A C E. Answers Investigation 3. Applications. 12, or or 1 4 c. Choose Spinner B, because the probability for hot dogs on Spinner A is


 Julie Lindsey
 4 years ago
 Views:
Transcription
1 Answers Investigation Applications. a. Answers will vary, but should be about for red, for blue, and for yellow. b. Possible answer: I divided the large red section in half, and then I could see that the spinner has six equal sections. The red occupies, or ; the blue occupies, or ; and the yellow occupies. c. Possible answer: These answers are not likely to be exactly the same, but if we do many trials they should be close. d. Possible answer: My answers should be closer to the actual fractions, because I would be using more data to determine them. e. No; the different colors make up different degrees of the total angle of the spinner. For example, there is a greater chance of landing on a space with red than on a space with blue, because the angles associated with red (80 ) are greater than the angles associated with blue (0 ) or yellow (0 ). f. Possible answers: I could score a point on both blue and yellow to make the game fair. This would give half the area to each of us. Or, I could score three points for landing on yellow, and neither of us could score when the spinner lands on blue. g. Possible answer: In spins, Player A would expect to score about times, Player B would expect to score about 8 times, and Player C would expect to score about times. To make the points that each player would accumulate the same, you could let Player A score points, Player B score points, and Player C score points; then each would expect points for spins.. a. You could choose either spinner, because Spinner A and Spinner B both have a probability of, or, for landing on pizza. b. Choose Spinner A, because the probability for lasagna on Spinner A is, and on Spinner B it is, or. or c. Choose Spinner B, because the probability for hot dogs on Spinner A is or, and on Spinner B it is, or.. a. Not equally likely; Region is more likely. Since Region has a bigger central angle associated with it than Region does, it has a greater theoretical probability. b. Equally likely; both sections have sides that make a 80 angle with the pointer s fixed point, or center of rotation.. The third data set ( ones, twos, and 5 threes) is from Spinner B. Students might argue that 0 trials are not enough to be certain which spinner generated which data set, and this is certainly true. Based on the spinners, it appears that the first data set is from Spinner C and the second data set is from Spinner A. 5. a. Spinner A; each player has the same amount of area, or central angle, in which to score. b. Possible answers: On Spinner B, the section makes up of the area, the sections make up, or, of the area, and the section makes up of the area. In four spins, Player can expect to score once, Player can expect to score twice, and Player can expect to score once. To make the game fair, you can give two points to Player if the pointer lands on, one point to Player if the pointer lands on, and two points to Player if the pointer lands on. In eight spins, Player can expect to score twice for a total of points = points, Player can expect to score four times for a total of point = points, and Player can expect to score twice for a total of points = points. What Do You Expect? Investigation
2 Answers Investigation. B 7. F On Spinner C, the sections make up, or, of the area, the sections make up, or, of the area, and the section makes up of the area. In spins, Player can expect to score twice, Player can expect to score three times, and Player can expect to score once. To make the game fair, you can give three points to Player if the pointer lands on, two points to Player if the pointer lands on, and six points to Player if the pointer lands on. In spins, Player can expect to score four times for a total of points = points, Player can expect to score six times for a total of points = points, and Player can expect to win twice for a total of points = points. Connections 8. a. Answers will vary. For a fair game, the explanation should give the chances for each outcome and show that the expected number of points for each player is the same over a reasonable number of spins. 9. A 0. G. A b. Answers will vary. For a notsofair game, the same sort of example should be given for points expected for each player over some fixed number of spins.. J Note: Carlos has not chosen a strategy that is likely to lead to frequent success, but since Ella cannot possibly win, then Carlos has a 00% chance of being the eventual winner.., or ; six out of the possible outcomes are doubles.. Fifteen equally likely combinations are possible: AB, AC, AD, AE, AF, BC, BD, BE, BF, CD, CE, CF, DE, DF, and EF. Of these, one is a matching pair, so the probability of winning is Fraction Decimal Percent % 0.5.5% % design is below. Lasagna should occupy of the circle, Hamburger should occupy of the circle, and Tuna should occupy of the circle , or about %. a. Students will have various ways of choosing this spinner. One possible What Do You Expect? Investigation
