M146  Chapter 5 Handouts. Chapter 5


 Ashlee Watts
 4 years ago
 Views:
Transcription
1 Chapter 5 Objectives of chapter: Understand probability values. Know how to determine probability values. Use rules of counting. Section 51 Probability Rules What is probability? It s the of the occurrence of some event In plain English, it s the of something happening It also is the foundation for Basic Notation: P = A = P(A) = Probability values must be between and. Scale of probabilities: Different ways to report probabilities: Decimal form Percent form Reduced fraction Page 1 of 46
2 Experiment some action or process whose outcome cannot be with certainty. Very simple examples: flipping a coin, or rolling a single die Event some specified or a collection of outcomes that may or may not occur when an experiment is performed Sample space list of all possible for the experiment. Probability model list of all the possible outcomes of a probability experiment, and each outcome s. Note that the sum of the probabilities of all outcomes must equal. Unusual event an event that has a probability of occurring. Typically (but not always), an event with a probability is considered to be unusual. A single coin toss Probability Model: Sample space = Outcome Probability Toss two coins: Sample space = Rolling a single die Sample space = Rolling two dice Page 2 of 46
3 Three methods to define the probability of an event: 1. The Empirical Method (aka Experimental) 2. The Classical Method (aka Theoretical) 3. The Subjective Method 1. Empirical Method (Experimental Probability) Empirical evidence is evidence based on the outcomes of an From the M146 class survey: Dominant Hand Frequency Dominant Hand Probability Right Left Right Left Roll two dice 100 times. Record the number of times you get exactly one 6: Estimate the probability of the event using the Empirical Approach: Page 3 of 46
4 2. Classical Method (Theoretical Probability) The classical method calculates the probability that is by mathematics. It requires all of the outcomes for the experiment to be to occur. Examples: All of the experiments listed on page 2 If you roll a single die, what is the probability of getting an even number? P(even) = number of ways it can occur total number of outcomes If you roll two dice, what is the probability of getting exactly one six? P(one 6) = number of ways it can occur total number of outcomes Page 4 of 46
5 If you roll two dice, what is the probability of getting exactly one six? Experimental probability = Theoretical probability = Experiment Roll two dice 1000 times. Record the number of times you get exactly one 6. Law of Large Numbers: States that if an experiment has a of trials, The experimental probability will the theoretical probability or the probability predicted by mathematics. Therefore, the estimate gets with more trials. 3. Subjective Method Basically an. Can base on past experience and current knowledge of relevant circumstances. What is the probability that your car will not start when you try to leave campus? What is the probability that the Mariners will win the World Series this season? Page 5 of 46
6 Tree Diagrams Useful for small problems to list the sample space Flip a coin (record H or T) Roll a single die (record 1, 2, 3, 4, 5, or 6) Define event as: A = T, even number Calculate experimental probability: Number of T/even = Total no. of trials = Experimental probability of A = Calculate theoretical probability of T/even by listing the sample space: Start: Page 6 of 46
7 1. Identifying Probability Values a. What is the probability of an event that is certain to occur? b. What is the probability of an impossible event? c. A sample space consists of 10 separate events that are equally likely. What is the probability of each? d. On a true/false test, what is the probability of answering a question correctly if you make a random guess? e. On a multiplechoice test with five possible answers for each questions, what is the probability of answering a question correctly if you make a random guess? 2. Excluding leap years, and assuming each birthday is equally likely, what is the probability that a randomly selected person has a birthday on the 1st day of a month? 3. What is the probability of rolling a pair of dice and obtaining a total score of 10 or more? (Hint: look at the sample space on p. 2). 4. Page 7 of 46
8 Section 5.2 The Addition Rule and Complements Objectives: The Addition Rule for Disjoint Events The General Addition Rule Complement Rule Disjoint (or Mutually Exclusive) Events Disjoint events have. There is at all. Rolling two dice A = event that the black die is a 1 B = event that both dice are displaying the same number C = event that the sum of the dice is more than 7 1. A & B: are they disjoint? 2. A & C: are they disjoint? Page 8 of 46
9 Addition Rule for Disjoint Events The special addition rule only applies to events. Calculate the probability of either event A happening as follows: event B happening P(A or B) = P(A or B or C) = Christmas ornaments (never too early to start shopping!) Define the following events: A = plain round ornament B = pointy decorated ornament If one ornament is randomly selected, find the probability that it is a plain round ornament or a pointy decorated ornament: P(A or B) = P(plain round or pointy decorated) = Page 9 of 46
10 Religion in America Find the probability that a randomly selected American adult is Catholic or Protestant. P(Catholic or Protestant) = Page 10 of 46
11 General Addition Rule The general addition rule is for events that are mutually exclusive. P(A or B) = Christmas ornaments Define the following events: A = round ornament B = decorated ornament If one ornament is randomly selected, find the probability that it is a round ornament or a decorated ornament: First, solve intuitively, by just looking at the picture: P(A or B) = P(round or decorated) = Second, solve rigorously, by applying the General Addition Rule: P(A or B) = Key Point: associate the word or with probabilities of the Page 11 of 46
12 Using the General Addition Rule with Contingency Tables A contingency table, or twoway table is used to record and analyze the relationship between two or more variables, usually categorical variables The results of the sinking of the Titanic, which had a total of 2223 passengers Men Women Boys Girls Total Survived Did not survive Total Row variable is: Column variable is: 1. Determine the probability that a randomly selected passenger is a woman. 2. Determine the probability that a randomly selected passenger is a boy or a girl. 3. Determine the probability that a randomly selected passenger is a man or someone who survived the sinking. Page 12 of 46
