Name: Unit 7 Study Guide 1. Use the spinner to name the color that fits each of the following statements.


 Stephanie Evans
 3 years ago
 Views:
Transcription
1 1. Use the spinner to name the color that fits each of the following statements. green blue white white blue a. The spinner will land on this color about as often as it lands on white. b. The chance of getting this color is 1 6. c. The probability of landing on this color is greater than 30%. 2. In 12 spins, the spinner lands on green times. Explain how this is possible if the spinner should only land on green 1 out of every 6 times. 3. Answer the following questions about making random draws from a deck of five cards numbe 1, 2, 3,, and 5. a. What is the probability of drawing a number 1? Express the probability as a fraction, decimal, and percent. b. What is the probability of not drawing a number 1? Express the probability as a fraction, decimal, and percent. c. Suppose you draw the number 3. What is the probability that 3 will come up on the next draw? Assume that the cards have no memory. Express the probability as a fraction, decimal, and percent.. While making random draws from a deck of five cards numbe 1, 2, 3,, and 5, if you draw a card 0 times, putting the card back and mixing the deck after each draw, about how many times would you expect to draw the number? 5. Balls are dropped, one at a time, into the chute shown below. Each time the chute divides, the ball has an equal chance of going down any of the chutes. Thirtysix balls are dropped into the chute. Fill in the boxes in the tree diagram to show how many balls you would expect to go down each chute.
2 6. Balls are dropped, one at a time, into the chute shown below. Each time the chute divides, the ball has an equal chance of going down any of the chutes. Seventytwo balls are dropped into the chute. Fill in the boxes in the tree diagram to show how many balls you would expect to go down each chute. 7. Mary and Trent designed the game Lucky Draw for their school carnival. To play, draw a card from a standard deck of cards. Replace the card after each draw. If you draw a card you lose. If you draw a card, you get to draw again. If you draw a card on the second draw, you win the prize. If you draw a card on the second draw, you lose. Make a tree diagram to help you answer the question below. a. What is the probability of winning Lucky Draw? b. If 108 people play Lucky Draw, how many would you expect to win? c. Explain why this is not a fair game. d. How would you change the rules to make Lucky Draw a fair game? 8. Steve and Christine designed the game Lucky Marble for their school carnival. To play, draw a marble blindly from a bag with one green marble and three marbles. Replace the marble after
3 each draw. If you draw a green marble you lose. If you draw a marble, you get to draw again. If you draw a marble on the second draw, you win the prize. If you draw a green marble on the second draw, you lose. Make a tree diagram to help you answer the question below. a. What is the probability of winning Lucky Marble? b. If 96 people play Lucky Marble, how many would you expect to win? c. Explain why this is not a fair game. d. How would you change the rules to make Lucky Marble a fair game? 9. The Venn diagram below shows the number of students in Mr. Penn s class that have a dog, a cat, or both. Use the diagram to answer the following questions. a. How many students have a dog? b. How many students have a cat but not a dog? c. How many students have both a cat and a dog? d. How many students are represented in the diagram? dogs cats The Venn diagram below shows the number of students in Mr. Penn s class that have a dog, a cat, or both. Use the diagram to answer the following questions. a. How many students have a dog? b. How many students have a cat but not a dog? c. How many students have both a cat and a dog? d. How many students are represented in the diagram? dogs cats Suppose a coin is tossed at random onto the gameboard shown below. What is the probability that it will land inside the circle? Use 22 for. Express your answer as a fraction and a 7 percent.