3 Answers Investigation b. 5%. Part (c) does not have the same probability as the others. The probability of getting one heads and one tails when you toss two coins is. Each of the others gives a probability of for spinach.. since 8 is equal to, 7 7 8, and since = 0., which is greater than a..% b..% c..% d. Answers will vary. Students who base their answers solely on the percentages will choose Player A (this is like looking at experimental probabilities of other people s data). Students may have good reasons for other answers (for example, Player B has more experience). Do not ignore reallife concerns that may appear nonmathematical. Students need to use mathematics sensibly along with their knowledge about other aspects of their lives to make good decisions. 7. a. No; the graph starts at 95%, so the bars are not proportional. b. Answers will vary. There are many relevant things you don t know. For example, you don t know how many trucks of each company were considered, or if each company has been making trucks for ten years. This last issue is important, because if Company A has manufactured most of its vehicles during the most recent five years, you would expect a higher percentage of Company A s trucks to still be on the road Students may argue that doubling 50% would give 00%, which means that it is a certainty that at least one even number would appear. But we know that we can get (, ), (, ), and so on. So 00% cannot be correct. Or, they may make a tree or list to show all the possibilities and count the outcomes that have at least one even number. 7 out of outcomes have at least one even number.. a. This pyramid would have four faces (a tetrahedron). b. If all faces are congruent, then the probability of the shaded face landing on the bottom is. c. You can make a pyramid with this, but the square base of the shape is larger than the other faces so the shape is likely to end up on that face more often. This would mean that all outcomes are not equally likely. This would make for an unfair game.. 5 9, or. 5, or ; the possible prime sums are,, 5, 7, and. There is one way to get a sum of, two ways to get a sum of, four ways to get a sum of 5, six ways to get a sum of 7, and two ways to get a sum of. So, there are = 5 ways to get a prime number.. The probability of getting a sum that is a factor of is greater. There are five ways to get, two ways to get, and one way to get, so the probability of getting a sum that is a factor of is 8, or 9. There are five ways to get and one way to get, so the probability of getting a sum that is a multiple of is, or What Do You Expect? Investigation
4 Answers Investigation 7. a. This table lists the possible products. Cube Cube This table shows how many ways each product can occur. Product Number of Ways b. There are = 9 ways to get an odd product. The probability Nina wins is 9. There are = 7 ways to get an even product, so P(Humberto wins) = 7. Students might recognize there is an alternative way to find these probabilities. The only way to get an odd product is with two odd factors. The probability of an odd product then is. To find the probability of an even product, students could use the complement, so the probability of an even product is It is not necessary to mention this if students do not come up with it on their own. c. This is not a fair game of chance, because Humberto has a better chance of winning than Nina does. To make the game fair, you could give Nina points each time she has a chance to score. This will mean that in a game of rolls, Nina would expect to score times, or times for a total of 9 points. Humberto would expect to score times, or 9 times for a total of 9 points. d. e., or ;the factors of are,, and. There is one way to get, two ways to get, and three ways to get, so there are + + = ways to get a factor of. Note: Some students may focus on the number of even products and the number of odd products rather than on the number of ways to get an odd or an even product; that is, there are only 8 different products, odd and even. If you find your students making this mistake, discuss the question with them, emphasizing that some products can be generated in more than one way. What Do You Expect? Investigation
5 Answers Investigation 8. a. Answers will vary. Every card may win something, but the value of what is won may be very small, for example, a stick of gum, so that winning might not be winning something of significant value to the winner. Regardless of whether students think the ad is legal, they need to give a reasonable explanation for their response. b. Answers will vary. An ad mentioning big prizes might be more exciting. c. Answers will vary. Students could bring ads from very diverse companies. Examine the ad to determine if it suggests that a contestant should expect to win. It is important that students are able to explain why this ad is deceptive and to suggest how the company could improve its ad. 9. Possible answer: No; most dentists probably do not recommend chewing gum at all, but feel that if their patients are going to chew gum anyway, it should be sugarless. 0. a. 50%; the students could flip a coin with heads = yellow and tails = green. The students should conduct at least 5 trials. Students can record what percent landed on yellow, but they cannot evaluate the chance that 70% landed on yellow from one run. b. This simulation shows more insects on the yellow part, but the percentages, 5% and 8%, are very close. This can be an experimental result that is not exactly like the theoretical result. Extensions... Answers may vary: One possibility is to put 9 regular table tennis balls in a container and add one ball with an invisible mark that only shows up under a special light. Out of the 0 balls, only that one wins.. Answers may vary: Every customer that goes into any of the stores in the chain gets a receipt. The receipt number is recorded in a computer linked to all the stores. At the end of the contest, the computer randomly chooses a receipt and the stores have a winner. 5. Answer may vary: The auto dealer puts a tub with 500 tiny toy cars in front of his store. Each person gets to choose a car. One out of every ten cars in the tub has a small dot on a tire. The people who draw a car with a dot win $500. What Do You Expect? 5 Investigation