13 Complement of an Event Every event has a complement event, which is basically the of the event. Event A: Complement of A: Notation for complement: Roll a single die A = roll a 6 A c = Use a Venn Diagram to show the relationship between event A and its complement: Complement Rule Each of the events has an associated probability: P(A) = probability that P(A c ) = probability that A Relationship between these two probabilities is: Rewrite this into the Complement Rule: Page 13 of 46
14 The complement rule can be useful for simplifying calculations. Find the probability that the religious affiliation of a randomly selected US adult is not Jewish. P(not Jewish) = Page 14 of 46
15 Here is a standard deck of playing cards, 52 cards total, with 4 suits (spades, hearts, clubs and diamonds). Hearts and diamonds are red, spades and clubs are black. Each suit goes from ace, 2, 3,, up through Jack, Queen and King, where Jack, Queen and King are considered to be face cards. 1. A card is drawn at random from a deck. What is the probability that it is an ace or a king? 2. A card is drawn at random from a deck. What is the probability that it is either a red card or an ace? 3. A card is drawn at random from a deck. What is the probability that it is NOT an ace or a king? Page 15 of 46
16 4. A couple is planning on having three children. What is the probability that they have three of the same gender? (Hint: try a tree diagram). 5. Page 16 of 46
17 Section 5.3 Independence and the Multiplication Rule 1. Identify Independent Events 2. Multiplication Rule for Independent Events 3. Computing at least probabilities Independence Two events are independent if the knowledge that one event occurred does of the other event occurring. Two events are dependent if the occurrence of one event the probability of another event. Examples: 1. Independent events 2. Blocks, 4 squares, 3 triangles 1. If I randomly select one, what is the probability of selecting a square? 2. Assuming that I got a square on the first grab, what is the probability that I reach in a second time and grab a triangle? It! If I : P(triangle) = If I : P(triangle) = Page 17 of 46
18 Key Point: If sampling is done replacement, then the events are. If sampling is done replacement, then the events are. IF the events are, then can use the Multiplication Rule for Independent Events to calculate the probability of two events happening. Multiplication Rule for Independent Events If A and B are independent events, then: P(A and B) = This can be extended to multiple independent events: P(A and B and C and ) = Notice that this applies to. In other words: Event A occurs in, Then Event B occurs in (and possibly more events) Roll one die, then a second die. What is the probability of getting a 1 on both? A = get a 1 on first die B = get a 1 on second die Page 18 of 46
19 If a fair die (singular of dice) is rolled five times, which of the following ordered sequences of results, if any, is MOST LIKELY to occur? a b c d. Sequences (a) and (b) are equally likely. e. All of the above sequences are equally likely. Key Point: associate the word and with of the probabilities. Christmas lights are often designed with a series circuit. This means that when one light burns out the entire string of lights goes black. Suppose that the lights are designed so that the probability a bulb will last 2 years is The success or failure of a bulb is independent of the success or failure of other bulbs. What is the probability that in a string of 100 lights all 100 will last 2 years? Computing AtLeast Probabilities Complement Rule: If A = at least one of something happens, then A c = For the Christmas lights, what is the probability that at least one bulb will burn out in 2 years? Page 19 of 46
20 2016 Presidential Election Exit Poll Results An exit poll was conducted by Edison Research during the 2016 U.S. Presidential election, and is based on questionnaires completed by voters leaving 350 voting places throughout the US, and also including telephone interviews with early and absentee voters. The following table provides the results, by race of the voters. Voted for Clinton Voted for Trump Voted for Other/No Answer White 37% 57% 6% Black 89% 8% 3% Latino 66% 28% 6% Asian 65% 27% 8% Other 56% 36% 8% Sources: Calculate the following probabilities to three significant figures. 1. If two White voters are randomly selected, what is the probability that they both voted for Trump? 2. If three Black voters are randomly selected, what is the probability that all three of them voted for Clinton? 3. If two Asian voters are randomly selected, what is the probability that the first voted for Clinton and the second voted for Trump? 4. If three Latino voters are randomly selected, what is the probability that at least one of them voted for Clinton? Page 20 of 46
21 Section 5.4 Conditional Probability and the General Multiplication Rule 1. Compute Conditional Probabilities 2. Compute probabilities using the General Multiplication Rule The conditional probability of an event is the probability that the event occurs, assuming that another event has. The conditional probability that event B occurs given that event A has occurred is written: Face cards Let: A = get a face card (Jack, Queen or King) B = get a Queen a. If one card is randomly selected, find the probability that it is a Queen. b. If one card is randomly selected, find the probability that it is a Queen, given that it is a face card. Conclusion: Knowing that it is a face card it is a Queen. the probability that Page 21 of 46
22 Conditional Probability Rule: If A and B are any two events, then: P(B A) = Titanic passengers, 2223 total Men Women Boys Girls Total Survived Did not survive Total Assume that one of the 2223 passengers is randomly selected. a. Determine the probability that the passenger is a man. b. Determine the probability that the passenger is a man, given that the selected passenger did not survive. Conclusion: Knowing that the passenger did not survive probability that it is a man. the Page 22 of 46
23 Defining Independent Events using Conditional Probabilities From the Titanic example on the previous page: P(B) = P(man) = P(B A) = P(man did not survive) = Are the events man and did not survive independent? Page 23 of 46
24 The International Shark Attack File, maintained by the American Elasmobranch Society and the Florida Museum of Natural History, is a compilation of all known shark attacks around the globe from the mid 1500s to the present. Following is a contingency table providing a crossclassification of worldwide reported shark attacks during the 1900s, by country and lethality of attack. a. Find the probability that an attack occurred in the United States. b. Find the probability that an attack occurred in the United States and that it was fatal. c. Find the probability that an attack was fatal. d. Find the probability that an attack was fatal, given that it occurred in the United States. e. Find the probability that an attack occurred in the United States, given that it was fatal. f. Are the events fatal and occurred in the United States independent? Page 24 of 46
