LESSON 18: INTRODUCTION TO FUNCTIONS OF SEVERAL VARIABLES MATH FALL 2018

Size: px
Start display at page:

Download "LESSON 18: INTRODUCTION TO FUNCTIONS OF SEVERAL VARIABLES MATH FALL 2018"

Transcription

1 LESSON 8: INTRODUCTION TO FUNCTIONS OF SEVERAL VARIABLES MATH 6020 FALL 208 ELLEN WELD. Partial Derivatives We aress how to take a erivative of a function of several variables. Although we won t get into the etails, the iea is that we take a erivative with respect to a irection. What we mean is this: if we have a function of several variables, we choose variable an take the erivatives thinking of all the other variables as s. But this type of erivative oesn t give the entire picture of what the function is oing so we call these partial erivatives. Ex. Let f(x, y) x + 2y an suppose we want to fin its partial erivatives. First, we nee to choose a variable, say x. Secon, we think of the other variables (in this case just y) as with respect to x. This means we think of x an y as acting totally inepenently so x changing oesn t affect y. We use a special notation enote this concept: x. So the partial erivative with respect to (wrt) x is: f(x, y) (x + 2y) x x x (x) + x (2y) + 0. y oes not change wrt to x Notice that x (x) (x). This is because with respect to x, x erivative as we ve always one it. x is exactly the We use the same line of thinking when we take y an hol x fixe. Here, x is a with respect to y. Again, we have our own notation: y. The partial erivative with respect to y is: y f(x, y) (x + 2y) y y (x) + (2y) y x oes not change wrt y Again, we see that y (2y) (2y) because with respect to y, y erivative as before. y is the same y

2 2 ELLEN WELD Remark. This is not a, an we will call it el. is use exclusively for partial erivatives. Note 2. We will use a variety of notation for partial erivatives but they will mean the same thing. For example, if our function is z f(x, y), we can write an f x f x (x, y) f f(x, y) x x z x f y f y (x, y) f f(x, y) y y z y. For f(x, y) x + 2y, our partial erivatives are f x an f y 2. Now is the time to review all of the ifferentiation rules you have forgotten. Examples.. Fin f x, f y if f(x, y) e x2 + ln y 2. Solution: f x (x, y) x (ex2 + ln y 2 ) x (ex2 ) + x (ln y2 ) 2xe x2 0 f y (x, y) y (ex2 + ln y 2 ) y (ex2 ) + y (ln y2 ) 2y y 2 2 y 0 f x 2xe x2 an f y 2 y 2. Fin f x, f y if f(x, y) y cos x. Solution: For this problem, we want to remember that whenever c was a x (cx3 ) c x (x3 ). We have the same property for partial erivatives: x (cx3 ) c x (x3 ). Even more, any function of y is with respect to x. So x ((sin y)x3 ) sin(y) x (x3 ).

3 AN UNOFFICIAL GUIDE TO MATH 6020 FALL With this in min, we compute f x (x, y) (y cos x) x y f y (x, y) y (y cos x) cos x wrt y (cos x) y sin x x y (y) cos x f x y sin x an f y cos x. 3. Fin f x (, 0) an f y (, 0) if f(x, y) 3x y y. Solution: The ifference between this example an the examples above is that here we nee to ifferentiate an then evaluate the erivative at the point (, 0). Differentiating with respect to x, ( ) 3x y y f x (x, y) x Hence, y 3 (3x y) (3 0) x y y. f x (, 0) Now, to ifferentiation with respect to y, we will nee to use the quotient rule (we coul also use the prouct rule after a small rewrite). So f y (x, y) ( ) 3x y y y ( y) y (3x y) (3x y) ( y) y ( y) 2 ( y)(0 ) (3x y)( ) ( y) 2 y y + 3x ( y) 2 3x ( y) 2. f y (, 0) 3() ( 0) 2 2.

4 4 ELLEN WELD Finally, f x (, 0) 3 an f y (, 0) Fin f x, f y if f(x, y) e x2y. Solution: Recall that if we were consiering a function of a single variable, say e 3x+x2, its erivative with respect to x is ( ) x e3x+x2 x (3x + x2 ) e 3x+x2 (3 + 2x)e 3x+x2 by the chain rule. The chain rule still applies for partial erivatives. f x x (ex2y ) x (x2 y)e x2y y x (x2 )e x2y y(2x)e x2y 2xye x2 y f y y (ex2y ) y (x2 y)e x2y x 2 y (y)ex2y x 2 e x2 y wrt y So, f x 2xye x2y an f y x 2 e x2y. 5. Fin f x (, 0) if f(x, y) ln(ln(y)x). Solution: Recall that x ln(g(x)) g (x) g(x). This rule still follows for partial erivatives: f x (x, y) x (ln(ln(y)x)) x (ln(y)x) ln(y)x f x (, 0). ln(y) x (x) ln(y)x ln(y) ln(y)x x 6. Fin f x, f y if f(x, y) xy sin(xy). Solution: We nee to use the prouct rule an chain rule. f x (x, y) (xy sin(xy)) x xy x (sin(xy)) + (xy) sin(xy) x xy( y cos(xy)) + y sin(xy) x (xy)

5 AN UNOFFICIAL GUIDE TO MATH 6020 FALL Thus xy 2 cos(xy) + y sin(xy) f y (x, y) xy y (sin(xy)) + (xy) sin(xy) y xy( x y (xy) cos(xy)) + x sin(xy) x 2 y cos(xy) + x sin(xy) f x xy 2 cos(xy) + y sin(xy) an f y x 2 y cos(xy) + x sin(xy).