4 18 in. 8 in. Solve each equation x 3 x F19I HG 9 K J 17 y 38 y 3 9 F H G I K J Solve each equation. 1. F1I HG 5 K J 13 y 28 y 5 F H G I K J
5 [1] a. blue b. green c. [2] Sample answer: The actual results, in a small sample of trials, is often very different from the expected probability. The more trials that are done, the closer the results will be to the expected probability. [3] a. 1 5, 0. 2, 20% b. 5, 08., 80% c. 1 5, 0. 2, 20% [] 8 times [5] [6]
6 [7] win prize Name: a. 1 b. 27 people c. Sample answer: The chances of winning and losing are not equal. d. Sample answer: If you draw a card, you win. [8] 3 win prize green green 9 a. 16 b. 5 people c. Sample answer: The chances of winning and losing are not equal. d. Sample answer: If you draw a green marble, you win. [9] a. 18 students b. 3 students c. 6 students d. 21 students [10] a. 12 students b. 5 students c. students d. 17 students
7 [11] ; 62.08% [12] 3 [13] Solution: y 18 [1] Solution: y 10
episteme Probability
episteme Probability Problem Set 3 Please use CAPITAL letters FIRST NAME LAST NAME SCHOOL CLASS DATE / / Set 3 1 episteme, 2010 Set 3 2 episteme, 2010 Coin A fair coin is one which is equally likely to
More informationSection Theoretical and Experimental Probability...Wks 3
Name: Class: Date: Section 6.8......Theoretical and Experimental Probability...Wks 3. Eight balls numbered from to 8 are placed in a basket. One ball is selected at random. Find the probability that it
More informationWhen a number cube is rolled once, the possible numbers that could show face up are
C3 Chapter 12 Understanding Probability Essential question: How can you describe the likelihood of an event? Example 1 Likelihood of an Event When a number cube is rolled once, the possible numbers that
More informationPart 1: I can express probability as a fraction, decimal, and percent
Name: Pattern: Part 1: I can express probability as a fraction, decimal, and percent For #1 to #4, state the probability of each outcome. Write each answer as a) a fraction b) a decimal c) a percent Example:
More informationProbability and Randomness. Day 1
Probability and Randomness Day 1 Randomness and Probability The mathematics of chance is called. The probability of any outcome of a chance process is a number between that describes the proportion of
More informationLesson Lesson 3.7 ~ Theoretical Probability
Theoretical Probability Lesson.7 EXPLORE! sum of two number cubes Step : Copy and complete the chart below. It shows the possible outcomes of one number cube across the top, and a second down the left
More informationLesson 1: Chance Experiments
Student Outcomes Students understand that a probability is a number between and that represents the likelihood that an event will occur. Students interpret a probability as the proportion of the time that
More informationMath 7 /Unit 5 Practice Test: Probability
Math 7 /Unit 5 Practice Test: Probability Name Date 1. Define probability. 2. Define experimental probability.. Define sample space for an experiment 4. What makes experimental probability different from
More informationName Date Trial 1: Capture distances with only decimeter markings. Name Trial 1 Trial 2 Trial 3 Average
Decimal Drop Name Date Trial 1: Capture distances with only decimeter markings. Name Trial 1 Trial 2 Trial 3 Average Trial 2: Capture distances with centimeter markings Name Trial 1 Trial 2 Trial 3 Average
More informationChapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance FreeResponse 1. A spinner with regions numbered 1 to 4 is spun and a coin is tossed. Both the number spun and whether the coin lands heads or tails is
More informationMath 7 Notes  Unit 7B (Chapter 11) Probability
Math 7 Notes  Unit 7B (Chapter 11) Probability Probability Syllabus Objective: (7.2)The student will determine the theoretical probability of an event. Syllabus Objective: (7.4)The student will compare
More informationUnit 6: What Do You Expect? Investigation 2: Experimental and Theoretical Probability
Unit 6: What Do You Expect? Investigation 2: Experimental and Theoretical Probability Lesson Practice Problems Lesson 1: Predicting to Win (Finding Theoretical Probabilities) 13 Lesson 2: Choosing Marbles
More informationPROBABILITY M.K. HOME TUITION. Mathematics Revision Guides. Level: GCSE Foundation Tier
Mathematics Revision Guides Probability Page 1 of 18 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Foundation Tier PROBABILITY Version: 2.1 Date: 08102015 Mathematics Revision Guides Probability
More informationMath 1313 Section 6.2 Definition of Probability
Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability
More informationUNIT 5: RATIO, PROPORTION, AND PERCENT WEEK 20: Student Packet
Name Period Date UNIT 5: RATIO, PROPORTION, AND PERCENT WEEK 20: Student Packet 20.1 Solving Proportions 1 Add, subtract, multiply, and divide rational numbers. Use rates and proportions to solve problems.