Date Learning Target/s Classwork Homework SelfAssess Your Learning. Pg. 23: WDYE 3.1: Designing a Spinner. Pg. 56: WDYE 3.2: Making Decisions
What Do You Expect: Probability and Expected Value Name: Per: Investigation 3: Making Decisions and Investigation 4: Area Models Date Learning Target/s Classwork Homework SelfAssess Your Learning Fri,
More informationWhen a number cube is rolled once, the possible numbers that could show face up are
C3 Chapter 12 Understanding Probability Essential question: How can you describe the likelihood of an event? Example 1 Likelihood of an Event When a number cube is rolled once, the possible numbers that
More informationBellwork Write each fraction as a percent Evaluate P P C C 6
Bellwork 21915 Write each fraction as a percent. 1. 2. 3. 4. Evaluate. 5. 6 P 3 6. 5 P 2 7. 7 C 4 8. 8 C 6 1 Objectives Find the theoretical probability of an event. Find the experimental probability
More informationApplications. 28 How Likely Is It? P(green) = 7 P(yellow) = 7 P(red) = 7. P(green) = 7 P(purple) = 7 P(orange) = 7 P(yellow) = 7
Applications. A bucket contains one green block, one red block, and two yellow blocks. You choose one block from the bucket. a. Find the theoretical probability that you will choose each color. P(green)
More informationb. 2 ; the probability of choosing a white d. P(white) 25, or a a. Since the probability of choosing a
Applications. a. P(green) =, P(yellow) = 2, or 2, P(red) = 2 ; three of the four blocks are not red. d. 2. a. P(green) = 2 25, P(purple) = 6 25, P(orange) = 2 25, P(yellow) = 5 25, or 5 2 6 2 5 25 25 25
More informationLesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes
NYS COMMON CORE MAEMAICS CURRICULUM 7 : Calculating Probabilities for Chance Experiments with Equally Likely Classwork Examples: heoretical Probability In a previous lesson, you saw that to find an estimate
More informationLesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes
Lesson : Calculating Probabilities for Chance Experiments with Equally Likely Outcomes Classwork Example : heoretical Probability In a previous lesson, you saw that to find an estimate of the probability
More information3. a. P(white) =, or. b. ; the probability of choosing a white block. d. P(white) =, or. 4. a. = 1 b. 0 c. = 0
Answers Investigation ACE Assignment Choices Problem. Core, 6 Other Connections, Extensions Problem. Core 6 Other Connections 7 ; unassigned choices from previous problems Problem. Core 7 9 Other Connections
More information1. Decide whether the possible resulting events are equally likely. Explain. Possible resulting events
Applications. Decide whether the possible resulting events are equally likely. Explain. Action Possible resulting events a. You roll a number You roll an even number, or you roll an cube. odd number. b.
More informationUnit 6: What Do You Expect? Investigation 2: Experimental and Theoretical Probability
Unit 6: What Do You Expect? Investigation 2: Experimental and Theoretical Probability Lesson Practice Problems Lesson 1: Predicting to Win (Finding Theoretical Probabilities) 13 Lesson 2: Choosing Marbles
More information2. A bubblegum machine contains 25 gumballs. There are 12 green, 6 purple, 2 orange, and 5 yellow gumballs.
A C E Applications Connections Extensions Applications. A bucket contains one green block, one red block, and two yellow blocks. You choose one block from the bucket. a. Find the theoretical probability
More informationCHAPTER 9  COUNTING PRINCIPLES AND PROBABILITY
CHAPTER 9  COUNTING PRINCIPLES AND PROBABILITY Probability is the Probability is used in many realworld fields, such as insurance, medical research, law enforcement, and political science. Objectives:
More informationDate Learning Target/s Classwork Homework SelfAssess Your Learning. Pg. 23: WDYE 2.3: Designing a Fair Game
What Do You Expect: Probability and Expected Value Name: Per: Investigation 2: Experimental and Theoretical Probability Date Learning Target/s Classwork Homework SelfAssess Your Learning Mon, Feb. 29
More informationMath 7 /Unit 5 Practice Test: Probability
Math 7 /Unit 5 Practice Test: Probability Name Date 1. Define probability. 2. Define experimental probability.. Define sample space for an experiment 4. What makes experimental probability different from
More informationUNIT 5: RATIO, PROPORTION, AND PERCENT WEEK 20: Student Packet
Name Period Date UNIT 5: RATIO, PROPORTION, AND PERCENT WEEK 20: Student Packet 20.1 Solving Proportions 1 Add, subtract, multiply, and divide rational numbers. Use rates and proportions to solve problems.