25 IF the events are, then use the General Multiplication Rule to calculate the probability of two events happening. General Multiplication Rule If A and B are any two events, then: P(A and B) = Blocks, 4 squares, 3 triangles 1. Assuming replacement after each selection, find the probability that I randomly select two blocks (one at a time), and get a square first and a triangle second: P(square & triangle) = Note: in this case, the events are independent. 2. Assuming replacement after each selection, find the probability that I randomly select two blocks (one at a time), and get a square first and a triangle second: P(square & triangle) = Note: in this case, the events are NOT independent. From a deck of cards, find the probability of selecting two cards without replacement, and having them both be Kings. Pick two cards from a deck without replacement: What is the probability of getting those two cards? Page 25 of 46
26 Often, we assume sampling for calculations, even though technically the sampling is done without replacement. The reason: calculating probabilities WITH replacement is much easier, because we don t have to worry about the conditional probabilities changing every time we make a selection. CBC students Assume 7400 students total, 4144 female students Question: If one student is selected at random, what is the probability that it is a female student? Question: If five different students are selected at random, what is the probability that ALL FIVE are female students? Calculate without replacement: P(female & female & female & female & female) = Now, calculate assuming with replacement: It s OK in this case to assume replacement, because the sample size is very compared to the population size. Page 26 of 46
27 Using the Complement Rule CBC students If five different students are randomly selected, what is the probability of selecting at least one student who is female? Remember, just calculated that P(female) = A = A c = Page 27 of 46
28 1. Two cards are drawn from a deck without replacement. What is the probability they are both diamonds? Assume that you are going to (maybe this weekend) take a quiz with 5 multiple choice questions, each with 4 possible answers. You randomly guess. What is the probability of getting at least one question right? (note: please do not actually use this strategy!) Page 28 of 46
29 4. Use the sample data from the following table, which includes results from experiments conducted with 100 subjects, each of whom was given a polygraph test. Polygraph Indicated Truth Polygraph Indicated Lie Subject actually told the truth Subject actually told a lie 3 17 a. If 1 of the 100 subjects is randomly selected, find the probability of getting someone who told the truth or had the polygraph test indicate that the truth was being told. b. If two different subjects are randomly selected, find the probability that they both had the polygraph test indicate that a lie was being told. Do the calculation without replacement. c. Repeat the calculation in part b., but this time assume replacement. Page 29 of 46
30 The Birthday Problem Basic idea is to find the probability for our class that AT LEAST TWO people have the same birthday. Complement: people in the room have the same birthday. Assumptions: Assume 365 possible birthdays Assume all birthdays are equally likely Assume no twins (or otherwise) in the room ( ) Source: TriCity Herald, October 6, 2007 Page 30 of 46
31 Use the Complement Rule: It s easier to calculate the probability that NO TWO people in the class have the same birthday. A = at least two people have the same birthday (what we want) A c = nobody has the same birthday P(A) = 1 P(A c ) P(at least 2 people have same birthday) = 1 P(nobody has same birthday) Calculate: P(nobody has the same birthday), or P(A c ) 1. Find the probability that TWO randomly selected people do NOT have the same birthday: Probability that the 1 st person has a birthday = Probability that the 2 nd person s birthday is different = P(1 st birthday AND different 2 nd birthday) = 2. Find the probability that out of THREE randomly selected people, NONE of them have the same birthday. Probability that the 3 rd person s birthday is different from the first two = P(1 st birthday AND different 2 nd birthday AND different 3 rd birthday) = Page 31 of 46
32 Number of people in the room: r = 3. Find the probability that out of randomly selected people, NONE of them have the same birthday. Probability that the person s birthday is different from the first = P(1 st birthday AND different 2 nd birthday AND different 3 rd birthday AND different birthday) = P(A c ) = (probability that nobody in here has same bday) Now take the complement of this value: Therefore, P(A) = P(at least two people in here have the same birthday) = 1 P(A c ) = Page 32 of 46
33 Easier way: the probability that out of r randomly selected people, NONE of them have the same birthday, can be represented mathematically by the formula: Probability = where, r = no. of people 365Pr = no. of permutations of 365 objects taken r at a time To calculate: 365Pr Calculator Commands TI30X nd x y _r_ 2 nd npr = TI30Xa nd npr _r_ = TI30XIIb TI30XIIs 365 PRB npr (enter) _r_ = TI34II 365 PRB _r_ = TI36X 365 x y _r_ 2 nd npr = TI rd npr _r_ = Casio fx260 solar 365 SHIFT npr _r_ = Test: 365P2 = 132,860 Try to use your calculator to calculate the value we just computed. 365 P r = r = Calculate r 365 P(at least two people in here have the same birthday) = P r = r 365 Page 33 of 46
34 Section 5.5 Counting Techniques The principal of counting means: finding how many different an event can have. Powerball January 2016 record Powerball drawing: $1.6 billion grand prize If you buy a Powerball ticket, what is the probability that you will have the winning numbers? To calculate this, we have to know how many different ways there are to choose the numbers. How many outcomes when you: Roll a single die Roll two dice Draw a single card Toss two coins For a couple having 3 children Techniques to count: Page 34 of 46