Section 14.3 Partial Derivatives

Section 14.3 Partial Derivatives Section 14.3 Partial Derivatives Ruipeng Shen March 20 1 Basic Conceptions If f(x, y) is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant.

More information

Math 32A Discussion Session Week 9 Notes November 28 and 30, 2017

Math 32A Discussion Session Week 9 Notes November 28 and 30, 2017 Math 3A Discussion Session Week 9 Notes November 8 an 30, 07 This week we ll explore some of the ieas from chapter 5, focusing mostly on the graient. We ll motivate this exploration with an example that

More information

Review guide for midterm 2 in Math 233 March 30, 2009

Review guide for midterm 2 in Math 233 March 30, 2009 Review guide for midterm 2 in Math 2 March, 29 Midterm 2 covers material that begins approximately with the definition of partial derivatives in Chapter 4. and ends approximately with methods for calculating

More information

Lecture 19 - Partial Derivatives and Extrema of Functions of Two Variables

Lecture 19 - Partial Derivatives and Extrema of Functions of Two Variables Lecture 19 - Partial Derivatives and Extrema of Functions of Two Variables 19.1 Partial Derivatives We wish to maximize functions of two variables. This will involve taking derivatives. Example: Consider

More information

Questions on Differentiation

Questions on Differentiation Questions on Differentiation In Questions 3-8 I give some of the eamples of functions that have ha to be ifferentiate in the previous few eams for this course. 3 (2003 Differentiate i ln ( +, for >, twice,

More information

MATH 8 FALL 2010 CLASS 27, 11/19/ Directional derivatives Recall that the definitions of partial derivatives of f(x, y) involved limits

MATH 8 FALL 2010 CLASS 27, 11/19/ Directional derivatives Recall that the definitions of partial derivatives of f(x, y) involved limits MATH 8 FALL 2010 CLASS 27, 11/19/2010 1 Directional derivatives Recall that the definitions of partial derivatives of f(x, y) involved limits lim h 0 f(a + h, b) f(a, b), lim h f(a, b + h) f(a, b) In these

More information

FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION

FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION 1. Functions of Several Variables A function of two variables is a rule that assigns a real number f(x, y) to each ordered pair of real numbers

More information

Exam 2 Summary. 1. The domain of a function is the set of all possible inputes of the function and the range is the set of all outputs.

Exam 2 Summary. 1. The domain of a function is the set of all possible inputes of the function and the range is the set of all outputs. Exam 2 Summary Disclaimer: The exam 2 covers lectures 9-15, inclusive. This is mostly about limits, continuity and differentiation of functions of 2 and 3 variables, and some applications. The complete

More information

14.6 Directional Derivatives

14.6 Directional Derivatives CHAPTER 14. PARTIAL DERIVATIVES 107 14.6 Directional Derivatives Comments. Recall that the partial derivatives can be interpreted as the derivatives along traces of f(x, y). We can reinterpret this in

More information

Functions of several variables

Functions of several variables Chapter 6 Functions of several variables 6.1 Limits and continuity Definition 6.1 (Euclidean distance). Given two points P (x 1, y 1 ) and Q(x, y ) on the plane, we define their distance by the formula

More information

Lecture 19. Vector fields. Dan Nichols MATH 233, Spring 2018 University of Massachusetts. April 10, 2018.

Lecture 19. Vector fields. Dan Nichols MATH 233, Spring 2018 University of Massachusetts. April 10, 2018. Lecture 19 Vector fields Dan Nichols nichols@math.umass.edu MATH 233, Spring 218 University of Massachusetts April 1, 218 (2) Chapter 16 Chapter 12: Vectors and 3D geometry Chapter 13: Curves and vector

More information

MATH 105: Midterm #1 Practice Problems

MATH 105: Midterm #1 Practice Problems Name: MATH 105: Midterm #1 Practice Problems 1. TRUE or FALSE, plus explanation. Give a full-word answer TRUE or FALSE. If the statement is true, explain why, using concepts and results from class to justify

More information

Limits and Continuity

Limits and Continuity Limits and Continuity February 26, 205 Previously, you learned about the concept of the it of a function, and an associated concept, continuity. These concepts can be generalised to functions of several

More information

Section 7.2 Logarithmic Functions

Section 7.2 Logarithmic Functions Math 150 c Lynch 1 of 6 Section 7.2 Logarithmic Functions Definition. Let a be any positive number not equal to 1. The logarithm of x to the base a is y if and only if a y = x. The number y is denoted

More information

Section 15.3 Partial Derivatives

Section 15.3 Partial Derivatives Section 5.3 Partial Derivatives Differentiating Functions of more than one Variable. Basic Definitions In single variable calculus, the derivative is defined to be the instantaneous rate of change of a

More information

3. (12 %) Find an equation of the tangent plane at the point (2,2,1) to the surface. u = t. Find z t. v = se t.