More informationName Date Class. 2. dime. 3. nickel. 6. randomly drawing 1 of the 4 S s from a bag of 100 Scrabble tiles
Name Date Class Practice A Tina has 3 quarters, 1 dime, and 6 nickels in her pocket. Find the probability of randomly drawing each of the following coins. Write your answer as a fraction, as a decimal,
More information2. A bubblegum machine contains 25 gumballs. There are 12 green, 6 purple, 2 orange, and 5 yellow gumballs.
A C E Applications Connections Extensions Applications. A bucket contains one green block, one red block, and two yellow blocks. You choose one block from the bucket. a. Find the theoretical probability
More informationPractice Ace Problems
Unit 6: Moving Straight Ahead Investigation 2: Experimental and Theoretical Probability Practice Ace Problems Directions: Please complete the necessary problems to earn a maximum of 12 points according
More informationLesson 16.1 Assignment
Lesson 16.1 Assignment Name Date Rolling, Rolling, Rolling... Defining and Representing Probability 1. Rasheed is getting dressed in the dark. He reaches into his sock drawer to get a pair of socks. He
More informationA C E. Answers Investigation 3. Applications. 12, or or 1 4 c. Choose Spinner B, because the probability for hot dogs on Spinner A is
Answers Investigation Applications. a. Answers will vary, but should be about for red, for blue, and for yellow. b. Possible answer: I divided the large red section in half, and then I could see that the
More informationIntro to Probability
Intro to Probability Random Experiment A experiment is random if: 1) the outcome depends on chance. In other words, the outcome cannot be predicted with certainty (can t know 100%). 2) the set of all possible
More informationBasic Probability. Let! = # 8 # < 13, # N ,., and / are the subsets of! such that  = multiples of four. = factors of 24 / = square numbers
Basic Probability Let! = # 8 # < 13, # N ,., and / are the subsets of! such that  = multiples of four. = factors of 24 / = square numbers (a) List the elements of!. (b) (i) Draw a Venn diagram to show
More informationLesson 11.3 Independent Events
Lesson 11.3 Independent Events Draw a tree diagram to represent each situation. 1. Popping a balloon randomly from a centerpiece consisting of 1 black balloon and 1 white balloon, followed by tossing a
More informationMATH STUDENT BOOK. 7th Grade Unit 6
MATH STUDENT BOOK 7th Grade Unit 6 Unit 6 Probability and Graphing Math 706 Probability and Graphing Introduction 3 1. Probability 5 Theoretical Probability 5 Experimental Probability 13 Sample Space 20
More informationApplications. 28 How Likely Is It? P(green) = 7 P(yellow) = 7 P(red) = 7. P(green) = 7 P(purple) = 7 P(orange) = 7 P(yellow) = 7
Applications. A bucket contains one green block, one red block, and two yellow blocks. You choose one block from the bucket. a. Find the theoretical probability that you will choose each color. P(green)
More informationLesson 3: Chance Experiments with Equally Likely Outcomes
Lesson : Chance Experiments with Equally Likely Outcomes Classwork Example 1 Jamal, a 7 th grader, wants to design a game that involves tossing paper cups. Jamal tosses a paper cup five times and records
More informationCHAPTER 9  COUNTING PRINCIPLES AND PROBABILITY
CHAPTER 9  COUNTING PRINCIPLES AND PROBABILITY Probability is the Probability is used in many realworld fields, such as insurance, medical research, law enforcement, and political science. Objectives:
More informationMath 1070 Sample Exam 1
University of Connecticut Department of Mathematics Math 1070 Sample Exam 1 Exam 1 will cover sections 4.14.7 and 5.15.4. This sample exam is intended to be used as one of several resources to help you
More informationBenchmark Test : Grade 7 Math. Class/Grade
Name lass/grade ate enchmark: M.7.P.7. enchmark: M.7.P.7. William tossed a coin four times while waiting for his bus at the bus stop. The first time it landed on heads. The second time it landed on tails.