More informationSection Theoretical and Experimental Probability...Wks 3
Name: Class: Date: Section 6.8......Theoretical and Experimental Probability...Wks 3. Eight balls numbered from to 8 are placed in a basket. One ball is selected at random. Find the probability that it
More informationPart 1: I can express probability as a fraction, decimal, and percent
Name: Pattern: Part 1: I can express probability as a fraction, decimal, and percent For #1 to #4, state the probability of each outcome. Write each answer as a) a fraction b) a decimal c) a percent Example:
More informationPractice Ace Problems
Unit 6: Moving Straight Ahead Investigation 2: Experimental and Theoretical Probability Practice Ace Problems Directions: Please complete the necessary problems to earn a maximum of 12 points according
More informationChapter 10 Practice Test Probability
Name: Class: Date: ID: A Chapter 0 Practice Test Probability Multiple Choice Identify the choice that best completes the statement or answers the question. Describe the likelihood of the event given its
More informationCommon Core Math Tutorial and Practice
Common Core Math Tutorial and Practice TABLE OF CONTENTS Chapter One Number and Numerical Operations Number Sense...4 Ratios, Proportions, and Percents...12 Comparing and Ordering...19 Equivalent Numbers,
More informationLesson 1: Chance Experiments
Student Outcomes Students understand that a probability is a number between and that represents the likelihood that an event will occur. Students interpret a probability as the proportion of the time that
More informatione. Are the probabilities you found in parts (a)(f) experimental probabilities or theoretical probabilities? Explain.
1. Josh is playing golf. He has 3 white golf balls, 4 yellow golf balls, and 1 red golf ball in his golf bag. At the first hole, he randomly draws a ball from his bag. a. What is the probability he draws
More informationName. Is the game fair or not? Prove your answer with math. If the game is fair, play it 36 times and record the results.
Homework 5.1C You must complete table. Use math to decide if the game is fair or not. If Period the game is not fair, change the point system to make it fair. Game 1 Circle one: Fair or Not 2 six sided
More informationUse this information to answer the following questions.
1 Lisa drew a token out of the bag, recorded the result, and then put the token back into the bag. She did this 30 times and recorded the results in a bar graph. Use this information to answer the following
More informationName: Unit 7 Study Guide 1. Use the spinner to name the color that fits each of the following statements.
1. Use the spinner to name the color that fits each of the following statements. green blue white white blue a. The spinner will land on this color about as often as it lands on white. b. The chance of
More informationBasic Probability. Let! = # 8 # < 13, # N ,., and / are the subsets of! such that  = multiples of four. = factors of 24 / = square numbers
Basic Probability Let! = # 8 # < 13, # N ,., and / are the subsets of! such that  = multiples of four. = factors of 24 / = square numbers (a) List the elements of!. (b) (i) Draw a Venn diagram to show
More information* How many total outcomes are there if you are rolling two dice? (this is assuming that the dice are different, i.e. 1, 6 isn t the same as a 6, 1)
Compound probability and predictions Objective: Student will learn counting techniques * Go over HW Review counting tree All possible outcomes is called a sample space Go through Problem on P. 12, #2
More informationEssential Question How can you list the possible outcomes in the sample space of an experiment?
. TEXAS ESSENTIAL KNOWLEDGE AND SKILLS G..B Sample Spaces and Probability Essential Question How can you list the possible outcomes in the sample space of an experiment? The sample space of an experiment
More informationIndependent Events B R Y
. Independent Events Lesson Objectives Understand independent events. Use the multiplication rule and the addition rule of probability to solve problems with independent events. Vocabulary independent
More informationWhat Do You Expect? Concepts
Important Concepts What Do You Expect? Concepts Examples Probability A number from 0 to 1 that describes the likelihood that an event will occur. Theoretical Probability A probability obtained by analyzing
More informationThis Probability Packet Belongs to:
This Probability Packet Belongs to: 1 2 Station #1: M & M s 1. What is the sample space of your bag of M&M s? 2. Find the theoretical probability of the M&M s in your bag. Then, place the candy back into
More information104 Theoretical Probability
Problem of the Day A spinner is divided into 4 different colored sections. It is designed so that the probability of spinning red is twice the probability of spinning green, the probability of spinning
More informationName: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11
Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value
More informationLesson 11.3 Independent Events
Lesson 11.3 Independent Events Draw a tree diagram to represent each situation. 1. Popping a balloon randomly from a centerpiece consisting of 1 black balloon and 1 white balloon, followed by tossing a
More informationSERIES Chance and Probability
F Teacher Student Book Name Series F Contents Topic Section Chance Answers and (pp. Probability 0) (pp. 0) ordering chance and events probability_ / / relating fractions to likelihood / / chance experiments
More informationUnit 7 Central Tendency and Probability
Name: Block: 7.1 Central Tendency 7.2 Introduction to Probability 7.3 Independent Events 7.4 Dependent Events 7.1 Central Tendency A central tendency is a central or value in a data set. We will look at
More informationChoose a circle to show how much each sentence is like you. Very Unlike Me. Unlike Me. Like Me. 01. I like maths at school. 02. I am good at maths.