3. (12 %) Find an equation of the tangent plane at the point (2,2,1) to the surface. u = t. Find z t. v = se t. EXAM - Math 17 NAME: I.D.: Instrction: Circle yor answers and show all yor work clearly. Messing arond may reslt in losing credits, since the grader may be forced to pick the worst to grade. Soltions with

More information

Similarly, the point marked in red below is a local minimum for the function, since there are no points nearby that are lower than it:

Similarly, the point marked in red below is a local minimum for the function, since there are no points nearby that are lower than it: Extreme Values of Multivariate Functions Our next task is to develop a method for determining local extremes of multivariate functions, as well as absolute extremes of multivariate functions on closed

More information

Calculus II Fall 2014

Calculus II Fall 2014 Calculus II Fall 2014 Lecture 3 Partial Derivatives Eitan Angel University of Colorado Monday, December 1, 2014 E. Angel (CU) Calculus II 1 Dec 1 / 13 Introduction Much of the calculus of several variables

More information

B) 0 C) 1 D) No limit. x2 + y2 4) A) 2 B) 0 C) 1 D) No limit. A) 1 B) 2 C) 0 D) No limit. 8xy 6) A) 1 B) 0 C) π D) -1

B) 0 C) 1 D) No limit. x2 + y2 4) A) 2 B) 0 C) 1 D) No limit. A) 1 B) 2 C) 0 D) No limit. 8xy 6) A) 1 B) 0 C) π D) -1 MTH 22 Exam Two - Review Problem Set Name Sketch the surface z = f(x,y). ) f(x, y) = - x2 ) 2) f(x, y) = 2 -x2 - y2 2) Find the indicated limit or state that it does not exist. 4x2 + 8xy + 4y2 ) lim (x,

More information

33. Riemann Summation over Rectangular Regions

33. Riemann Summation over Rectangular Regions . iemann Summation over ectangular egions A rectangular region in the xy-plane can be defined using compound inequalities, where x and y are each bound by constants such that a x a and b y b. Let z = f(x,

More information

Independence of Path and Conservative Vector Fields

Independence of Path and Conservative Vector Fields Independence of Path and onservative Vector Fields MATH 311, alculus III J. Robert Buchanan Department of Mathematics Summer 2011 Goal We would like to know conditions on a vector field function F(x, y)

More information

Solutions to the problems from Written assignment 2 Math 222 Winter 2015

Solutions to the problems from Written assignment 2 Math 222 Winter 2015 Solutions to the problems from Written assignment 2 Math 222 Winter 2015 1. Determine if the following limits exist, and if a limit exists, find its value. x2 y (a) The limit of f(x, y) = x 4 as (x, y)

More information

Definitions and claims functions of several variables

Definitions and claims functions of several variables Definitions and claims functions of several variables In the Euclidian space I n of all real n-dimensional vectors x = (x 1, x,..., x n ) the following are defined: x + y = (x 1 + y 1, x + y,..., x n +

More information

Review #Final Exam MATH 142-Drost

Review #Final Exam MATH 142-Drost Fall 2007 1 Review #Final Exam MATH 142-Drost 1. Find the domain of the function f(x) = x 1 x 2 if x3 2. Suppose 450 items are sold per day at a price of $53 per item and that 650 items are

More information

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives So far we have dealt with functions of the form y = f(x),

More information

ANSWER KEY. (a) For each of the following partials derivatives, use the contour plot to decide whether they are positive, negative, or zero.

ANSWER KEY. (a) For each of the following partials derivatives, use the contour plot to decide whether they are positive, negative, or zero. Math 2130-101 Test #2 for Section 101 October 14 th, 2009 ANSWE KEY 1. (10 points) Compute the curvature of r(t) = (t + 2, 3t + 4, 5t + 6). r (t) = (1, 3, 5) r (t) = 1 2 + 3 2 + 5 2 = 35 T(t) = 1 r (t)

More information

Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A

Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A Name: ID: Circle your instructor and lecture below: Jankowski-001 Jankowski-006 Ramakrishnan-013 Read all of the following information

More information

Math 32, October 22 & 27: Maxima & Minima

Math 32, October 22 & 27: Maxima & Minima Math 32, October 22 & 27: Maxima & Minima Section 1: Critical Points Just as in the single variable case, for multivariate functions we are often interested in determining extreme values of the function.

More information

MATH 261 EXAM II PRACTICE PROBLEMS

MATH 261 EXAM II PRACTICE PROBLEMS MATH 61 EXAM II PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam typically has 6 problems on it, with no more than one problem of any given type (e.g.,

More information

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs.

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs. 10-11-2010 HW: 14.7: 1,5,7,13,29,33,39,51,55 Maxima and Minima In this very important chapter, we describe how to use the tools of calculus to locate the maxima and minima of a function of two variables.

