and their application. Math 2080 Week 10 Page 1 Gentry Publishing Chapter 10 Partial derivatives and their application. 10.1 Partial Derivatives 10.2 Tangent Planes and slopes of surfaces. 10.3 Linear approximations and the

More information

Test Yourself. 11. The angle in degrees between u and w. 12. A vector parallel to v, but of length 2.

Test Yourself. 11. The angle in degrees between u and w. 12. A vector parallel to v, but of length 2. Test Yourself These are problems you might see in a vector calculus course. They are general questions and are meant for practice. The key follows, but only with the answers. an you fill in the blanks

More information

Goals: To study constrained optimization; that is, the maximizing or minimizing of a function subject to a constraint (or side condition).

Goals: To study constrained optimization; that is, the maximizing or minimizing of a function subject to a constraint (or side condition). Unit #23 : Lagrange Multipliers Goals: To study constrained optimization; that is, the maximizing or minimizing of a function subject to a constraint (or side condition). Constrained Optimization - Examples

More information

MATH 12 CLASS 9 NOTES, OCT Contents 1. Tangent planes 1 2. Definition of differentiability 3 3. Differentials 4

MATH 12 CLASS 9 NOTES, OCT Contents 1. Tangent planes 1 2. Definition of differentiability 3 3. Differentials 4 MATH 2 CLASS 9 NOTES, OCT 0 20 Contents. Tangent planes 2. Definition of differentiability 3 3. Differentials 4. Tangent planes Recall that the derivative of a single variable function can be interpreted

More information

Discussion 8 Solution Thursday, February 10th. Consider the function f(x, y) := y 2 x 2.

Discussion 8 Solution Thursday, February 10th. Consider the function f(x, y) := y 2 x 2. Discussion 8 Solution Thursday, February 10th. 1. Consider the function f(x, y) := y 2 x 2. (a) This function is a mapping from R n to R m. Determine the values of n and m. The value of n is 2 corresponding

More information

SYDE 112, LECTURE 34 & 35: Optimization on Restricted Domains and Lagrange Multipliers

SYDE 112, LECTURE 34 & 35: Optimization on Restricted Domains and Lagrange Multipliers SYDE 112, LECTURE 34 & 35: Optimization on Restricted Domains and Lagrange Multipliers 1 Restricted Domains If we are asked to determine the maximal and minimal values of an arbitrary multivariable function

More information

MA10103: Foundation Mathematics I. Lecture Notes Week 3

MA10103: Foundation Mathematics I. Lecture Notes Week 3 MA10103: Foundation Mathematics I Lecture Notes Week 3 Indices/Powers In an expression a n, a is called the base and n is called the index or power or exponent. Multiplication/Division of Powers a 3 a

More information

WESI 205 Workbook. 1 Review. 2 Graphing in 3D

WESI 205 Workbook. 1 Review. 2 Graphing in 3D 1 Review 1. (a) Use a right triangle to compute the distance between (x 1, y 1 ) and (x 2, y 2 ) in R 2. (b) Use this formula to compute the equation of a circle centered at (a, b) with radius r. (c) Extend

More information

10 GRAPHING LINEAR EQUATIONS

10 GRAPHING LINEAR EQUATIONS 0 GRAPHING LINEAR EQUATIONS We now expand our discussion of the single-variable equation to the linear equation in two variables, x and y. Some examples of linear equations are x+ y = 0, y = 3 x, x= 4,

More information

MATH Exam 2 Solutions November 16, 2015

MATH Exam 2 Solutions November 16, 2015 MATH 1.54 Exam Solutions November 16, 15 1. Suppose f(x, y) is a differentiable function such that it and its derivatives take on the following values: (x, y) f(x, y) f x (x, y) f y (x, y) f xx (x, y)