Choose a circle to show how much each sentence is like you Very Unlike Me Unlike Me Like Me Very Like Me 1 2 3 4 01. I like maths at school. 02. I am good at maths. 03. My teacher thinks I am good at maths.
More informationName Date Class. Identify the sample space and the outcome shown for each experiment. 1. spinning a spinner
Name Date Class 0.5 Practice B Experimental Probability Identify the sample space and the outcome shown for each experiment.. spinning a spinner 2. tossing two coins Write impossible, unlikely, as likely
More informationChapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance FreeResponse 1. A spinner with regions numbered 1 to 4 is spun and a coin is tossed. Both the number spun and whether the coin lands heads or tails is
More informationWelcome! U4H2: Worksheet # s 27, 913, 16, 20. Updates: U4T is 12/12. Announcement: December 16 th is the last day I will accept late work.
Welcome! U4H2: Worksheet # s 27, 913, 16, 20 Updates: U4T is 12/12 Announcement: December 16 th is the last day I will accept late work. 1 Review U4H1 2 Theoretical Probability 3 Experimental Probability
More informationPROBABILITY M.K. HOME TUITION. Mathematics Revision Guides. Level: GCSE Foundation Tier
Mathematics Revision Guides Probability Page 1 of 18 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Foundation Tier PROBABILITY Version: 2.1 Date: 08102015 Mathematics Revision Guides Probability
More informationChance and Probability
G Student Book Name Series G Contents Topic Chance and probability (pp. ) probability scale using samples to predict probability tree diagrams chance experiments using tables location, location apply lucky
More informationChance and Probability
F Student Book Name Series F Contents Topic Chance and probability (pp. 0) ordering events relating fractions to likelihood chance experiments fair or unfair the mathletics cup create greedy pig solve
More informationName Class Date. Introducing Probability Distributions
Name Class Date Binomial Distributions Extension: Distributions Essential question: What is a probability distribution and how is it displayed? 86 CC.9 2.S.MD.5(+) ENGAGE Introducing Distributions Video
More informationMATH STUDENT BOOK. 7th Grade Unit 6
MATH STUDENT BOOK 7th Grade Unit 6 Unit 6 Probability and Graphing Math 706 Probability and Graphing Introduction 3 1. Probability 5 Theoretical Probability 5 Experimental Probability 13 Sample Space 20
More informationTEKSING TOWARD STAAR MATHEMATICS GRADE 7. Projection Masters
TEKSING TOWARD STAAR MATHEMATICS GRADE 7 Projection Masters Six Weeks 1 Lesson 1 STAAR Category 1 Grade 7 Mathematics TEKS 7.2A Understanding Rational Numbers A group of items or numbers is called a set.
More informationLesson 3: Chance Experiments with Equally Likely Outcomes
Lesson : Chance Experiments with Equally Likely Outcomes Classwork Example 1 Jamal, a 7 th grader, wants to design a game that involves tossing paper cups. Jamal tosses a paper cup five times and records
More informationLesson Lesson 3.7 ~ Theoretical Probability
Theoretical Probability Lesson.7 EXPLORE! sum of two number cubes Step : Copy and complete the chart below. It shows the possible outcomes of one number cube across the top, and a second down the left
More informationProbability and the Monty Hall Problem Rong Huang January 10, 2016
Probability and the Monty Hall Problem Rong Huang January 10, 2016 Warmup: There is a sequence of number: 1, 2, 4, 8, 16, 32, 64, How does this sequence work? How do you get the next number from the previous
More informationLesson 16.1 Assignment
Lesson 16.1 Assignment Name Date Rolling, Rolling, Rolling... Defining and Representing Probability 1. Rasheed is getting dressed in the dark. He reaches into his sock drawer to get a pair of socks. He
More informationFind the probability of an event by using the definition of probability
LESSON 101 Probability Lesson Objectives Find the probability of an event by using the definition of probability Vocabulary experiment (p. 522) trial (p. 522) outcome (p. 522) sample space (p. 522) event
More informationEx 1: A coin is flipped. Heads, you win $1. Tails, you lose $1. What is the expected value of this game?
