November 11, Chapter 8: Probability: The Mathematics of Chance


 Estella Walker
 3 years ago
 Views:
Transcription
1 Chapter 8: Probability: The Mathematics of Chance November 11, 2013
2 Last Time Probability Models and Rules Discrete Probability Models Equally Likely Outcomes
3 Probability Rules Probability Rules Rule 1. The probability P(A) of any event A satisfies 0 P(A) 1. Rule 2. If S is the sample space in a probability model, then P(S) = 1. Rule 3. The complement rule: P(A C ) = 1 P(A). Rule 4. The multiplication rule for independent events: P(A and B) = P(A) P(B). Rule 5. The general addition rule: P(A or B) = P(A) + P(B) P(A and B). Rule 6. The addition rule for disjoint events: P(A or B) = P(A) + P(B).
4 Counting distinct items Counting Ordered Collections of Distinct Items Rule A. Suppose we have a collection of n distinct items. We want to arrange k of these items in order, and the same item can appear more than once in the arrangement. The number of possible arrangements is n n n = n k Rule B. (Permutations) Suppose we have a collection of n distinct items. We want to arrange k of these items in order, and any item can appear no more than once in the arrangement. The number of possible arrangements is n (n 1) (n k + 1)
5 Counting Distinct Items Counting Unordered Collections of Distinct Items Rule C. Suppose that we have a collection of n distinct items. We want to select k of those items with no regard to order, and any item can appear more than once in the collection. The number of possible collections is (n + k 1)! k!(n 1)! Rule D. (Combinations) Suppose that we have a collection of n distinct items. We want to select k of these items with no regard to order, and any item can appear no more than once in the collection. The number of possible selections is n! k!(n k)!
6 In poker, a royal flush is a 5card hand containing an ace, king, queen, jack, and 10, all of the same suit. (a) How many royal flush hands are possible? Answer: 4 (b) What is the number of 5card hands possible from a 52card deck? Answer: ( ) 52 5 (c) What is the probability that 5 cards drawn at random from a 52card deck will yield a royal flush? Answer: 4 ( 52 5 )
7 A computer assigns threecharacter login IDs that may contain the digits 0 to 9 as well as the letters a to z, with repeats allowed. 1 What is the probability that your ID contains no x? Answer: ( ) ( ) ( ) What is the probability that your ID contains no digits? ( ) ( ) ( ) What is the probability that your ID contains exactly 2 x s?
8 What is the probability that two people in this room have the same birthday?
9 What is the probability that two people in this room have the same birthday? Answer: 1 365! (365 14)! = 0.223
10 How many different ways can you seat 10 couples at a circular table such that everyone is sitting next to their spouse? 2(9!) Assuming we alternate men and women how arrangements have one couple not sitting together? 8(9!)
11 This time Continuous Probability Models
12 If I let you choose a number between 0 and 1, what is the probability that you will chose a number between.2 and.4?
13 If I let you choose a number between 0 and 1, what is the probability that you will chose a number between.2 and.4? P(.2 X.4) = 0.2
14 Continuous Probability Models Density Curve A density curve is a curve that is always on or above the horizontal axis and has area exactly 1 underneath it. Continuous Probability Models A continuous probability model is a probability model that assign probabilities as areas under a density curve. The area under the curve and above any interval of values is the probability of an outcome in that interval.
15 Would you rather flip a coin for $1 or roll a dice for $30,000?
16 Mean of Probability Model Mean of a Discrete Probability Model Step 1: Make a table with two rows. The first row needs to list all the possible numerical outcome values in the sample space. Step 2: In the second row of the table, list the respective probabilities of each of the outcome values from the first row of the table. Step 3: Write a third row where each entry is the product of the two items in the same column from the first two rows. Now add up all the values in the third row, and you will get the mean of the discrete probability model.
17 Law of Large Numbers Law of Large Numbers Observe any random phenomenon having numerical outcomes with finite mean µ. According to the law of large numbers, as the phenomenon is repeated a large number of times, the proportion of trials in which an outcome occurs gets closer and closer to the probability of that outcome, and the mean x of the observed values gets closer and closer to µ.