More information

Math Final Exam - 6/11/2015

Math Final Exam - 6/11/2015 Math 200 - Final Exam - 6/11/2015 Name: Section: Section Class/Times Instructor Section Class/Times Instructor 1 9:00%AM ( 9:50%AM Papadopoulos,%Dimitrios 11 1:00%PM ( 1:50%PM Swartz,%Kenneth 2 11:00%AM

More information

Sensors, Signals and Noise

Sensors, Signals and Noise Sensors, Signals and Noise COURSE OUTLINE Introduction Signals and Noise Filtering Noise Sensors and associated electronics Sergio Cova SENSORS SIGNALS AND NOISE SSN04b FILTERING NOISE rv 2017/01/25 1

More information

I II III IV V VI VII VIII IX X Total

I II III IV V VI VII VIII IX X Total 1 of 16 HAND IN Answers recorded on exam paper. DEPARTMENT OF MATHEMATICS AND STATISTICS QUEEN S UNIVERSITY AT KINGSTON MATH 121/124 - APR 2018 Section 700 - CDS Students ONLY Instructor: A. Ableson INSTRUCTIONS:

More information

Welcome to Math! Put last night s homework on your desk and begin your warm-up (the other worksheet that you chose to save for today)

Welcome to Math! Put last night s homework on your desk and begin your warm-up (the other worksheet that you chose to save for today) Welcome to Math! Put last night s homework on your desk and begin your warm-up (the other worksheet that you chose to save for today) Unit Map - Geometry Thursday - Parallel Lines Cut by a Transversal

More information

Algebra & Trig. 1. , then the slope of the line is given by

Algebra & Trig. 1. , then the slope of the line is given by Algebra & Trig. 1 1.4 and 1.5 Linear Functions and Slope Slope is a measure of the steepness of a line and is denoted by the letter m. If a nonvertical line passes through two distinct points x, y 1 1

More information

Section 3.5. Equations of Lines

Section 3.5. Equations of Lines Section 3.5 Equations of Lines Learning objectives Use slope-intercept form to write an equation of a line Use slope-intercept form to graph a linear equation Use the point-slope form to find an equation

More information

Solving Equations and Graphing

Solving Equations and Graphing Solving Equations and Graphing Question 1: How do you solve a linear equation? Answer 1: 1. Remove any parentheses or other grouping symbols (if necessary). 2. If the equation contains a fraction, multiply

More information

4-2 Using Intercepts. Warm Up Lesson Presentation Lesson Quiz

4-2 Using Intercepts. Warm Up Lesson Presentation Lesson Quiz 4-2 Using Intercepts Warm Up Lesson Presentation Lesson Quiz Holt Algebra McDougal 1 Algebra 1 Warm Up Solve each equation. 1. 5x + 0 = 10 2 2. 33 = 0 + 3y 11 3. 1 4. 2x + 14 = 3x + 4 2 5. 5y 1 = 7y +

More information

3. (12 %) Find an equation of the tangent plane at the point (2,2,1) to the surface. u = t. Find z t. v = se t.

3. (12 %) Find an equation of the tangent plane at the point (2,2,1) to the surface. u = t. Find z t. v = se t. EXAM - Math 17 NAME: I.D.: Instrction: Circle yor answers and show all yor work clearly. Messing arond may reslt in losing credits, since the grader may be forced to pick the worst to grade. Soltions with

More information

1 Write a Function in

1 Write a Function in www.ck12.org Chapter 1. Write a Function in Slope-Intercept Form CHAPTER 1 Write a Function in Slope-Intercept Form Here you ll learn how to write the slope-intercept form of linear functions and how to

More information

Lecture 19. Vector fields. Dan Nichols MATH 233, Spring 2018 University of Massachusetts. April 10, 2018.