More informationMiniUnit. Data & Statistics. Investigation 1: Correlations and Probability in Data
MiniUnit Data & Statistics Investigation 1: Correlations and Probability in Data I can Measure Variation in Data and Strength of Association in TwoVariable Data Lesson 3: Probability Probability is a
More informationCommon Core Math Tutorial and Practice
Common Core Math Tutorial and Practice TABLE OF CONTENTS Chapter One Number and Numerical Operations Number Sense...4 Ratios, Proportions, and Percents...12 Comparing and Ordering...19 Equivalent Numbers,
More informationMaking Predictions with Theoretical Probability. ESSENTIAL QUESTION How do you make predictions using theoretical probability?
L E S S O N 13.3 Making Predictions with Theoretical Probability 7.SP.3.6 predict the approximate relative frequency given the probability. Also 7.SP.3.7a ESSENTIAL QUESTION How do you make predictions
More informationMathematics 3201 Test (Unit 3) Probability FORMULAES
Mathematics 3201 Test (Unit 3) robability Name: FORMULAES ( ) A B A A B A B ( A) ( B) ( A B) ( A and B) ( A) ( B) art A : lace the letter corresponding to the correct answer to each of the following in
More informationLAMC Junior Circle February 3, Oleg Gleizer. Warmup
LAMC Junior Circle February 3, 2013 Oleg Gleizer oleg1140@gmail.com Warmup Problem 1 Compute the following. 2 3 ( 4) + 6 2 Problem 2 Can the value of a fraction increase, if we add one to the numerator
More informationTEKSING TOWARD STAAR MATHEMATICS GRADE 7. Projection Masters
TEKSING TOWARD STAAR MATHEMATICS GRADE 7 Projection Masters Six Weeks 1 Lesson 1 STAAR Category 1 Grade 7 Mathematics TEKS 7.2A Understanding Rational Numbers A group of items or numbers is called a set.
More informationb) Find the exact probability of seeing both heads and tails in three tosses of a fair coin. (Theoretical Probability)
Math 1351 Activity 2(Chapter 11)(Due by EOC Mar. 26) Group # 1. A fair coin is tossed three times, and we would like to know the probability of getting both a heads and tails to occur. Here are the results
More informationChapter 4: Probability
Student Outcomes for this Chapter Section 4.1: Contingency Tables Students will be able to: Relate Venn diagrams and contingency tables Calculate percentages from a contingency table Calculate and empirical
More informationa) Getting 10 +/ 2 head in 20 tosses is the same probability as getting +/ heads in 320 tosses
Question 1 pertains to tossing a fair coin (8 pts.) Fill in the blanks with the correct numbers to make the 2 scenarios equally likely: a) Getting 10 +/ 2 head in 20 tosses is the same probability as
More informationMath 1313 Conditional Probability. Basic Information
Math 1313 Conditional Probability Basic Information We have already covered the basic rules of probability, and we have learned the techniques for solving problems with large sample spaces. Next we will
More informationProbability Essential Math 12 Mr. Morin
Probability Essential Math 12 Mr. Morin Name: Slot: Introduction Probability and Odds Single Event Probability and Odds Two and Multiple Event Experimental and Theoretical Probability Expected Value (Expected
More informationProbability. Probabilty Impossibe Unlikely Equally Likely Likely Certain
PROBABILITY Probability The likelihood or chance of an event occurring If an event is IMPOSSIBLE its probability is ZERO If an event is CERTAIN its probability is ONE So all probabilities lie between 0
More informationProbability Review 41
Probability Review 41 For the following problems, give the probability to four decimals, or give a fraction, or if necessary, use scientific notation. Use P(A) = 1  P(not A) 1) A coin is tossed 6 times.