More information

Partial Differentiation 1 Introduction

Partial Differentiation 1 Introduction Partial Differentiation 1 Introduction In the first part of this course you have met the idea of a derivative. To recap what this means, recall that if you have a function, z say, then the slope of the

More information

Math 148 Exam III Practice Problems

Math 148 Exam III Practice Problems Math 48 Exam III Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

Unit 7 Partial Derivatives and Optimization

Unit 7 Partial Derivatives and Optimization Unit 7 Partial Derivatives and Optimization We have learned some important applications of the ordinary derivative in finding maxima and minima. We now move on to a topic called partial derivatives which

More information

LECTURE 19 - LAGRANGE MULTIPLIERS

LECTURE 19 - LAGRANGE MULTIPLIERS LECTURE 9 - LAGRANGE MULTIPLIERS CHRIS JOHNSON Abstract. In this lecture we ll describe a way of solving certain optimization problems subject to constraints. This method, known as Lagrange multipliers,

More information

11.2 LIMITS AND CONTINUITY

11.2 LIMITS AND CONTINUITY 11. LIMITS AND CONTINUITY INTRODUCTION: Consider functions of one variable y = f(x). If you are told that f(x) is continuous at x = a, explain what the graph looks like near x = a. Formal definition of

More information

Differentiable functions (Sec. 14.4)

Differentiable functions (Sec. 14.4) Math 20C Multivariable Calculus Lecture 3 Differentiable functions (Sec. 4.4) Review: Partial derivatives. Slide Partial derivatives and continuity. Equation of the tangent plane. Differentiable functions.

More information

Math 5BI: Problem Set 1 Linearizing functions of several variables

Math 5BI: Problem Set 1 Linearizing functions of several variables Math 5BI: Problem Set Linearizing functions of several variables March 9, A. Dot and cross products There are two special operations for vectors in R that are extremely useful, the dot and cross products.

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III January 14, 2010 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Calculus of Several Variables

Calculus of Several Variables Benjamin McKay Calculus of Several Variables Optimisation and Finance February 18, 2018 This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Preface The course is

More information

14.2 Limits and Continuity

14.2 Limits and Continuity 14 Partial Derivatives 14.2 Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Let s compare the behavior of the functions Tables 1 2 show values of f(x,

More information

Chapter 16. Partial Derivatives

Chapter 16. Partial Derivatives Chapter 16 Partial Derivatives The use of contour lines to help understand a function whose domain is part of the plane goes back to the year 1774. A group of surveyors had collected a large number of

More information

Level Curves, Partial Derivatives

Level Curves, Partial Derivatives Unit #18 : Level Curves, Partial Derivatives Goals: To learn how to use and interpret contour diagrams as a way of visualizing functions of two variables. To study linear functions of two variables. To

More information

MATH Review Exam II 03/06/11

MATH Review Exam II 03/06/11 MATH 21-259 Review Exam II 03/06/11 1. Find f(t) given that f (t) = sin t i + 3t 2 j and f(0) = i k. 2. Find lim t 0 3(t 2 1) i + cos t j + t t k. 3. Find the points on the curve r(t) at which r(t) and

More information

Wind sculpture. Cable 2. Cable 1. Sculpture

Wind sculpture. Cable 2. Cable 1. Sculpture Win sculpture Your frien, an artist, has been thinking about an interesting way to isplay a new win sculpture she has just create. In orer to create an aural as well as visual effect, she woul like to

More information

Logarithms. Since perhaps it s been a while, calculate a few logarithms just to warm up.

Logarithms. Since perhaps it s been a while, calculate a few logarithms just to warm up. Logarithms Since perhaps it s been a while, calculate a few logarithms just to warm up. 1. Calculate the following. (a) log 3 (27) = (b) log 9 (27) = (c) log 3 ( 1 9 ) = (d) ln(e 3 ) = (e) log( 100) =

More information

Comparing Exponential and Logarithmic Rules

Comparing Exponential and Logarithmic Rules Name _ Date Period Comparing Exponential and Logarithmic Rules Task : Looking closely at exponential and logarithmic patterns ) In a prior lesson you graphed and then compared an exponential function with

More information

11/18/2008 SECOND HOURLY FIRST PRACTICE Math 21a, Fall Name:

11/18/2008 SECOND HOURLY FIRST PRACTICE Math 21a, Fall Name: 11/18/28 SECOND HOURLY FIRST PRACTICE Math 21a, Fall 28 Name: MWF 9 Chung-Jun John Tsai MWF 1 Ivana Bozic MWF 1 Peter Garfield MWF 1 Oliver Knill MWF 11 Peter Garfield MWF 11 Stefan Hornet MWF 12 Aleksander

More information

The Chain Rule, Higher Partial Derivatives & Opti- mization

The Chain Rule, Higher Partial Derivatives & Opti- mization The Chain Rule, Higher Partial Derivatives & Opti- Unit #21 : mization Goals: We will study the chain rule for functions of several variables. We will compute and study the meaning of higher partial derivatives.