35 The Multiplication Rule (Basic Counting Rule) Talking about making a sequence of choices from separate categories. In other words, sequential trials, or sequential events: Pick something from the first category, Then pick from the second category, Etc. Each selection from each category can have a certain number of outcomes: Category No. of outcomes The Multiplication Rule says that: To find the number of possible outcomes, together the individual number of outcomes for each category. Flipping two coins Total outcomes = Rolling two dice Total outcomes = A couple having three kids Total outcomes = Page 35 of 46
36 Assume that a license plate consists of 4 letters followed by three digits. How many plates are possible (letters and digits may be repeated)? Event Pick 1 st letter No. of outcomes Pick 2 nd letter Pick 3 rd letter Pick 4 th letter Pick 1 st digit Pick 2 nd digit Pick 3 rd digit Total no. of outcomes = Applying Counting Rules to Probability What s the probability of randomly generating 4 letters and 3 digits and having it be your plate? The outcomes are equally likely, so apply the Classical Method to calculate probabilities: P = How many plates are possible if the letters and digits may NOT be repeated? Page 36 of 46
37 Factorial Notation n! is factorial notation, and it is read n factorial. n! = n must be a nonnegative integer Examples: Permutations A permutation is: any different of a certain number of objects. KEY POINT: matters when you are counting up permutations! How many different ways can the objects be arranged? Page 37 of 46
38 How many different ways can two objects at a time selected from this group be arranged? Permutation Rule: npr = npr = number of permutations n = total number of objects r = number of them taken at a time Read as: the number of permutations of n objects taken r at a time (example this page) 4P2 = (example previous page) 3P3 = Special Permutations Rule: Just a special case of the permutation rule. A collection of n different items can be arranged in order ways. Page 38 of 46
39 Permutations with Nondistinct Items How many ways to arrange all of the objects: (they are ALL distinct) How many ways to arrange all of the objects: (they are NOT all distinct) Will it be more, or less, or the same? Formula: The number of permutations of n objects of which n1 are of one kind, n2 are of a second kind,, and nk are of a k th kind is given by: How many different sixdigit numerals can be written using all of the following six digits: 4, 4, 5, 5, 5, 7? Page 39 of 46
40 Combinations Combinations are different from permutations because of the objects does not matter Not how many different arrangements there are, just how many different. a, b, c Previously found that there were permutations of these objects. How many different combinations of these objects are there? a, b, c, d Previously found that there were objects at a time from this group. permutations when selecting two How many different combinations of two objects can be selected from this group? Combinations Rule: ncr = ncr = number of combinations n = total number of objects r = number of them taken at a time Read as: the number of combinations of n objects taken r at a time Find the number of combinations of 25 objects taken 8 at a time. Page 40 of 46
41 Selections from Two (or more) Subgroups Cracked Eggs A carton contains 12 eggs, 3 of which are cracked. If we randomly select 5 of the eggs for hard boiling, how many outcomes are there for the following events? a. Select any 5 of the eggs. b. All of the cracked eggs are selected. Note: in this case, we are choosing specific numbers from the two subgroups, cracked and not cracked. 1. Use the Rule to determine the number of outcomes for the selections from each subgroup. 2. Use the Rule to multiply the individual outcomes together. Cracked: 3 Not cracked: 9 Select: Select: (for a total of 5) What is the probability that all of the cracked eggs are selected? Page 41 of 46
42 Powerball If you buy a Powerball ticket, how many different outcomes are there? In other words, how many different ways to choose the numbers? Draw 5 different white balls out of a drum that has 69 white balls and 1 red ball out of a drum that has 26 red balls in it. White: 69 Red: 26 Select: Select: What is the probability that you win? Page 42 of 46
43 Summary of Counting Methods Sequentially, from different categories Items Selected Two main questions: 1. Is the selection with or without replacement? 2. Does order matter? With Replacement Without Replacement From one big bag of items Multiplication Rule How many total items are there? = n How many of them are being selected? = r Order does matter Order does NOT matter Special Permutations Rule (when some items are identical to others) no Multiplication Rule All items distinct? yes Permutations Combinations Special case: if you are selecting or drawing from 2 or more groups of things, calculate the combinations for each and multiply together using the Multiplication Rule. Note that these two are equivalent (when counting without replacement), so you can use either one (I usually do permutations). Page 43 of 46
44 Example 1: From a committee of 8 people, how many ways can we choose a subcommittee of 2 people? 1. With or without replacement? 2. Does order matter? Example 2: From a committee of 8 people, how many ways can we choose a chairperson and a vice chair? 1. With or without replacement? 2. Does order matter? Example 3: How many 5card hands can be dealt from a deck of 52 cards? 1. With or without replacement? 2. Does order matter? Page 44 of 46
45 1. How many ways can a 10question multiple choice test be answered if there are 5 possible answers (A, B, C, D, and E) to each question? Hint: this is kind of like the license plate problem! 2. Ten people gather for a meeting. If each person shakes hands with each other person exactly once, what is the total number of handshakes? 3. In the Washington State Lotto game, players pick six different numbers between 1 and 49. What is the probability of winning the Lotto? 4. A nurse has 6 patients to visit. How many different ways can he make his rounds if he visits each patient only once? Page 45 of 46
46 5. In a dog show, a German Shepherd is supposed to pick the correct two objects from a set of 20 objects. In how many ways can the dog pick two objects? 6. A slot machine consists of three wheels with 12 different objects on a wheel (each wheel has the same 12 objects). How many different outcomes are possible? 7. In a Jumble puzzle, you are supposed to unscramble letters to form words. How many ways can the letters CATSITTISS be arranged? (Also, what is the word?) 8. The Hazelwood city council consists of 5 men and 4 women. How many different subcommittees can be formed that consist of 3 men and 2 women? Page 46 of 46
Empirical (or statistical) probability) is based on. The empirical probability of an event E is the frequency of event E.