Lecture 19. Vector fields. Dan Nichols MATH 233, Spring 2018 University of Massachusetts. April 10, 2018. Lecture 19 Vector fields Dan Nichols nichols@math.umass.edu MATH 233, Spring 218 University of Massachusetts April 1, 218 (2) Chapter 16 Chapter 12: Vectors and 3D geometry Chapter 13: Curves and vector

More information

Duration of Examination: 3 hours McMaster University 24 April 2015 FIRST NAME (PRINT CLEARLY): FAMILY NAME (PRINT CLEARLY): Student No.

Duration of Examination: 3 hours McMaster University 24 April 2015 FIRST NAME (PRINT CLEARLY): FAMILY NAME (PRINT CLEARLY): Student No. MATHEMATICS 1LT3E FINAL EXAMINATION Evening Class Duration of Examination: 3 hours McMaster University 24 April 2015 FIRST NAME (PRINT CLEARLY): FAMILY NAME (PRINT CLEARLY): E. Clements THIS EXAMINATION

More information

14.6 Directional Derivatives

14.6 Directional Derivatives CHAPTER 14. PARTIAL DERIVATIVES 107 14.6 Directional Derivatives Comments. Recall that the partial derivatives can be interpreted as the derivatives along traces of f(x, y). We can reinterpret this in

More information

a. Find the solution (x,y) that satisfies both of the following equations: Equation 1: 2x + 3y = 13 Equation 2: 3x - 2y = 0

a. Find the solution (x,y) that satisfies both of the following equations: Equation 1: 2x + 3y = 13 Equation 2: 3x - 2y = 0 Economics 102 Fall 2015 Answers to Homework #1 Due Monday, September 21, 2015 Directions: The homework will be collected in a box before the large lecture. Please place your name, TA name and section number

More information

Mock final exam Math fall 2007

Mock final exam Math fall 2007 Mock final exam Math - fall 7 Fernando Guevara Vasquez December 5 7. Consider the curve r(t) = ti + tj + 5 t t k, t. (a) Show that the curve lies on a sphere centered at the origin. (b) Where does the

More information

LINEAR EQUATIONS IN TWO VARIABLES

LINEAR EQUATIONS IN TWO VARIABLES LINEAR EQUATIONS IN TWO VARIABLES What You Should Learn Use slope to graph linear equations in two " variables. Find the slope of a line given two points on the line. Write linear equations in two variables.

More information

3.5 Marginal Distributions

3.5 Marginal Distributions STAT 421 Lecture Notes 52 3.5 Marginal Distributions Definition 3.5.1 Suppose that X and Y have a joint distribution. The c.d.f. of X derived by integrating (or summing) over the support of Y is called

More information

(Refer Slide Time: 3:11)

(Refer Slide Time: 3:11) Digital Communication. Professor Surendra Prasad. Department of Electrical Engineering. Indian Institute of Technology, Delhi. Lecture-2. Digital Representation of Analog Signals: Delta Modulation. Professor:

More information

MATH Review Exam II 03/06/11

MATH Review Exam II 03/06/11 MATH 21-259 Review Exam II 03/06/11 1. Find f(t) given that f (t) = sin t i + 3t 2 j and f(0) = i k. 2. Find lim t 0 3(t 2 1) i + cos t j + t t k. 3. Find the points on the curve r(t) at which r(t) and

More information

Chapter 3 Linear Equations in Two Variables

Chapter 3 Linear Equations in Two Variables Chapter Linear Equations in Two Variables. Check Points. 6. x y x ( x, y) y ( ) 6, 6 y ( ), 0 y (0) 0, y () 0,0 y (),. E(, ) F(,0) G (6,0). a. xy 9 ( ) 9 69 9 9, true (, ) is a solution. b. xy 9 () 9 99

More information

DIFFERENTIAL EQUATIONS. A principal model of physical phenomena.