18 Standard Deviation Standard Deviation of a Discrete Probability Model Suppose that the possible outcome x 1, x 2,, x k in a sample space S are numbers, and that p j is the probability of outcome x j. The standard deviation of a discrete probability model with mean µ is denoted by the lowercase Greek letter sigma (σ) and is given by this formula: σ = (x 1 µ) 2 p 1 + (x 2 µ) 2 p ) + + (x k µ) 2 p k
19 If I pay you the amount you roll on a dice, what is the mean and the Standard Deviation?
20 If I pay you the amount you roll on a dice, what is the mean and the Standard Deviation? σ = µ = 1 21 ( ) = 6 6 = 7 2 = ((1 3.5)2 + (2 3.5) 2 + (3 3.5) 2 + (4 3.5) 2 + (5 3.5) 2 +
21 Question 1: Should you buy the extended warranty on a new washing machine? Suppose there are two outcomes an 85 percent probability of needing no repairs, and a 15 percent probability of needing no repairs, and a 15 percent probability of needing a $ 200 repairs, and a 15 percent probability of needing a $200 repair during the warranty period. Based on the mean outcome for this model, what would be a breakeven price to you for the extend warranty? Question 2: If you have to pay $ 1 to play a hand of black jack, how much money would you have to win to make it worth playing?
22 An American roulette wheel has 38 slots numbered 0,00, and 1 to 36. The ball is equally likely to come to rest in any of these slots when the wheel is spun. The slot numbers are laid out on a board on which gamblers place their bets. One column of numbers on the board contains multiples of 3. Joe places a $1 column bet that pay out $ 3 if any of these numbers comes up. 1 What is the probability model for the outcome of one bet, taking into account the $1 cost of a bet? 2 What are the mean and standard deviation for this model? 3 Joe plays roulette every day for years. What does the law of large numbers tell us about this results?
23 Next Time Central Limit Theorem
November 8, Chapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance November 8, 2013 Last Time Probability Models and Rules Discrete Probability Models Equally Likely Outcomes Crystallographic notation The first symbol
More informationNovember 6, Chapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance November 6, 2013 Last Time Crystallographic notation Groups Crystallographic notation The first symbol is always a p, which indicates that the pattern
More informationDiscrete Random Variables Day 1
Discrete Random Variables Day 1 What is a Random Variable? Every probability problem is equivalent to drawing something from a bag (perhaps more than once) Like Flipping a coin 3 times is equivalent to
More informationThe probability setup
CHAPTER 2 The probability setup 2.1. Introduction and basic theory We will have a sample space, denoted S (sometimes Ω) that consists of all possible outcomes. For example, if we roll two dice, the sample
More informationThe probability setup
CHAPTER The probability setup.1. Introduction and basic theory We will have a sample space, denoted S sometimes Ω that consists of all possible outcomes. For example, if we roll two dice, the sample space
More information3 The multiplication rule/miscellaneous counting problems
Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1 Suppose P (A 0, P (B 05 (a If A and B are independent, what is P (A B? What is P (A B? (b If A and B are disjoint, what is
More informationThe Teachers Circle Mar. 20, 2012 HOW TO GAMBLE IF YOU MUST (I ll bet you $5 that if you give me $10, I ll give you $20.)
The Teachers Circle Mar. 2, 22 HOW TO GAMBLE IF YOU MUST (I ll bet you $ that if you give me $, I ll give you $2.) Instructor: Paul Zeitz (zeitzp@usfca.edu) Basic Laws and Definitions of Probability If
More informationA Probability Work Sheet
A Probability Work Sheet October 19, 2006 Introduction: Rolling a Die Suppose Geoff is given a fair sixsided die, which he rolls. What are the chances he rolls a six? In order to solve this problem, we
More informationCompound Probability. Set Theory. Basic Definitions
Compound Probability Set Theory A probability measure P is a function that maps subsets of the state space Ω to numbers in the interval [0, 1]. In order to study these functions, we need to know some basic
More information3 The multiplication rule/miscellaneous counting problems
Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1. Suppose P (A) = 0.4, P (B) = 0.5. (a) If A and B are independent, what is P (A B)? What is P (A B)? (b) If A and B are disjoint,
More informationChapter 1. Probability
Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.
More informationChapter 1. Probability
Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.