AFM Unit 7 Day 5 Notes Expected Value and Fairness Name Date Expected Value: the weighted average of possible values of a random variable, with weights given by their respective theoretical probabilities.
More informationName Date Class. 2. dime. 3. nickel. 6. randomly drawing 1 of the 4 S s from a bag of 100 Scrabble tiles
Name Date Class Practice A Tina has 3 quarters, 1 dime, and 6 nickels in her pocket. Find the probability of randomly drawing each of the following coins. Write your answer as a fraction, as a decimal,
More informationName: Class: Date: ID: A
Class: Date: Chapter 0 review. A lunch menu consists of different kinds of sandwiches, different kinds of soup, and 6 different drinks. How many choices are there for ordering a sandwich, a bowl of soup,
More informationCh Probability Outcomes & Trials
Learning Intentions: Ch. 10.2 Probability Outcomes & Trials Define the basic terms & concepts of probability. Find experimental probabilities. Calculate theoretical probabilities. Vocabulary: Trial: realworld
More informationBasic Probability Ideas. Experiment  a situation involving chance or probability that leads to results called outcomes.
Basic Probability Ideas Experiment  a situation involving chance or probability that leads to results called outcomes. Random Experiment the process of observing the outcome of a chance event Simulation
More informationUnit 6: Probability Summative Assessment. 2. The probability of a given event can be represented as a ratio between what two numbers?
Math 7 Unit 6: Probability Summative Assessment Name Date Knowledge and Understanding 1. Explain the difference between theoretical and experimental probability. 2. The probability of a given event can
More informationGrade 8 Math Assignment: Probability
Grade 8 Math Assignment: Probability Part 1: Rock, Paper, Scissors  The Study of Chance Purpose An introduction of the basic information on probability and statistics Materials: Two sets of hands Paper
More informationProbability. March 06, J. Boulton MDM 4U1. P(A) = n(a) n(s) Introductory Probability
Most people think they understand odds and probability. Do you? Decision 1: Pick a card Decision 2: Switch or don't Outcomes: Make a tree diagram Do you think you understand probability? Probability Write
More informationThe Coin Toss Experiment
Experiments p. 1/1 The Coin Toss Experiment Perhaps the simplest probability experiment is the coin toss experiment. Experiments p. 1/1 The Coin Toss Experiment Perhaps the simplest probability experiment
More informationUnit 9: Probability Assignments
Unit 9: Probability Assignments #1: Basic Probability In each of exercises 1 & 2, find the probability that the spinner shown would land on (a) red, (b) yellow, (c) blue. 1. 2. Y B B Y B R Y Y B R 3. Suppose
More informationMEP Practice Book SA5
5 Probability 5.1 Probabilities MEP Practice Book SA5 1. Describe the probability of the following events happening, using the terms Certain Very likely Possible Very unlikely Impossible (d) (e) (f) (g)
More informationFair Game Review. Chapter 9. Simplify the fraction
Name Date Chapter 9 Simplify the fraction. 1. 10 12 Fair Game Review 2. 36 72 3. 14 28 4. 18 26 5. 32 48 6. 65 91 7. There are 90 students involved in the mentoring program. Of these students, 60 are girls.
More informationReview. Natural Numbers: Whole Numbers: Integers: Rational Numbers: Outline Sec Comparing Rational Numbers
FOUNDATIONS Outline Sec. 31 Gallo Name: Date: Review Natural Numbers: Whole Numbers: Integers: Rational Numbers: Comparing Rational Numbers Fractions: A way of representing a division of a whole into
More informationPark Forest Math Team. Meet #5. Selfstudy Packet
Park Forest Math Team Meet #5 Selfstudy Packet Problem Categories for this Meet: 1. Mystery: Problem solving 2. Geometry: Angle measures in plane figures including supplements and complements 3. Number
More informationGeorgia Department of Education Georgia Standards of Excellence Framework GSE Geometry Unit 6
How Odd? Standards Addressed in this Task MGSE912.S.CP.1 Describe categories of events as subsets of a sample space using unions, intersections, or complements of other events (or, and, not). MGSE912.S.CP.7
More informationWhat Do You Expect Unit (WDYE): Probability and Expected Value
Name: Per: What Do You Expect Unit (WDYE): Probability and Expected Value Investigations 1 & 2: A First Look at Chance and Experimental and Theoretical Probability Date Learning Target/s Classwork Homework
More informationPRE TEST KEY. Math in a Cultural Context*
PRE TEST KEY Salmon Fishing: Investigations into A 6 th grade module in the Math in a Cultural Context* UNIVERSITY OF ALASKA FAIRBANKS Student Name: PRE TEST KEY Grade: Teacher: School: Location of School:
More informationLesson 15.5: Independent and Dependent Events
Lesson 15.5: Independent and Dependent Events Sep 26 10:07 PM 1 Work with a partner. You have three marbles in a bag. There are two green marbles and one purple marble. Randomly draw a marble from the
More informationA. 15 B. 24 C. 45 D. 54
A spinner is divided into 8 equal sections. Lara spins the spinner 120 times. It lands on purple 30 times. How many more times does Lara need to spin the spinner and have it land on purple for the relative
More information#2. A coin is tossed 40 times and lands on heads 21 times. What is the experimental probability of the coin landing on tails?