Probability and Statistics Chapter 3 Notes Section 31 I. Probability Experiments. A. When weather forecasters say There is a 90% chance of rain tomorrow, or a doctor says There is a 35% chance of a successful
More informationFundamentals of Probability
Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible
More informationProbability. The MEnTe Program Math Enrichment through Technology. Title V East Los Angeles College
Probability The MEnTe Program Math Enrichment through Technology Title V East Los Angeles College 2003 East Los Angeles College. All rights reserved. Topics Introduction Empirical Probability Theoretical
More informationName: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11
Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value
More informationProbability and Counting Techniques
Probability and Counting Techniques Diana Pell (Multiplication Principle) Suppose that a task consists of t choices performed consecutively. Suppose that choice 1 can be performed in m 1 ways; for each
More informationSuch a description is the basis for a probability model. Here is the basic vocabulary we use.
5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these
More informationAlgebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations
Algebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations Objective(s): Vocabulary: I. Fundamental Counting Principle: Two Events: Three or more Events: II. Permutation: (top of p. 684)
More information4.1 Sample Spaces and Events
4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an
More informationChapter 5  Elementary Probability Theory
Chapter 5  Elementary Probability Theory Historical Background Much of the early work in probability concerned games and gambling. One of the first to apply probability to matters other than gambling
More informationCounting Methods and Probability
CHAPTER Counting Methods and Probability Many good basketball players can make 90% of their free throws. However, the likelihood of a player making several free throws in a row will be less than 90%. You
More informationMAT104: Fundamentals of Mathematics II Summary of Counting Techniques and Probability. Preliminary Concepts, Formulas, and Terminology
MAT104: Fundamentals of Mathematics II Summary of Counting Techniques and Probability Preliminary Concepts, Formulas, and Terminology Meanings of Basic Arithmetic Operations in Mathematics Addition: Generally
More information1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building?
1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building? 2. A particular brand of shirt comes in 12 colors, has a male version and a female version,
More informationNovember 6, Chapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance November 6, 2013 Last Time Crystallographic notation Groups Crystallographic notation The first symbol is always a p, which indicates that the pattern
More informationProbability. Ms. Weinstein Probability & Statistics
Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random
More informationPROBABILITY. 1. Introduction. Candidates should able to:
PROBABILITY Candidates should able to: evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events (e.g for the total score when two fair dice are thrown), or by calculation
More informationMATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG
MATH DISCRETE MATHEMATICS INSTRUCTOR: P. WENG Counting and Probability Suggested Problems Basic Counting Skills, InclusionExclusion, and Complement. (a An office building contains 7 floors and has 7 offices
More informationCHAPTER 9  COUNTING PRINCIPLES AND PROBABILITY
CHAPTER 9  COUNTING PRINCIPLES AND PROBABILITY Probability is the Probability is used in many realworld fields, such as insurance, medical research, law enforcement, and political science. Objectives:
More informationINDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2
INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 WARM UP Students in a mathematics class pick a card from a standard deck of 52 cards, record the suit, and return the card to the deck. The results
More informationReview of Probability
Review of Probability 1) What is probability? ( ) Consider the following two problems: Select 2 cards from a standard deck of 52 cards with replacement. What is the probability of obtaining two kings?
More informationUnit 1 Day 1: Sample Spaces and Subsets. Define: Sample Space. Define: Intersection of two sets (A B) Define: Union of two sets (A B)
Unit 1 Day 1: Sample Spaces and Subsets Students will be able to (SWBAT) describe events as subsets of sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions,
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even
More informationMath 227 Elementary Statistics. Bluman 5 th edition
Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 4 Probability and Counting Rules 2 Objectives Determine sample spaces and find the probability of an event using classical probability or empirical
More informationFinite Mathematics MAT 141: Chapter 8 Notes
Finite Mathematics MAT 4: Chapter 8 Notes Counting Principles; More David J. Gisch The Multiplication Principle; Permutations Multiplication Principle Multiplication Principle You can think of the multiplication
More informationProbability. Dr. Zhang Fordham Univ.
Probability! Dr. Zhang Fordham Univ. 1 Probability: outline Introduction! Experiment, event, sample space! Probability of events! Calculate Probability! Through counting! Sum rule and general sum rule!
More informationHonors Precalculus Chapter 9 Summary Basic Combinatorics
Honors Precalculus Chapter 9 Summary Basic Combinatorics A. Factorial: n! means 0! = Why? B. Counting principle: 1. How many different ways can a license plate be formed a) if 7 letters are used and each
More information, the of all of a probability experiment. consists of outcomes. (b) List the elements of the event consisting of a number that is greater than 4.
41 Sample Spaces and Probability as a general concept can be defined as the chance of an event occurring. In addition to being used in games of chance, probability is used in the fields of,, and forecasting,
More informationNorth Seattle Community College Winter ELEMENTARY STATISTICS 2617 MATH Section 05, Practice Questions for Test 2 Chapter 3 and 4
North Seattle Community College Winter 2012 ELEMENTARY STATISTICS 2617 MATH 109  Section 05, Practice Questions for Test 2 Chapter 3 and 4 1. Classify each statement as an example of empirical probability,
More informationNAME DATE PERIOD. Study Guide and Intervention
91 Section Title The probability of a simple event is a ratio that compares the number of favorable outcomes to the number of possible outcomes. Outcomes occur at random if each outcome occurs by chance.