More informationCHAPTER 2 PROBABILITY. 2.1 Sample Space. 2.2 Events
CHAPTER 2 PROBABILITY 2.1 Sample Space A probability model consists of the sample space and the way to assign probabilities. Sample space & sample point The sample space S, is the set of all possible outcomes
More informationCSC/MTH 231 Discrete Structures II Spring, Homework 5
CSC/MTH 231 Discrete Structures II Spring, 2010 Homework 5 Name 1. A six sided die D (with sides numbered 1, 2, 3, 4, 5, 6) is thrown once. a. What is the probability that a 3 is thrown? b. What is the
More informationSuch a description is the basis for a probability model. Here is the basic vocabulary we use.
5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these
More informationCounting and Probability Math 2320
Counting and Probability Math 2320 For a finite set A, the number of elements of A is denoted by A. We have two important rules for counting. 1. Union rule: Let A and B be two finite sets. Then A B = A
More informationThe study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability
The study of probability is concerned with the likelihood of events occurring Like combinatorics, the origins of probability theory can be traced back to the study of gambling games Still a popular branch
More informationSection 6.1 #16. Question: What is the probability that a fivecard poker hand contains a flush, that is, five cards of the same suit?
Section 6.1 #16 What is the probability that a fivecard poker hand contains a flush, that is, five cards of the same suit? page 1 Section 6.1 #38 Two events E 1 and E 2 are called independent if p(e 1
More informationThe point value of each problem is in the lefthand margin. You must show your work to receive any credit, except on problems 1 & 2. Work neatly.
Introduction to Statistics Math 1040 Sample Exam II Chapters 57 4 Problem Pages 4 Formula/Table Pages Time Limit: 90 Minutes 1 No Scratch Paper Calculator Allowed: Scientific Name: The point value of
More informationMATHEMATICS E102, FALL 2005 SETS, COUNTING, AND PROBABILITY Outline #1 (Probability, Intuition, and Axioms)
MATHEMATICS E102, FALL 2005 SETS, COUNTING, AND PROBABILITY Outline #1 (Probability, Intuition, and Axioms) Last modified: September 19, 2005 Reference: EP(Elementary Probability, by Stirzaker), Chapter
More informationProbability. Ms. Weinstein Probability & Statistics
Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random
More informationSection Introduction to Sets
Section 1.1  Introduction to Sets Definition: A set is a welldefined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase
More informationDiscrete Structures for Computer Science
Discrete Structures for Computer Science William Garrison bill@cs.pitt.edu 6311 Sennott Square Lecture #23: Discrete Probability Based on materials developed by Dr. Adam Lee The study of probability is
More informationINDIAN STATISTICAL INSTITUTE
INDIAN STATISTICAL INSTITUTE B1/BVR Probability Home Assignment 1 200707 1. A poker hand means a set of five cards selected at random from usual deck of playing cards. (a) Find the probability that it
More informationStatistics 1040 Summer 2009 Exam III
Statistics 1040 Summer 2009 Exam III 1. For the following basic probability questions. Give the RULE used in the appropriate blank (BEFORE the question), for each of the following situations, using one
More informationProbability. Dr. Zhang Fordham Univ.
Probability! Dr. Zhang Fordham Univ. 1 Probability: outline Introduction! Experiment, event, sample space! Probability of events! Calculate Probability! Through counting! Sum rule and general sum rule!
More informationProbability and Randomness. Day 1
Probability and Randomness Day 1 Randomness and Probability The mathematics of chance is called. The probability of any outcome of a chance process is a number between that describes the proportion of
More informationIntermediate Math Circles November 1, 2017 Probability I
Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.
More informationMATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG
MATH DISCRETE MATHEMATICS INSTRUCTOR: P. WENG Counting and Probability Suggested Problems Basic Counting Skills, InclusionExclusion, and Complement. (a An office building contains 7 floors and has 7 offices
More informationChapter 2. Permutations and Combinations
2. Permutations and Combinations Chapter 2. Permutations and Combinations In this chapter, we define sets and count the objects in them. Example Let S be the set of students in this classroom today. Find
More informationLesson 4: Chapter 4 Sections 12
Lesson 4: Chapter 4 Sections 12 Caleb Moxley BSC Mathematics 14 September 15 4.1 Randomness What s randomness? 4.1 Randomness What s randomness? Definition (random) A phenomenon is random if individual
More informationWeek 3 Classical Probability, Part I
Week 3 Classical Probability, Part I Week 3 Objectives Proper understanding of common statistical practices such as confidence intervals and hypothesis testing requires some familiarity with probability
More informationCS 237: Probability in Computing
CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 5: o Independence reviewed; Bayes' Rule o Counting principles and combinatorics; o Counting considered
More informationContents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting  Permutation and Combination 39
CHAPTER 2 PROBABILITY Contents 2.1 Basic Concepts of Probability 38 2.2 Probability of an Event 39 2.3 Methods of Assigning Probabilities 39 2.4 Principle of Counting  Permutation and Combination 39 2.5
More information1 of 5 7/16/2009 6:57 AM Virtual Laboratories > 13. Games of Chance > 1 2 3 4 5 6 7 8 9 10 11 3. Simple Dice Games In this section, we will analyze several simple games played with dicepoker dice, chuckaluck,
More informationChapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance FreeResponse 1. A spinner with regions numbered 1 to 4 is spun and a coin is tossed. Both the number spun and whether the coin lands heads or tails is
More information4.1 Sample Spaces and Events
4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an
More informationHonors Precalculus Chapter 9 Summary Basic Combinatorics
Honors Precalculus Chapter 9 Summary Basic Combinatorics A. Factorial: n! means 0! = Why? B. Counting principle: 1. How many different ways can a license plate be formed a) if 7 letters are used and each
More informationLecture 6 Probability
Lecture 6 Probability Example: When you toss a coin, there are only two possible outcomes, heads and tails. What if we toss a coin two times? Figure below shows the results of tossing a coin 5000 times
More information1. The chance of getting a flush in a 5card poker hand is about 2 in 1000.
CS 70 Discrete Mathematics for CS Spring 2008 David Wagner Note 15 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice, roulette wheels. Today
More informationCISC 1400 Discrete Structures
CISC 1400 Discrete Structures Chapter 6 Counting CISC1400 Yanjun Li 1 1 New York Lottery New York Megamillion Jackpot Pick 5 numbers from 1 56, plus a mega ball number from 1 46, you could win biggest
More informationWeek 1: Probability models and counting
Week 1: Probability models and counting Part 1: Probability model Probability theory is the mathematical toolbox to describe phenomena or experiments where randomness occur. To have a probability model
More informationIntroduction to probability
Introduction to probability Suppose an experiment has a finite set X = {x 1,x 2,...,x n } of n possible outcomes. Each time the experiment is performed exactly one on the n outcomes happens. Assign each
More informationSimulations. 1 The Concept
Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that can be
More informationCHAPTERS 14 & 15 PROBABILITY STAT 203
CHAPTERS 14 & 15 PROBABILITY STAT 203 Where this fits in 2 Up to now, we ve mostly discussed how to handle data (descriptive statistics) and how to collect data. Regression has been the only form of statistical
More informationModule 5: Probability and Randomness Practice exercises
Module 5: Probability and Randomness Practice exercises PART 1: Introduction to probability EXAMPLE 1: Classify each of the following statements as an example of exact (theoretical) probability, relative
More informationDependence. Math Circle. October 15, 2016
Dependence Math Circle October 15, 2016 1 Warm up games 1. Flip a coin and take it if the side of coin facing the table is a head. Otherwise, you will need to pay one. Will you play the game? Why? 2. If
More informationEx 1: A coin is flipped. Heads, you win $1. Tails, you lose $1. What is the expected value of this game?
AFM Unit 7 Day 5 Notes Expected Value and Fairness Name Date Expected Value: the weighted average of possible values of a random variable, with weights given by their respective theoretical probabilities.
More information2. Combinatorics: the systematic study of counting. The Basic Principle of Counting (BPC)
2. Combinatorics: the systematic study of counting The Basic Principle of Counting (BPC) Suppose r experiments will be performed. The 1st has n 1 possible outcomes, for each of these outcomes there are
More informationAdvanced Intermediate Algebra Chapter 12 Summary INTRO TO PROBABILITY
Advanced Intermediate Algebra Chapter 12 Summary INTRO TO PROBABILITY 1. Jack and Jill do not like washing dishes. They decide to use a random method to select whose turn it is. They put some red and blue
More informationAxiomatic Probability
Axiomatic Probability The objective of probability is to assign to each event A a number P(A), called the probability of the event A, which will give a precise measure of the chance thtat A will occur.