1 PreAP Geometry Chapter 14 Test Review Standards/Goals: A.1.f.: I can find the probability of a simple event. F.1.c.: I can use area to solve problems involving geometric probability. S.CP.1: I can define
More informationProbability Essential Math 12 Mr. Morin
Probability Essential Math 12 Mr. Morin Name: Slot: Introduction Probability and Odds Single Event Probability and Odds Two and Multiple Event Experimental and Theoretical Probability Expected Value (Expected
More informationPRE TEST. Math in a Cultural Context*
P grade PRE TEST Salmon Fishing: Investigations into A 6P th module in the Math in a Cultural Context* UNIVERSITY OF ALASKA FAIRBANKS Student Name: Grade: Teacher: School: Location of School: Date: *This
More informationIntro to Probability
Intro to Probability Random Experiment A experiment is random if: 1) the outcome depends on chance. In other words, the outcome cannot be predicted with certainty (can t know 100%). 2) the set of all possible
More informationCOMPOUND EVENTS. Judo Math Inc.
COMPOUND EVENTS Judo Math Inc. 7 th grade Statistics Discipline: Black Belt Training Order of Mastery: Compound Events 1. What are compound events? 2. Using organized Lists (7SP8) 3. Using tables (7SP8)
More informationout one marble and then a second marble without replacing the first. What is the probability that both marbles will be white?
Example: Leah places four white marbles and two black marbles in a bag She plans to draw out one marble and then a second marble without replacing the first What is the probability that both marbles will
More informationMATH STUDENT BOOK. 6th Grade Unit 7
MATH STUDENT BOOK 6th Grade Unit 7 Unit 7 Probability and Geometry MATH 607 Probability and Geometry. PROBABILITY 5 INTRODUCTION TO PROBABILITY 6 COMPLEMENTARY EVENTS SAMPLE SPACE 7 PROJECT: THEORETICAL
More informationMathacle. Name: Date:
Quiz Probability 1.) A telemarketer knows from past experience that when she makes a call, the probability that someone will answer the phone is 0.20. What is probability that the next two phone calls
More informationLesson 8: The Difference Between Theoretical Probabilities and Estimated Probabilities
Lesson 8: The Difference Between Theoretical Probabilities and Estimated Probabilities Did you ever watch the beginning of a Super Bowl game? After the traditional handshakes, a coin is tossed to determine
More information1. How to identify the sample space of a probability experiment and how to identify simple events
Statistics Chapter 3 Name: 3.1 Basic Concepts of Probability Learning objectives: 1. How to identify the sample space of a probability experiment and how to identify simple events 2. How to use the Fundamental
More informationSection A Calculating Probabilities & Listing Outcomes Grade F D
Name: Teacher Assessment Section A Calculating Probabilities & Listing Outcomes Grade F D 1. A fair ordinary sixsided dice is thrown once. The boxes show some of the possible outcomes. Draw a line from
More informationMath 102 Practice for Test 3
Math 102 Practice for Test 3 Name Show your work and write all fractions and ratios in simplest form for full credit. 1. If you draw a single card from a standard 52card deck what is P(King face card)?
More informationgreen, green, green, green, green The favorable outcomes of the event are blue and red.
5 Chapter Review Review Key Vocabulary experiment, p. 6 outcomes, p. 6 event, p. 6 favorable outcomes, p. 6 probability, p. 60 relative frequency, p. 6 Review Examples and Exercises experimental probability,
More informationWhat Do You Expect? Probability and Expected Value. Evaluating Games of Chance Analyzing Situations Using an Area Model
What Do You Expect? Probability and Expected Value Unit Opener..................................................... 2 Mathematical Highlights.......................................... 4 Evaluating Games
More informationNAME DATE PERIOD. Study Guide and Intervention
91 Section Title The probability of a simple event is a ratio that compares the number of favorable outcomes to the number of possible outcomes. Outcomes occur at random if each outcome occurs by chance.