More informationALL FRACTIONS SHOULD BE IN SIMPLEST TERMS
Math 7 Probability Test Review Name: Date Hour Directions: Read each question carefully. Answer each question completely. ALL FRACTIONS SHOULD BE IN SIMPLEST TERMS! Show all your work for full credit!
More informationMAT 17: Introduction to Mathematics Final Exam Review Packet. B. Use the following definitions to write the indicated set for each exercise below:
MAT 17: Introduction to Mathematics Final Exam Review Packet A. Using set notation, rewrite each set definition below as the specific collection of elements described enclosed in braces. Use the following
More informationProbability and the Monty Hall Problem Rong Huang January 10, 2016
Probability and the Monty Hall Problem Rong Huang January 10, 2016 Warmup: There is a sequence of number: 1, 2, 4, 8, 16, 32, 64, How does this sequence work? How do you get the next number from the previous
More information4.2.5 How much can I expect to win?
4..5 How much can I expect to win? Expected Value Different cultures have developed creative forms of games of chance. For example, native Hawaiians play a game called Konane, which uses markers and a
More informationFind the probability of an event by using the definition of probability
LESSON 101 Probability Lesson Objectives Find the probability of an event by using the definition of probability Vocabulary experiment (p. 522) trial (p. 522) outcome (p. 522) sample space (p. 522) event
More informationMaking Predictions with Theoretical Probability
? LESSON 6.3 Making Predictions with Theoretical Probability ESSENTIAL QUESTION Proportionality 7.6.H Solve problems using qualitative and quantitative predictions and comparisons from simple experiments.
More informationProbability Quiz Review Sections
CP1 Math 2 Unit 9: Probability: Day 7/8 Topic Outline: Probability Quiz Review Sections 5.025.04 Name A probability cannot exceed 1. We express probability as a fraction, decimal, or percent. Probabilities
More informationPractice 91. Probability
Practice 91 Probability You spin a spinner numbered 1 through 10. Each outcome is equally likely. Find the probabilities below as a fraction, decimal, and percent. 1. P(9) 2. P(even) 3. P(number 4. P(multiple
More informationUse this information to answer the following questions.
1 Lisa drew a token out of the bag, recorded the result, and then put the token back into the bag. She did this 30 times and recorded the results in a bar graph. Use this information to answer the following
More informationSECONDARY 2 Honors ~ Lesson 9.2 Worksheet Intro to Probability
SECONDARY 2 Honors ~ Lesson 9.2 Worksheet Intro to Probability Name Period Write all probabilities as fractions in reduced form! Use the given information to complete problems 13. Five students have the
More information136 Probabilities of Mutually Exclusive Events
Determine whether the events are mutually exclusive or not mutually exclusive. Explain your reasoning. 1. drawing a card from a standard deck and getting a jack or a club The jack of clubs is an outcome
More informationGeometric Distribution
Geometric Distribution Review Binomial Distribution Properties The experiment consists of n repeated trials. Each trial can result in just two possible outcomes. The probability of success is the same
More informationPage 1 of 22. Website: Mobile:
Exercise 15.1 Question 1: Complete the following statements: (i) Probability of an event E + Probability of the event not E =. (ii) The probability of an event that cannot happen is. Such as event is called.
More informationPRE TEST. Math in a Cultural Context*
P grade PRE TEST Salmon Fishing: Investigations into A 6P th module in the Math in a Cultural Context* UNIVERSITY OF ALASKA FAIRBANKS Student Name: Grade: Teacher: School: Location of School: Date: *This
More informationEssential Question How can you list the possible outcomes in the sample space of an experiment?