More informationHere are two situations involving chance:
Obstacle Courses 1. Introduction. Here are two situations involving chance: (i) Someone rolls a die three times. (People usually roll dice in pairs, so dice is more common than die, the singular form.)
More informationWeek in Review #5 ( , 3.1)
Math 166 WeekinReview  S. Nite 10/6/2012 Page 1 of 5 Week in Review #5 (2.32.4, 3.1) n( E) In general, the probability of an event is P ( E) =. n( S) Distinguishable Permutations Given a set of n objects
More informationNUMB3RS Activity: A Bit of Basic Blackjack. Episode: Double Down
Teacher Page 1 : A Bit of Basic Blackjack Topic: Probability involving sampling without replacement Grade Level: 812 and dependent trials. Objective: Compute the probability of winning in several blackjack
More informationSTAT 3743: Probability and Statistics
STAT 3743: Probability and Statistics G. Jay Kerns, Youngstown State University Fall 2010 Probability Random experiment: outcome not known in advance Sample space: set of all possible outcomes (S) Probability
More information7.1 Chance Surprises, 7.2 Predicting the Future in an Uncertain World, 7.4 Down for the Count
7.1 Chance Surprises, 7.2 Predicting the Future in an Uncertain World, 7.4 Down for the Count Probability deals with predicting the outcome of future experiments in a quantitative way. The experiments
More informationSection : Combinations and Permutations
Section 11.111.2: Combinations and Permutations Diana Pell A construction crew has three members. A team of two must be chosen for a particular job. In how many ways can the team be chosen? How many words
More informationThe next several lectures will be concerned with probability theory. We will aim to make sense of statements such as the following:
CS 70 Discrete Mathematics for CS Fall 2004 Rao Lecture 14 Introduction to Probability The next several lectures will be concerned with probability theory. We will aim to make sense of statements such
More informationExam III Review Problems
c Kathryn Bollinger and Benjamin Aurispa, November 10, 2011 1 Exam III Review Problems Fall 2011 Note: Not every topic is covered in this review. Please also take a look at the previous WeekinReviews
More informationTheory of Probability  Brett Bernstein
Theory of Probability  Brett Bernstein Lecture 3 Finishing Basic Probability Review Exercises 1. Model flipping two fair coins using a sample space and a probability measure. Compute the probability of
More informationEECS 203 Spring 2016 Lecture 15 Page 1 of 6
EECS 203 Spring 2016 Lecture 15 Page 1 of 6 Counting We ve been working on counting for the last two lectures. We re going to continue on counting and probability for about 1.5 more lectures (including
More informationRandom Variables. A Random Variable is a rule that assigns a number to each outcome of an experiment.
Random Variables When we perform an experiment, we are often interested in recording various pieces of numerical data for each trial. For example, when a patient visits the doctor s office, their height,
More informationProbability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37
Probability MAT230 Discrete Mathematics Fall 2018 MAT230 (Discrete Math) Probability Fall 2018 1 / 37 Outline 1 Discrete Probability 2 Sum and Product Rules for Probability 3 Expected Value MAT230 (Discrete
More informationMath 166: Topics in Contemporary Mathematics II
Math 166: Topics in Contemporary Mathematics II Xin Ma Texas A&M University September 30, 2017 Xin Ma (TAMU) Math 166 September 30, 2017 1 / 11 Last Time Factorials For any natural number n, we define
More informationMore Probability: Poker Hands and some issues in Counting
More Probability: Poker Hands and some issues in Counting Data From Thursday Everybody flipped a pair of coins and recorded how many times they got two heads, two tails, or one of each. We saw that the
More informationCS 361: Probability & Statistics
February 7, 2018 CS 361: Probability & Statistics Independence & conditional probability Recall the definition for independence So we can suppose events are independent and compute probabilities Or we
More informationFundamental. If one event can occur m ways and another event can occur n ways, then the number of ways both events can occur is:.