More information

5.4 Transformations and Composition of Functions

5.4 Transformations and Composition of Functions 5.4 Transformations and Composition of Functions 1. Vertical Shifts: Suppose we are given y = f(x) and c > 0. (a) To graph y = f(x)+c, shift the graph of y = f(x) up by c. (b) To graph y = f(x) c, shift

More information

Exam 1 Study Guide. Math 223 Section 12 Fall Student s Name

Exam 1 Study Guide. Math 223 Section 12 Fall Student s Name Exam 1 Study Guide Math 223 Section 12 Fall 2015 Dr. Gilbert Student s Name The following problems are designed to help you study for the first in-class exam. Problems may or may not be an accurate indicator

More information

Signal Transmission Through LTI Systems EE 442 Spring 2017 Lecture 3. Signal Transmission

Signal Transmission Through LTI Systems EE 442 Spring 2017 Lecture 3. Signal Transmission Signal Transmission Through LTI Systems EE 442 Spring 207 Lecture 3 Signal Transmission Steay-State Response in Linear Time Invariant Network By steay-state we mean an sinusoial excitation. x(t) LTI Network

More information

USA Mathematical Talent Search Round 2 Solutions Year 29 Academic Year

USA Mathematical Talent Search Round 2 Solutions Year 29 Academic Year athematical alent earch Year 29 caemic Year 2017-2018 Important information: 1. You must show your work an prove your answers on all problems. If you just sen a numerical answer with no proof for a problem

More information

A NEW PUZZLE FOR ITERATED COMPLETE GRAPHS OF ANY DIMENSION

A NEW PUZZLE FOR ITERATED COMPLETE GRAPHS OF ANY DIMENSION A NEW PUZZLE FOR ITERATED COMPLETE GRAPHS OF ANY DIMENSION ELIZABETH SKUBAK AND NICHOLAS STEVENSON ADVISOR: PAUL CULL OREGON STATE UNIVERSITY ABSTRACT. The Towers of Hanoi puzzle can be use to label a

More information

1. Let f(x, y) = 4x 2 4xy + 4y 2, and suppose x = cos t and y = sin t. Find df dt using the chain rule.

1. Let f(x, y) = 4x 2 4xy + 4y 2, and suppose x = cos t and y = sin t. Find df dt using the chain rule. Math 234 WES WORKSHEET 9 Spring 2015 1. Let f(x, y) = 4x 2 4xy + 4y 2, and suppose x = cos t and y = sin t. Find df dt using the chain rule. 2. Let f(x, y) = x 2 + y 2. Find all the points on the level

More information

MA10103: Foundation Mathematics I. Lecture Notes Week 3

MA10103: Foundation Mathematics I. Lecture Notes Week 3 MA10103: Foundation Mathematics I Lecture Notes Week 3 Indices/Powers In an expression a n, a is called the base and n is called the index or power or exponent. Multiplication/Division of Powers a 3 a

More information

Exam 2 Review Sheet. r(t) = x(t), y(t), z(t)

Exam 2 Review Sheet. r(t) = x(t), y(t), z(t) Exam 2 Review Sheet Joseph Breen Particle Motion Recall that a parametric curve given by: r(t) = x(t), y(t), z(t) can be interpreted as the position of a particle. Then the derivative represents the particle

More information

This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM.

This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM. Math 126 Final Examination Winter 2012 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM. This exam is closed

More information

Sirindhorn International Institute of Technology Thammasat University at Rangsit. ECS 455: Problem Set 1

Sirindhorn International Institute of Technology Thammasat University at Rangsit. ECS 455: Problem Set 1 Sirinhorn International Institute of Technology Thammasat University at Rangsit School of Information, Computer an Communication Technology ECS 455: Problem Set 1 Semester/Year: /016 Course Title: Mobile

More information

11.7 Maximum and Minimum Values

11.7 Maximum and Minimum Values Arkansas Tech University MATH 2934: Calculus III Dr. Marcel B Finan 11.7 Maximum and Minimum Values Just like functions of a single variable, functions of several variables can have local and global extrema,

More information

Math 233. Extrema of Functions of Two Variables Basics

Math 233. Extrema of Functions of Two Variables Basics Math 233. Extrema of Functions of Two Variables Basics Theorem (Extreme Value Theorem) Let f be a continuous function of two variables x and y defined on a closed bounded region R in the xy-plane. Then

More information

Resource Allocation for Cooperative Transmission in Wireless Networks with Orthogonal Users

Resource Allocation for Cooperative Transmission in Wireless Networks with Orthogonal Users Resource Allocation for Cooperative Transmission in Wireless Networks with Orthogonal Users D. Richar Brown III Electrical an Computer Engineering Department Worcester Polytechnic Institute Worcester,

More information

AN APPLICATION OF A GENERALISED JAKES MODEL FOR MIMO CHANNELS

AN APPLICATION OF A GENERALISED JAKES MODEL FOR MIMO CHANNELS AN APPLICATION OF A GENERALISED JAKES MODEL FOR MIMO CHANNELS Davi B. Smith (1) (1) Faculty of Engineering (Telecommunications), University of Technology Syney PO Box 13 Broaway NS 007 Australia E-mail:

More information

Trigonometric Functions

Trigonometric Functions Trigonometric Functions By Daria Eiteneer Topics Covere: Reminer: relationship between egrees an raians The unit circle Definitions of trigonometric functions for a right triangle Definitions of trigonometric

More information

Calculus 3 Exam 2 31 October 2017

Calculus 3 Exam 2 31 October 2017 Calculus 3 Exam 2 31 October 2017 Name: Instructions: Be sure to read each problem s directions. Write clearly during the exam and fully erase or mark out anything you do not want graded. You may use your

More information

18 Logarithmic Functions

18 Logarithmic Functions 18 Logarithmic Functions Concepts: Logarithms (Section 3.3) Logarithms as Functions Logarithms as Exponent Pickers Inverse Relationship between Logarithmic and Exponential Functions. The Common Logarithm

More information

MULTI-VARIABLE OPTIMIZATION NOTES. 1. Identifying Critical Points

MULTI-VARIABLE OPTIMIZATION NOTES. 1. Identifying Critical Points MULTI-VARIABLE OPTIMIZATION NOTES HARRIS MATH CAMP 2018 1. Identifying Critical Points Definition. Let f : R 2! R. Then f has a local maximum at (x 0,y 0 ) if there exists some disc D around (x 0,y 0 )

More information

Partial derivatives and their application.

Partial derivatives and their application. Math 2080 Week 10 Page 1 Gentry Publishing Chapter 10 Partial derivatives and their application. 10.1 Partial Derivatives 10.2 Tangent Planes and slopes of surfaces. 10.3 Linear approximations and the

More information

Multiple Integrals. Advanced Calculus. Lecture 1 Dr. Lahcen Laayouni. Department of Mathematics and Statistics McGill University.

Multiple Integrals. Advanced Calculus. Lecture 1 Dr. Lahcen Laayouni. Department of Mathematics and Statistics McGill University. Lecture epartment of Mathematics and Statistics McGill University January 4, 27 ouble integrals Iteration of double integrals ouble integrals Consider a function f(x, y), defined over a rectangle = [a,

More information

2.1 Partial Derivatives

2.1 Partial Derivatives .1 Partial Derivatives.1.1 Functions of several variables Up until now, we have only met functions of single variables. From now on we will meet functions such as z = f(x, y) and w = f(x, y, z), which

More information

1. Vector Fields. f 1 (x, y, z)i + f 2 (x, y, z)j + f 3 (x, y, z)k.

1. Vector Fields. f 1 (x, y, z)i + f 2 (x, y, z)j + f 3 (x, y, z)k. HAPTER 14 Vector alculus 1. Vector Fields Definition. A vector field in the plane is a function F(x, y) from R into V, We write F(x, y) = hf 1 (x, y), f (x, y)i = f 1 (x, y)i + f (x, y)j. A vector field

More information

(40 90 minutes each day in a reading/writing block lasting minutes)

(40 90 minutes each day in a reading/writing block lasting minutes) Transforming our Teaching through Reaing/Writing Connections SESSION 6 Reaing to Writing: Creating Relevant Texts Reaing to Writing to Reaing, K 2 Five-Day Lesson Plan (40 90 minutes each ay in a reaing/writing

More information

EXERCISES CHAPTER 11. z = f(x, y) = A x α 1. x y ; (3) z = x2 + 4x + 2y. Graph the domain of the function and isoquants for z = 1 and z = 2.

EXERCISES CHAPTER 11. z = f(x, y) = A x α 1. x y ; (3) z = x2 + 4x + 2y. Graph the domain of the function and isoquants for z = 1 and z = 2. EXERCISES CHAPTER 11 1. (a) Given is a Cobb-Douglas function f : R 2 + R with z = f(x, y) = A x α 1 1 x α 2 2, where A = 1, α 1 = 1/2 and α 2 = 1/2. Graph isoquants for z = 1 and z = 2 and illustrate the

More information

SYDE 112, LECTURE 34 & 35: Optimization on Restricted Domains and Lagrange Multipliers

SYDE 112, LECTURE 34 & 35: Optimization on Restricted Domains and Lagrange Multipliers SYDE 112, LECTURE 34 & 35: Optimization on Restricted Domains and Lagrange Multipliers 1 Restricted Domains If we are asked to determine the maximal and minimal values of an arbitrary multivariable function

More information

Chapter 3 Exponential and Logarithmic Functions

Chapter 3 Exponential and Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions Section 1 Section 2 Section 3 Section 4 Section 5 Exponential Functions and Their Graphs Logarithmic Functions and Their Graphs Properties of Logarithms

More information

CHAPTER 11 PARTIAL DERIVATIVES

CHAPTER 11 PARTIAL DERIVATIVES CHAPTER 11 PARTIAL DERIVATIVES 1. FUNCTIONS OF SEVERAL VARIABLES A) Definition: A function of two variables is a rule that assigns to each ordered pair of real numbers (x,y) in a set D a unique real number