More informationProbability. Probabilty Impossibe Unlikely Equally Likely Likely Certain
PROBABILITY Probability The likelihood or chance of an event occurring If an event is IMPOSSIBLE its probability is ZERO If an event is CERTAIN its probability is ONE So all probabilities lie between 0
More informationChapter 1: Sets and Probability
Chapter 1: Sets and Probability Section 1.31.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping
More informationDate. Probability. Chapter
Date Probability Contests, lotteries, and games offer the chance to win just about anything. You can win a cup of coffee. Even better, you can win cars, houses, vacations, or millions of dollars. Games
More information1. How to identify the sample space of a probability experiment and how to identify simple events
Statistics Chapter 3 Name: 3.1 Basic Concepts of Probability Learning objectives: 1. How to identify the sample space of a probability experiment and how to identify simple events 2. How to use the Fundamental
More information3 The multiplication rule/miscellaneous counting problems
Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1. Suppose P (A) = 0.4, P (B) = 0.5. (a) If A and B are independent, what is P (A B)? What is P (A B)? (b) If A and B are disjoint,
More informationChapter 3: PROBABILITY
Chapter 3 Math 3201 1 3.1 Exploring Probability: P(event) = Chapter 3: PROBABILITY number of outcomes favourable to the event total number of outcomes in the sample space An event is any collection of
More informationMath 166: Topics in Contemporary Mathematics II
Math 166: Topics in Contemporary Mathematics II Xin Ma Texas A&M University September 30, 2017 Xin Ma (TAMU) Math 166 September 30, 2017 1 / 11 Last Time Factorials For any natural number n, we define
More information5 Elementary Probability Theory
5 Elementary Probability Theory 5.1 What is Probability? The Basics We begin by defining some terms. Random Experiment: any activity with a random (unpredictable) result that can be measured. Trial: one
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) 1 6
Math 300 Exam 4 Review (Chapter 11) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Give the probability that the spinner shown would land on
More informationClass XII Chapter 13 Probability Maths. Exercise 13.1
Exercise 13.1 Question 1: Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E F) = 0.2, find P (E F) and P(F E). It is given that P(E) = 0.6, P(F) = 0.3, and P(E F) = 0.2 Question 2:
More informationChapter 5: Probability: What are the Chances? Section 5.2 Probability Rules
+ Chapter 5: Probability: What are the Chances? Section 5.2 + TwoWay Tables and Probability When finding probabilities involving two events, a twoway table can display the sample space in a way that
More information4.3 Rules of Probability
4.3 Rules of Probability If a probability distribution is not uniform, to find the probability of a given event, add up the probabilities of all the individual outcomes that make up the event. Example:
More informationKey Concepts. Theoretical Probability. Terminology. Lesson 111
Key Concepts Theoretical Probability Lesson  Objective Teach students the terminology used in probability theory, and how to make calculations pertaining to experiments where all outcomes are equally
More informationChapter 11: Probability and Counting Techniques
Chapter 11: Probability and Counting Techniques Diana Pell Section 11.3: Basic Concepts of Probability Definition 1. A sample space is a set of all possible outcomes of an experiment. Exercise 1. An experiment
More informationFind the probability of an event by using the definition of probability
LESSON 101 Probability Lesson Objectives Find the probability of an event by using the definition of probability Vocabulary experiment (p. 522) trial (p. 522) outcome (p. 522) sample space (p. 522) event
More informationProbability  Chapter 4
Probability  Chapter 4 In this chapter, you will learn about probability its meaning, how it is computed, and how to evaluate it in terms of the likelihood of an event actually happening. A cynical person
More information7.1 Experiments, Sample Spaces, and Events
7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Mathematical Ideas Chapter 2 Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) In one town, 2% of all voters are Democrats. If two voters
More informationReview Questions on Ch4 and Ch5
Review Questions on Ch4 and Ch5 1. Find the mean of the distribution shown. x 1 2 P(x) 0.40 0.60 A) 1.60 B) 0.87 C) 1.33 D) 1.09 2. A married couple has three children, find the probability they are all
More informationDef: The intersection of A and B is the set of all elements common to both set A and set B
Def: Sample Space the set of all possible outcomes Def: Element an item in the set Ex: The number "3" is an element of the "rolling a die" sample space Main concept write in Interactive Notebook Intersection:
More informationTest 2 SOLUTIONS (Chapters 5 7)
Test 2 SOLUTIONS (Chapters 5 7) 10 1. I have been sitting at my desk rolling a sixsided die (singular of dice), and counting how many times I rolled a 6. For example, after my first roll, I had rolled
More informationQuiz 2 Review  on Notebook Paper Are You Ready For Your Last Quiz In Honors Math II??
Quiz 2 Review  on Notebook Paper Are You Ready For Your Last Quiz In Honors Math II?? Some things to Know, Memorize, AND Understand how to use are n What are the formulas? Pr ncr Fill in the notation
More information3 The multiplication rule/miscellaneous counting problems
Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1 Suppose P (A 0, P (B 05 (a If A and B are independent, what is P (A B? What is P (A B? (b If A and B are disjoint, what is
More informationLC OL Probability. ARNMaths.weebly.com. As part of Leaving Certificate Ordinary Level Math you should be able to complete the following.