12.1 The Fundamental Counting Principle and Permutations Objectives 1. Use the fundamental counting principle to count the number of ways an event can happen. 2. Use the permutations to count the number
More informationChapter 5  Elementary Probability Theory
Chapter 5  Elementary Probability Theory Historical Background Much of the early work in probability concerned games and gambling. One of the first to apply probability to matters other than gambling
More information1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building?
1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building? 2. A particular brand of shirt comes in 12 colors, has a male version and a female version,
More informationINDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2
INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 WARM UP Students in a mathematics class pick a card from a standard deck of 52 cards, record the suit, and return the card to the deck. The results
More informationCSE 312: Foundations of Computing II Quiz Section #2: InclusionExclusion, Pigeonhole, Introduction to Probability (solutions)
CSE 31: Foundations of Computing II Quiz Section #: InclusionExclusion, Pigeonhole, Introduction to Probability (solutions) Review: Main Theorems and Concepts Binomial Theorem: x, y R, n N: (x + y) n
More informationDue Friday February 17th before noon in the TA drop box, basement, AP&M. HOMEWORK 3 : HAND IN ONLY QUESTIONS: 2, 4, 8, 11, 13, 15, 21, 24, 27
Exercise Sheet 3 jacques@ucsd.edu Due Friday February 17th before noon in the TA drop box, basement, AP&M. HOMEWORK 3 : HAND IN ONLY QUESTIONS: 2, 4, 8, 11, 13, 15, 21, 24, 27 1. A sixsided die is tossed.
More informationRandom Variables. Outcome X (1, 1) 2 (2, 1) 3 (3, 1) 4 (4, 1) 5. (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) }
Random Variables When we perform an experiment, we are often interested in recording various pieces of numerical data for each trial. For example, when a patient visits the doctor s office, their height,
More informationSTAT 430/510 Probability Lecture 1: Counting1
STAT 430/510 Probability Lecture 1: Counting1 Pengyuan (Penelope) Wang May 22, 2011 Introduction In the early days, probability was associated with games of chance, such as gambling. Probability is describing
More informationChapter 3. The Normal Distributions. BPS  5th Ed. Chapter 3 1
Chapter 3 The Normal Distributions BPS  5th Ed. Chapter 3 1 Density Curves Example: here is a histogram of vocabulary scores of 947 seventh graders. The smooth curve drawn over the histogram is a mathematical
More informationFinite Math Section 6_4 Solutions and Hints
Finite Math Section 6_4 Solutions and Hints by Brent M. Dingle for the book: Finite Mathematics, 7 th Edition by S. T. Tan. DO NOT PRINT THIS OUT AND TURN IT IN!!!!!!!! This is designed to assist you in
More informationProbability Homework Pack 1
Dice 2 Probability Homework Pack 1 Probability Investigation: SKUNK In the game of SKUNK, we will roll 2 regular 6sided dice. Players receive an amount of points equal to the total of the two dice, unless
More informationMath116Chapter15ProbabilityProbabilityDone.notebook January 08, 2012
15.4 Probability Spaces Probability assignment A function that assigns to each event E a number between 0 and 1, which represents the probability of the event E and which we denote by Pr (E). Probability
More informationFinite Mathematics MAT 141: Chapter 8 Notes
Finite Mathematics MAT 4: Chapter 8 Notes Counting Principles; More David J. Gisch The Multiplication Principle; Permutations Multiplication Principle Multiplication Principle You can think of the multiplication
More informationChapter 5: Probability: What are the Chances? Section 5.2 Probability Rules
+ Chapter 5: Probability: What are the Chances? Section 5.2 + TwoWay Tables and Probability When finding probabilities involving two events, a twoway table can display the sample space in a way that
More informationToday s Topics. Next week: Conditional Probability
Today s Topics 2 Last time: Combinations Permutations Group Assignment TODAY: Probability! Sample Spaces and Event Spaces Axioms of Probability Lots of Examples Next week: Conditional Probability Sets
More informationSTATION 1: ROULETTE. Name of Guesser Tally of Wins Tally of Losses # of Wins #1 #2
Casino Lab 2017  ICM The House Always Wins! Casinos rely on the laws of probability and expected values of random variables to guarantee them profits on a daily basis. Some individuals will walk away
More informationProbability Theory. Mohamed I. Riffi. Islamic University of Gaza