. TEXAS ESSENTIAL KNOWLEDGE AND SKILLS G..B Sample Spaces and Probability Essential Question How can you list the possible outcomes in the sample space of an experiment? The sample space of an experiment
More informationPRE TEST KEY. Math in a Cultural Context*
PRE TEST KEY Salmon Fishing: Investigations into A 6 th grade module in the Math in a Cultural Context* UNIVERSITY OF ALASKA FAIRBANKS Student Name: PRE TEST KEY Grade: Teacher: School: Location of School:
More information104 Theoretical Probability
Problem of the Day A spinner is divided into 4 different colored sections. It is designed so that the probability of spinning red is twice the probability of spinning green, the probability of spinning
More informationIndependent Events B R Y
. Independent Events Lesson Objectives Understand independent events. Use the multiplication rule and the addition rule of probability to solve problems with independent events. Vocabulary independent
More informationChapter 3: PROBABILITY
Chapter 3 Math 3201 1 3.1 Exploring Probability: P(event) = Chapter 3: PROBABILITY number of outcomes favourable to the event total number of outcomes in the sample space An event is any collection of
More informationLesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes
NYS COMMON CORE MAEMAICS CURRICULUM 7 : Calculating Probabilities for Chance Experiments with Equally Likely Classwork Examples: heoretical Probability In a previous lesson, you saw that to find an estimate
More informationNAME DATE PERIOD. Study Guide and Intervention
91 Section Title The probability of a simple event is a ratio that compares the number of favorable outcomes to the number of possible outcomes. Outcomes occur at random if each outcome occurs by chance.
More informationThere is no class tomorrow! Have a good weekend! Scores will be posted in Compass early Friday morning J
STATISTICS 100 EXAM 3 Fall 2016 PRINT NAME (Last name) (First name) *NETID CIRCLE SECTION: L1 12:30pm L2 3:30pm Online MWF 12pm Write answers in appropriate blanks. When no blanks are provided CIRCLE your
More information1. Decide whether the possible resulting events are equally likely. Explain. Possible resulting events
Applications. Decide whether the possible resulting events are equally likely. Explain. Action Possible resulting events a. You roll a number You roll an even number, or you roll an cube. odd number. b.
More informationThese Are a Few of My Favorite Things
Lesson.1 Assignment Name Date These Are a Few of My Favorite Things Modeling Probability 1. A board game includes the spinner shown in the figure that players must use to advance a game piece around the
More information3.6 Theoretical and Experimental Coin Tosses
wwwck12org Chapter 3 Introduction to Discrete Random Variables 36 Theoretical and Experimental Coin Tosses Here you ll simulate coin tosses using technology to calculate experimental probability Then you
More informationUnit 7 Central Tendency and Probability
Name: Block: 7.1 Central Tendency 7.2 Introduction to Probability 7.3 Independent Events 7.4 Dependent Events 7.1 Central Tendency A central tendency is a central or value in a data set. We will look at
More information3. a. P(white) =, or. b. ; the probability of choosing a white block. d. P(white) =, or. 4. a. = 1 b. 0 c. = 0
Answers Investigation ACE Assignment Choices Problem. Core, 6 Other Connections, Extensions Problem. Core 6 Other Connections 7 ; unassigned choices from previous problems Problem. Core 7 9 Other Connections
More informationLesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes
Lesson : Calculating Probabilities for Chance Experiments with Equally Likely Outcomes Classwork Example : heoretical Probability In a previous lesson, you saw that to find an estimate of the probability
More information1. a. Miki tosses a coin 50 times, and the coin shows heads 28 times. What fraction of the 50 tosses is heads? What percent is this?