A Ryan LC OL Probability ARNMaths.weebly.com Learning Outcomes As part of Leaving Certificate Ordinary Level Math you should be able to complete the following. Counting List outcomes of an experiment Apply
More informationIf you roll a die, what is the probability you get a four OR a five? What is the General Education Statistics
If you roll a die, what is the probability you get a four OR a five? What is the General Education Statistics probability that you get neither? Class Notes The Addition Rule (for OR events) and Complements
More informationSection 6.5 Conditional Probability
Section 6.5 Conditional Probability Example 1: An urn contains 5 green marbles and 7 black marbles. Two marbles are drawn in succession and without replacement from the urn. a) What is the probability
More informationSection Introduction to Sets
Section 1.1  Introduction to Sets Definition: A set is a welldefined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase
More informationChapter 4: Probability
Student Outcomes for this Chapter Section 4.1: Contingency Tables Students will be able to: Relate Venn diagrams and contingency tables Calculate percentages from a contingency table Calculate and empirical
More informationChapter 4: Probability and Counting Rules
Chapter 4: Probability and Counting Rules Before we can move from descriptive statistics to inferential statistics, we need to have some understanding of probability: Ch4: Probability and Counting Rules
More informationProbability Review before Quiz. Unit 6 Day 6 Probability
Probability Review before Quiz Unit 6 Day 6 Probability Warmup: Day 6 1. A committee is to be formed consisting of 1 freshman, 1 sophomore, 2 juniors, and 2 seniors. How many ways can this committee be
More informationNovember 11, Chapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance November 11, 2013 Last Time Probability Models and Rules Discrete Probability Models Equally Likely Outcomes Probability Rules Probability Rules Rule 1.
More informationProbability and Randomness. Day 1
Probability and Randomness Day 1 Randomness and Probability The mathematics of chance is called. The probability of any outcome of a chance process is a number between that describes the proportion of
More informationUnit 7 Central Tendency and Probability
Name: Block: 7.1 Central Tendency 7.2 Introduction to Probability 7.3 Independent Events 7.4 Dependent Events 7.1 Central Tendency A central tendency is a central or value in a data set. We will look at
More informationProbability Concepts and Counting Rules
Probability Concepts and Counting Rules Chapter 4 McGrawHill/Irwin Dr. Ateq Ahmed AlGhamedi Department of Statistics P O Box 80203 King Abdulaziz University Jeddah 21589, Saudi Arabia ateq@kau.edu.sa
More informationSALES AND MARKETING Department MATHEMATICS. Combinatorics and probabilities. Tutorials and exercises
SALES AND MARKETING Department MATHEMATICS 2 nd Semester Combinatorics and probabilities Tutorials and exercises Online document : http://jffduttc.weebly.com section DUT Maths S2 IUT de SaintEtienne
More informationChapter 1. Probability
Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.
More informationThe Teachers Circle Mar. 20, 2012 HOW TO GAMBLE IF YOU MUST (I ll bet you $5 that if you give me $10, I ll give you $20.)
The Teachers Circle Mar. 2, 22 HOW TO GAMBLE IF YOU MUST (I ll bet you $ that if you give me $, I ll give you $2.) Instructor: Paul Zeitz (zeitzp@usfca.edu) Basic Laws and Definitions of Probability If
More informationThe point value of each problem is in the lefthand margin. You must show your work to receive any credit, except on problems 1 & 2. Work neatly.
Introduction to Statistics Math 1040 Sample Exam II Chapters 57 4 Problem Pages 4 Formula/Table Pages Time Limit: 90 Minutes 1 No Scratch Paper Calculator Allowed: Scientific Name: The point value of
More informationUnit 14 Probability. Target 3 Calculate the probability of independent and dependent events (compound) AND/THEN statements
Target 1 Calculate the probability of an event Unit 14 Probability Target 2 Calculate a sample space 14.2a Tree Diagrams, Factorials, and Permutations 14.2b Combinations Target 3 Calculate the probability
More informationRaise your hand if you rode a bus within the past month. Record the number of raised hands.
166 CHAPTER 3 PROBABILITY TOPICS Raise your hand if you rode a bus within the past month. Record the number of raised hands. Raise your hand if you answered "yes" to BOTH of the first two questions. Record
More informationMath 14 Lecture Notes Ch. 3.3
3.3 Two Basic Rules of Probability If we want to know the probability of drawing a 2 on the first card and a 3 on the 2 nd card from a standard 52card deck, the diagram would be very large and tedious
More informationC) 1 4. Find the indicated probability. 2) A die with 12 sides is rolled. What is the probability of rolling a number less than 11?
Chapter Probability Practice STA03, Broward College Answer the question. ) On a multiple choice test with four possible answers (like this question), what is the probability of answering a question correctly
More informationSection : Combinations and Permutations
Section 11.111.2: Combinations and Permutations Diana Pell A construction crew has three members. A team of two must be chosen for a particular job. In how many ways can the team be chosen? How many words
More informationProbability Review 41
Probability Review 41 For the following problems, give the probability to four decimals, or give a fraction, or if necessary, use scientific notation. Use P(A) = 1  P(not A) 1) A coin is tossed 6 times.
More informationProbability as a general concept can be defined as the chance of an event occurring.
3. Probability In this chapter, you will learn about probability its meaning, how it is computed, and how to evaluate it in terms of the likelihood of an event actually happening. Probability as a general
More informationCHAPTER 7 Probability
CHAPTER 7 Probability 7.1. Sets A set is a welldefined collection of distinct objects. Welldefined means that we can determine whether an object is an element of a set or not. Distinct means that we can
More informationGrade 7/8 Math Circles February 25/26, Probability
Faculty of Mathematics Waterloo, Ontario N2L 3G1 Probability Grade 7/8 Math Circles February 25/26, 2014 Probability Centre for Education in Mathematics and Computing Probability is the study of how likely
More informationGrade 6 Math Circles Fall Oct 14/15 Probability
1 Faculty of Mathematics Waterloo, Ontario Centre for Education in Mathematics and Computing Grade 6 Math Circles Fall 2014  Oct 14/15 Probability Probability is the likelihood of an event occurring.