Probability Theory Mohamed I. Riffi Islamic University of Gaza Table of contents 1. Chapter 1 Probability Properties of probability Counting techniques 1 Chapter 1 Probability Probability Theorem P(φ)
More informationBasic Probability Models. PingShou Zhong
asic Probability Models PingShou Zhong 1 Deterministic model n experiment that results in the same outcome for a given set of conditions Examples: law of gravity 2 Probabilistic model The outcome of the
More informationSection 5.4 Permutations and Combinations
Section 5.4 Permutations and Combinations Definition: nfactorial For any natural number n, n! n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to
More informationCSE 312: Foundations of Computing II Quiz Section #2: InclusionExclusion, Pigeonhole, Introduction to Probability
CSE 312: Foundations of Computing II Quiz Section #2: InclusionExclusion, Pigeonhole, Introduction to Probability Review: Main Theorems and Concepts Binomial Theorem: Principle of InclusionExclusion
More informationProbability: Terminology and Examples Spring January 1, / 22
Probability: Terminology and Examples 18.05 Spring 2014 January 1, 2017 1 / 22 Board Question Deck of 52 cards 13 ranks: 2, 3,..., 9, 10, J, Q, K, A 4 suits:,,,, Poker hands Consists of 5 cards A onepair
More information4.3 Rules of Probability
4.3 Rules of Probability If a probability distribution is not uniform, to find the probability of a given event, add up the probabilities of all the individual outcomes that make up the event. Example:
More informationProbability: Anticipating Patterns
Probability: Anticipating Patterns Anticipating Patterns: Exploring random phenomena using probability and simulation (20% 30%) Probability is the tool used for anticipating what the distribution of data
More informationChapter 3: Elements of Chance: Probability Methods
Chapter 3: Elements of Chance: Methods Department of Mathematics Izmir University of Economics Week 34 20142015 Introduction In this chapter we will focus on the definitions of random experiment, outcome,
More informationProbability and Counting Techniques
Probability and Counting Techniques Diana Pell (Multiplication Principle) Suppose that a task consists of t choices performed consecutively. Suppose that choice 1 can be performed in m 1 ways; for each
More informationMath 1313 Section 6.2 Definition of Probability
Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability
More informationCasino Lab AP Statistics
Casino Lab AP Statistics Casino games are governed by the laws of probability (and those enacted by politicians, too). The same laws (probabilistic, not political) rule the entire known universe. If the
More informationSection 5.4 Permutations and Combinations
Section 5.4 Permutations and Combinations Definition: nfactorial For any natural number n, n! = n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to
More informationKey Concepts. Theoretical Probability. Terminology. Lesson 111
Key Concepts Theoretical Probability Lesson  Objective Teach students the terminology used in probability theory, and how to make calculations pertaining to experiments where all outcomes are equally
More informationM146  Chapter 5 Handouts. Chapter 5
Chapter 5 Objectives of chapter: Understand probability values. Know how to determine probability values. Use rules of counting. Section 51 Probability Rules What is probability? It s the of the occurrence
More information23 Applications of Probability to Combinatorics
November 17, 2017 23 Applications of Probability to Combinatorics William T. Trotter trotter@math.gatech.edu Foreword Disclaimer Many of our examples will deal with games of chance and the notion of gambling.
More information1MA01: Probability. Sinéad Ryan. November 12, 2013 TCD
1MA01: Probability Sinéad Ryan TCD November 12, 2013 Definitions and Notation EVENT: a set possible outcomes of an experiment. Eg flipping a coin is the experiment, landing on heads is the event If an
More informationPan (7:30am) Juan (8:30am) Juan (9:30am) Allison (10:30am) Allison (11:30am) Mike L. (12:30pm) Mike C. (1:30pm) Grant (2:30pm)
STAT 225 FALL 2012 EXAM ONE NAME Your Section (circle one): Pan (7:30am) Juan (8:30am) Juan (9:30am) Allison (10:30am) Allison (11:30am) Mike L. (12:30pm) Mike C. (1:30pm) Grant (2:30pm) Grant (3:30pm)
More informationStat 20: Intro to Probability and Statistics
Stat 20: Intro to Probability and Statistics Lecture 17: Using the Normal Curve with Box Models Tessa L. ChildersDay UC Berkeley 23 July 2014 By the end of this lecture... You will be able to: Draw and
More information