More information

March 13, 2009 CHAPTER 3: PARTIAL DERIVATIVES AND DIFFERENTIATION

March 13, 2009 CHAPTER 3: PARTIAL DERIVATIVES AND DIFFERENTIATION March 13, 2009 CHAPTER 3: PARTIAL DERIVATIVES AND DIFFERENTIATION 1. Parial Derivaives and Differeniable funcions In all his chaper, D will denoe an open subse of R n. Definiion 1.1. Consider a funcion

More information

MATH 234 THIRD SEMESTER CALCULUS

MATH 234 THIRD SEMESTER CALCULUS MATH 234 THIRD SEMESTER CALCULUS Fall 2009 1 2 Math 234 3rd Semester Calculus Lecture notes version 0.9(Fall 2009) This is a self contained set of lecture notes for Math 234. The notes were written by

More information

Math Final Exam - 6/11/2015

Math Final Exam - 6/11/2015 Math 200 - Final Exam - 6/11/2015 Name: Section: Section Class/Times Instructor Section Class/Times Instructor 1 9:00%AM ( 9:50%AM Papadopoulos,%Dimitrios 11 1:00%PM ( 1:50%PM Swartz,%Kenneth 2 11:00%AM

More information

MAT B41 SUMMER 2018 MOCK TERM TEST - VERSION A

MAT B41 SUMMER 2018 MOCK TERM TEST - VERSION A NAME (PRINT): Last / Surname First / Given Name STUDENT #: MAT B41 SUMMER 2018 MOCK TERM TEST - VERSION A Problem MC Part II III-1 III-2 III-3 III-4 Bonus Total Points 40 12 12 12 12 12 +5 100 Score Tutorial

More information

a Student sentence typed on unlined white paper for illustrating. a We Share Everything by Robert Munsch (or another book of your choice).

a Student sentence typed on unlined white paper for illustrating. a We Share Everything by Robert Munsch (or another book of your choice). Transforming our Teaching through Reaing/Writing Connections SESSION 5 Reaing an Writing Lots of Texts Five-Day Lesson Plan, Kinergarten (K 2) (90-to-150-minute reaing/writing block) Teacher Note: This

More information

[f(t)] 2 + [g(t)] 2 + [h(t)] 2 dt. [f(u)] 2 + [g(u)] 2 + [h(u)] 2 du. The Fundamental Theorem of Calculus implies that s(t) is differentiable and

[f(t)] 2 + [g(t)] 2 + [h(t)] 2 dt. [f(u)] 2 + [g(u)] 2 + [h(u)] 2 du. The Fundamental Theorem of Calculus implies that s(t) is differentiable and Midterm 2 review Math 265 Fall 2007 13.3. Arc Length and Curvature. Assume that the curve C is described by the vector-valued function r(r) = f(t), g(t), h(t), and that C is traversed exactly once as t

More information

MATH 12 CLASS 9 NOTES, OCT Contents 1. Tangent planes 1 2. Definition of differentiability 3 3. Differentials 4

MATH 12 CLASS 9 NOTES, OCT Contents 1. Tangent planes 1 2. Definition of differentiability 3 3. Differentials 4 MATH 2 CLASS 9 NOTES, OCT 0 20 Contents. Tangent planes 2. Definition of differentiability 3 3. Differentials 4. Tangent planes Recall that the derivative of a single variable function can be interpreted

More information

ELG2136: Electronics I Diodes

ELG2136: Electronics I Diodes ELG2136: Electronics I ioes Riah W. Y. Habash School of Electrical Engineering an Computer Science University of Ottawa Ottawa, Ontario, Canaa. Riah Habash, SITE, 2012 1 What are ioes? ioes are semiconuctor

More information

Math 2411 Calc III Practice Exam 2

Math 2411 Calc III Practice Exam 2 Math 2411 Calc III Practice Exam 2 This is a practice exam. The actual exam consists of questions of the type found in this practice exam, but will be shorter. If you have questions do not hesitate to

More information

(d) If a particle moves at a constant speed, then its velocity and acceleration are perpendicular.

(d) If a particle moves at a constant speed, then its velocity and acceleration are perpendicular. Math 142 -Review Problems II (Sec. 10.2-11.6) Work on concept check on pages 734 and 822. More review problems are on pages 734-735 and 823-825. 2nd In-Class Exam, Wednesday, April 20. 1. True - False

More information

SOLUTIONS 2. PRACTICE EXAM 2. HOURLY. Problem 1) TF questions (20 points) Circle the correct letter. No justifications are needed.

SOLUTIONS 2. PRACTICE EXAM 2. HOURLY. Problem 1) TF questions (20 points) Circle the correct letter. No justifications are needed. SOLUIONS 2. PRACICE EXAM 2. HOURLY Math 21a, S03 Problem 1) questions (20 points) Circle the correct letter. No justifications are needed. A function f(x, y) on the plane for which the absolute minimum

More information

Duration of Examination: 3 hours McMaster University 24 April 2015 FIRST NAME (PRINT CLEARLY): FAMILY NAME (PRINT CLEARLY): Student No.