More informationCCM6+7+ Unit 11 ~ Page 1. Name Teacher: Townsend ESTIMATED ASSESSMENT DATES:
CCM6+7+ Unit 11 ~ Page 1 CCM6+7+ UNIT 11 PROBABILITY Name Teacher: Townsend ESTIMATED ASSESSMENT DATES: Unit 11 Vocabulary List 2 Simple Event Probability 37 Expected Outcomes Making Predictions 89 Theoretical
More informationYear End Review. Central Tendency 1. Find the mean, median and mode for this set of numbers: 4, 5, 6, 3, 7, 4, 4, 6, 7 mean. median.
Math 8 Name: Year End Review Central Tendency 1. Find the mean, median and mode for this set of numbers: 4, 5, 6, 3, 7, 4, 4, 6, 7 mean median mode Operations with Fractions 2. Solve. Show all your work.
More informationName: Probability, Part 1 March 4, 2013
1) Assuming all sections are equal in size, what is the probability of the spinner below stopping on a blue section? Write the probability as a fraction. 2) A bag contains 3 red marbles, 4 blue marbles,
More informationTopic : ADDITION OF PROBABILITIES (MUTUALLY EXCLUSIVE EVENTS) TIME : 4 X 45 minutes
Worksheet 6 th Topic : ADDITION OF PROBABILITIES (MUTUALLY EXCLUSIVE EVENTS) TIME : 4 X 45 minutes STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of
More informationProbability of Independent Events. If A and B are independent events, then the probability that both A and B occur is: P(A and B) 5 P(A) p P(B)
10.5 a.1, a.5 TEKS Find Probabilities of Independent and Dependent Events Before You found probabilities of compound events. Now You will examine independent and dependent events. Why? So you can formulate
More information12.1 Practice A. Name Date. In Exercises 1 and 2, find the number of possible outcomes in the sample space. Then list the possible outcomes.
Name Date 12.1 Practice A In Exercises 1 and 2, find the number of possible outcomes in the sample space. Then list the possible outcomes. 1. You flip three coins. 2. A clown has three purple balloons
More informationMath 7 Notes  Unit 7B (Chapter 11) Probability
Math 7 Notes  Unit 7B (Chapter 11) Probability Probability Syllabus Objective: (7.2)The student will determine the theoretical probability of an event. Syllabus Objective: (7.4)The student will compare
More informationCH 13. Probability and Data Analysis
11.1: Find Probabilities and Odds 11.2: Find Probabilities Using Permutations 11.3: Find Probabilities Using Combinations 11.4: Find Probabilities of Compound Events 11.5: Analyze Surveys and Samples 11.6:
More information1. Theoretical probability is what should happen (based on math), while probability is what actually happens.
Name: Date: / / QUIZ DAY! FillintheBlanks: 1. Theoretical probability is what should happen (based on math), while probability is what actually happens. 2. As the number of trials increase, the experimental
More informationALL FRACTIONS SHOULD BE IN SIMPLEST TERMS
Math 7 Probability Test Review Name: Date Hour Directions: Read each question carefully. Answer each question completely. ALL FRACTIONS SHOULD BE IN SIMPLEST TERMS! Show all your work for full credit!
More informationMath 7, Unit 5: Probability  NOTES
Math 7, Unit 5: Probability  NOTES NVACS 7. SP.C.5  Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers
More informationPROBABILITY. 1. Introduction. Candidates should able to:
PROBABILITY Candidates should able to: evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events (e.g for the total score when two fair dice are thrown), or by calculation
More informationChance and Probability
Series Student Chance and Probability My name F Copyright 009 P Learning. All rights reserved. First edition printed 009 in Australia. A catalogue record for this book is available from P Learning Ltd.
More informationMEP Practice Book ES5. 1. A coin is tossed, and a die is thrown. List all the possible outcomes.
5 Probability MEP Practice Book ES5 5. Outcome of Two Events 1. A coin is tossed, and a die is thrown. List all the possible outcomes. 2. A die is thrown twice. Copy the diagram below which shows all the
More informationWorksheets for GCSE Mathematics. Probability. mrmathematics.com Maths Resources for Teachers. Handling Data
Worksheets for GCSE Mathematics Probability mrmathematics.com Maths Resources for Teachers Handling Data Probability Worksheets Contents Differentiated Independent Learning Worksheets Probability Scales
More information