DIFFERENTIAL EQUATIONS. A principal model of physical phenomena. DIFFERENTIAL EQUATIONS A principal model of physical phenomena. The ordinary differential equation: The initial value: y = f(x, y) y(x 0 )=Y 0 Find a solution Y (x) onsomeintervalx 0 x b. Together these

More information

LEIBNIZ INDIFFERENCE CURVES AND THE MARGINAL RATE OF SUBSTITUTION

LEIBNIZ INDIFFERENCE CURVES AND THE MARGINAL RATE OF SUBSTITUTION 3.2.1 INDIFFERENCE CURVES AND THE MARGINAL RATE OF SUBSTITUTION Alexei cares about his exam grade and his free time. We have seen that his preferences can be represented graphically using indifference

More information

CH 54 SPECIAL LINES. Ch 54 Special Lines. Introduction

CH 54 SPECIAL LINES. Ch 54 Special Lines. Introduction 479 CH 54 SPECIAL LINES Introduction Y ou may have noticed that all the lines we ve seen so far in this course have had slopes that were either positive or negative. You may also have observed that every

More information

Algebra I CC Exam Review #1 H o2m0b1l3v 7KRu9tmal NSIoffrtGwaafrKeB 5LZLhCe.h m na3ldll 3rPiagBhlt8sm 4rEe0sPevr3vKe6dR.S. y x y. ( k ) ( 10) ( ) ( )

Algebra I CC Exam Review #1 H o2m0b1l3v 7KRu9tmal NSIoffrtGwaafrKeB 5LZLhCe.h m na3ldll 3rPiagBhlt8sm 4rEe0sPevr3vKe6dR.S. y x y. ( k ) ( 10) ( ) ( ) -1-5 b2e0r143a qkxustsah YS3ogfrtFwiazr9e3 BLjLPCQ.W R paslllj LrkiTgphqtysN drzeosqegrqvcezdj.o I YMOaPdyev LwhiVtthR AINnXfriknHirtleD famlwgue4bsryas e2r.j Worksheet by Kuta Software LLC Algebra I CC

More information

SOLUTIONS 2. PRACTICE EXAM 2. HOURLY. Problem 1) TF questions (20 points) Circle the correct letter. No justifications are needed.

SOLUTIONS 2. PRACTICE EXAM 2. HOURLY. Problem 1) TF questions (20 points) Circle the correct letter. No justifications are needed. SOLUIONS 2. PRACICE EXAM 2. HOURLY Math 21a, S03 Problem 1) questions (20 points) Circle the correct letter. No justifications are needed. A function f(x, y) on the plane for which the absolute minimum

More information

Outcome 7 Review. *Recall that -1 (-5) means

Outcome 7 Review. *Recall that -1 (-5) means Outcome 7 Review Level 2 Determine the slope of a line that passes through A(3, -5) and B(-2, -1). Step 1: Remember that ordered pairs are in the form (x, y). Label the points so you can substitute into

More information

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem INTEGRATION OVER NON-RECTANGULAR REGIONS Contents 1. A slightly more general form of Fubini s Theorem 1 1. A slightly more general form of Fubini s Theorem We now want to learn how to calculate double

More information

Honors Algebra 2 Assignment Sheet - Chapter 1

Honors Algebra 2 Assignment Sheet - Chapter 1 Assignment Sheet - Chapter 1 #01: Read the text and the examples in your book for the following sections: 1.1, 1., and 1.4. Be sure you read and understand the handshake problem. Also make sure you copy

More information

14.2 Limits and Continuity

14.2 Limits and Continuity 14 Partial Derivatives 14.2 Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Let s compare the behavior of the functions Tables 1 2 show values of f(x,

More information

11/1/2017 Second Hourly Practice 2 Math 21a, Fall Name:

11/1/2017 Second Hourly Practice 2 Math 21a, Fall Name: 11/1/217 Second Hourly Practice 2 Math 21a, Fall 217 Name: MWF 9 Jameel Al-Aidroos MWF 9 Dennis Tseng MWF 1 Yu-Wei Fan MWF 1 Koji Shimizu MWF 11 Oliver Knill MWF 11 Chenglong Yu MWF 12 Stepan Paul TTH

More information