More informationDay 5: Mutually Exclusive and Inclusive Events. Honors Math 2 Unit 6: Probability
Day 5: Mutually Exclusive and Inclusive Events Honors Math 2 Unit 6: Probability Warmup on Notebook paper (NOT in notes) 1. A local restaurant is offering taco specials. You can choose 1, 2 or 3 tacos
More informationWeek 1: Probability models and counting
Week 1: Probability models and counting Part 1: Probability model Probability theory is the mathematical toolbox to describe phenomena or experiments where randomness occur. To have a probability model
More informationUnit 11 Probability. Round 1 Round 2 Round 3 Round 4
Study Notes 11.1 Intro to Probability Unit 11 Probability Many events can t be predicted with total certainty. The best thing we can do is say how likely they are to happen, using the idea of probability.
More informationMATH STUDENT BOOK. 7th Grade Unit 6
MATH STUDENT BOOK 7th Grade Unit 6 Unit 6 Probability and Graphing Math 706 Probability and Graphing Introduction 3 1. Probability 5 Theoretical Probability 5 Experimental Probability 13 Sample Space 20
More informationECON 214 Elements of Statistics for Economists
ECON 214 Elements of Statistics for Economists Session 4 Probability Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh College of Education School of Continuing
More informationIndependent and Mutually Exclusive Events
Independent and Mutually Exclusive Events By: OpenStaxCollege Independent and mutually exclusive do not mean the same thing. Independent Events Two events are independent if the following are true: P(A
More information10.1 Applying the Counting Principle and Permutations (helps you count up the number of possibilities!)
10.1 Applying the Counting Principle and Permutations (helps you count up the number of possibilities!) Example 1: Pizza You are buying a pizza. You have a choice of 3 crusts, 4 cheeses, 5 meat toppings,
More informationCIS 2033 Lecture 6, Spring 2017
CIS 2033 Lecture 6, Spring 2017 Instructor: David Dobor February 2, 2017 In this lecture, we introduce the basic principle of counting, use it to count subsets, permutations, combinations, and partitions,
More informationPROBABILITY. Example 1 The probability of choosing a heart from a deck of cards is given by
Classical Definition of Probability PROBABILITY Probability is the measure of how likely an event is. An experiment is a situation involving chance or probability that leads to results called outcomes.
More informationReview. Natural Numbers: Whole Numbers: Integers: Rational Numbers: Outline Sec Comparing Rational Numbers
FOUNDATIONS Outline Sec. 31 Gallo Name: Date: Review Natural Numbers: Whole Numbers: Integers: Rational Numbers: Comparing Rational Numbers Fractions: A way of representing a division of a whole into
More informationChapter 4. Probability and Counting Rules. McGrawHill, Bluman, 7 th ed, Chapter 4
Chapter 4 Probability and Counting Rules McGrawHill, Bluman, 7 th ed, Chapter 4 Chapter 4 Overview Introduction 41 Sample Spaces and Probability 42 Addition Rules for Probability 43 Multiplication
More informationDefine and Diagram Outcomes (Subsets) of the Sample Space (Universal Set)
12.3 and 12.4 Notes Geometry 1 Diagramming the Sample Space using Venn Diagrams A sample space represents all things that could occur for a given event. In set theory language this would be known as the
More information4.1 What is Probability?
4.1 What is Probability? between 0 and 1 to indicate the likelihood of an event. We use event is to occur. 1 use three major methods: 1) Intuition 3) Equally Likely Outcomes Intuition  prediction based
More informationContents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting  Permutation and Combination 39
CHAPTER 2 PROBABILITY Contents 2.1 Basic Concepts of Probability 38 2.2 Probability of an Event 39 2.3 Methods of Assigning Probabilities 39 2.4 Principle of Counting  Permutation and Combination 39 2.5
More informationModule 4 Project Maths Development Team Draft (Version 2)
5 Week Modular Course in Statistics & Probability Strand 1 Module 4 Set Theory and Probability It is often said that the three basic rules of probability are: 1. Draw a picture 2. Draw a picture 3. Draw
More informationAP Statistics Ch InClass Practice (Probability)
AP Statistics Ch 1415 InClass Practice (Probability) #1a) A batter who had failed to get a hit in seven consecutive times at bat then hits a gamewinning home run. When talking to reporters afterward,
More informationChapter 1. Probability
Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
More 9.9.3 Practice Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Answer the question. ) In how many ways can you answer the questions on
More informationThere is no class tomorrow! Have a good weekend! Scores will be posted in Compass early Friday morning J
STATISTICS 100 EXAM 3 Fall 2016 PRINT NAME (Last name) (First name) *NETID CIRCLE SECTION: L1 12:30pm L2 3:30pm Online MWF 12pm Write answers in appropriate blanks. When no blanks are provided CIRCLE your
More informationBasic Probability Concepts
6.1 Basic Probability Concepts How likely is rain tomorrow? What are the chances that you will pass your driving test on the first attempt? What are the odds that the flight will be on time when you go
More informationNovember 8, Chapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance November 8, 2013 Last Time Probability Models and Rules Discrete Probability Models Equally Likely Outcomes Crystallographic notation The first symbol
More informationProbability. The Bag Model
Probability The Bag Model Imagine a bag (or box) containing balls of various kinds having various colors for example. Assume that a certain fraction p of these balls are of type A. This means N = total
More informationFundamental Counting Principle
Lesson 88 Probability with Combinatorics HL2 Math  Santowski Fundamental Counting Principle Fundamental Counting Principle can be used determine the number of possible outcomes when there are two or more
More informationIntermediate Math Circles November 1, 2017 Probability I
Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.
More information