Duration of Examination: 3 hours McMaster University 24 April 2015 FIRST NAME (PRINT CLEARLY): FAMILY NAME (PRINT CLEARLY): Student No. MATHEMATICS 1LT3E FINAL EXAMINATION Evening Class Duration of Examination: 3 hours McMaster University 24 April 2015 FIRST NAME (PRINT CLEARLY): FAMILY NAME (PRINT CLEARLY): E. Clements THIS EXAMINATION

More information

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem INTEGRATION OVER NON-RECTANGULAR REGIONS Contents 1. A slightly more general form of Fubini s Theorem 1 1. A slightly more general form of Fubini s Theorem We now want to learn how to calculate double

More information

Lecture 4 : Monday April 6th

Lecture 4 : Monday April 6th Lecture 4 : Monday April 6th jacques@ucsd.edu Key concepts : Tangent hyperplane, Gradient, Directional derivative, Level curve Know how to find equation of tangent hyperplane, gradient, directional derivatives,

More information

Unit 1. Activity 1. Whole numbers. 1. Copy and complete each number pattern.

Unit 1. Activity 1. Whole numbers. 1. Copy and complete each number pattern. 1 2 Unit 1 Whole numbers Activity 1 1. Copy and complete each number pattern. 2 671 2 680 2 689 13 450 13 650 14 450 25 125 25 000 24 875 124 300 126 300 128 300 180 500 180 000 179 500 2. Write these

More information

Capacity Gain from Transmitter and Receiver Cooperation

Capacity Gain from Transmitter and Receiver Cooperation Capacity Gain from Transmitter an Receiver Cooperation Chris T. K. Ng an Anrea J. Golsmith Dept. of Electrical Engineering Stanfor University, Stanfor, CA 90 Email: ngctk, anrea}@wsl.stanfor.eu arxiv:cs/00800v1

More information

REVIEW SHEET FOR MIDTERM 2: ADVANCED

REVIEW SHEET FOR MIDTERM 2: ADVANCED REVIEW SHEET FOR MIDTERM : ADVANCED MATH 195, SECTION 59 (VIPUL NAIK) To maximize efficiency, please bring a copy (print or readable electronic) of this review sheet to the review session. The document

More information

Math 232. Calculus III Limits and Continuity. Updated: January 13, 2016 Calculus III Section 14.2

Math 232. Calculus III Limits and Continuity. Updated: January 13, 2016 Calculus III Section 14.2 Math 232 Calculus III Brian Veitch Fall 2015 Northern Illinois University 14.2 Limits and Continuity In this section our goal is to evaluate its of the form f(x, y) = L Let s take a look back at its in

More information

WESI 205 Workbook. 1 Review. 2 Graphing in 3D

WESI 205 Workbook. 1 Review. 2 Graphing in 3D 1 Review 1. (a) Use a right triangle to compute the distance between (x 1, y 1 ) and (x 2, y 2 ) in R 2. (b) Use this formula to compute the equation of a circle centered at (a, b) with radius r. (c) Extend

More information

COMPTON SCATTERING. Phys 2010 Brown University March 13, 2009

COMPTON SCATTERING. Phys 2010 Brown University March 13, 2009 COMPTON SCATTERING Phys 00 Brown University March 3, 009 Purpose The purpose of this experiment is to verify the energy epenence of gamma raiation upon scattering angle an to compare the ifferential cross

More information

Lecture 15. Global extrema and Lagrange multipliers. Dan Nichols MATH 233, Spring 2018 University of Massachusetts

Lecture 15. Global extrema and Lagrange multipliers. Dan Nichols MATH 233, Spring 2018 University of Massachusetts Lecture 15 Global extrema and Lagrange multipliers Dan Nichols nichols@math.umass.edu MATH 233, Spring 2018 University of Massachusetts March 22, 2018 (2) Global extrema of a multivariable function Definition

More information

Calculus I Handout: Curves and Surfaces in R 3. 1 Curves in R Curves in R 2 1 of 21

Calculus I Handout: Curves and Surfaces in R 3. 1 Curves in R Curves in R 2 1 of 21 1. Curves in R 2 1 of 21 Calculus I Handout: Curves and Surfaces in R 3 Up until now, everything we have worked with has been in two dimensions. But we can extend the concepts of calculus to three dimensions

More information

18.3. Stationary Points. Introduction. Prerequisites. Learning Outcomes

18.3. Stationary Points. Introduction. Prerequisites. Learning Outcomes Stationary Points 8.3 Introduction The calculation of the optimum value of a function of two variables is a common requirement in many areas of engineering, for example in thermodynamics. Unlike the case

More information

47. Conservative Vector Fields

47. Conservative Vector Fields 47. onservative Vector Fields Given a function z = φ(x, y), its gradient is φ = φ x, φ y. Thus, φ is a gradient (or conservative) vector field, and the function φ is called a potential function. Suppose

More information

SSM2040 Filter Analysis Part 1 - Ryan Williams

SSM2040 Filter Analysis Part 1 - Ryan Williams SSM2040 Filter Analysis Part 1 - Ryan Williams http://www.siy.org/estrukto The following analysis is use to etermine the maximum bias current neee for the iscrete OTA cells in the ssm2040 filter (René

More information