A C E Applications Connections Extensions Applications 1. a. Miki tosses a coin 50 times, and the coin shows heads 28 times. What fraction of the 50 tosses is heads? What percent is this? b. Suppose the
More informationProbability and Genetics #77
Questions: Five study Questions EQ: What is probability and how does it help explain the results of genetic crosses? Probability and Heredity In football they use the coin toss to determine who kicks and
More informationName: Class: Date: Probability/Counting Multiple Choice PreTest
Name: _ lass: _ ate: Probability/ounting Multiple hoice PreTest Multiple hoice Identify the choice that best completes the statement or answers the question. 1 The dartboard has 8 sections of equal area.
More information6) A) both; happy B) neither; not happy C) one; happy D) one; not happy
MATH 00  PRACTICE TEST 2 Millersville University, Spring 202 Ron Umble, Instr. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find all natural
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Statistics Homework Ch 5 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability
More informationBell Work. WarmUp Exercises. Two sixsided dice are rolled. Find the probability of each sum or 7
WarmUp Exercises Two sixsided dice are rolled. Find the probability of each sum. 1. 7 Bell Work 2. 5 or 7 3. You toss a coin 3 times. What is the probability of getting 3 heads? WarmUp Notes Exercises
More informationCOMPOUND EVENTS. Judo Math Inc.
COMPOUND EVENTS Judo Math Inc. 7 th grade Statistics Discipline: Black Belt Training Order of Mastery: Compound Events 1. What are compound events? 2. Using organized Lists (7SP8) 3. Using tables (7SP8)
More informationWelcome! U4H2: Worksheet # s 27, 913, 16, 20. Updates: U4T is 12/12. Announcement: December 16 th is the last day I will accept late work.
Welcome! U4H2: Worksheet # s 27, 913, 16, 20 Updates: U4T is 12/12 Announcement: December 16 th is the last day I will accept late work. 1 Review U4H1 2 Theoretical Probability 3 Experimental Probability
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
6. Practice Problems Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the probability. ) A bag contains red marbles, blue marbles, and 8
More informationStat 20: Intro to Probability and Statistics
Stat 20: Intro to Probability and Statistics Lecture 17: Using the Normal Curve with Box Models Tessa L. ChildersDay UC Berkeley 23 July 2014 By the end of this lecture... You will be able to: Draw and
More informationA. 15 B. 24 C. 45 D. 54
A spinner is divided into 8 equal sections. Lara spins the spinner 120 times. It lands on purple 30 times. How many more times does Lara need to spin the spinner and have it land on purple for the relative
More informationUnit 11 Probability. Round 1 Round 2 Round 3 Round 4
Study Notes 11.1 Intro to Probability Unit 11 Probability Many events can t be predicted with total certainty. The best thing we can do is say how likely they are to happen, using the idea of probability.
More informationProbability and Statistics 15% of EOC
MGSE912.S.CP.1 1. Which of the following is true for A U B A: 2, 4, 6, 8 B: 5, 6, 7, 8, 9, 10 A. 6, 8 B. 2, 4, 6, 8 C. 2, 4, 5, 6, 6, 7, 8, 8, 9, 10 D. 2, 4, 5, 6, 7, 8, 9, 10 2. This Venn diagram shows
More informationVenn Diagram Problems
Venn Diagram Problems 1. In a mums & toddlers group, 15 mums have a daughter, 12 mums have a son. a) Julia says 15 + 12 = 27 so there must be 27 mums altogether. Explain why she could be wrong: b) There
More informationFair Game Review. Chapter 9. Simplify the fraction
Name Date Chapter 9 Simplify the fraction. 1. 10 12 Fair Game Review 2. 36 72 3. 14 28 4. 18 26 5. 32 48 6. 65 91 7. There are 90 students involved in the mentoring program. Of these students, 60 are girls.
More informationChapter 10 Practice Test Probability
Name: Class: Date: ID: A Chapter 0 Practice Test Probability Multiple Choice Identify the choice that best completes the statement or answers the question. Describe the likelihood of the event given its
More informationData Collection Sheet
Data Collection Sheet Name: Date: 1 Step Race Car Game Play 5 games where player 1 moves on roles of 1, 2, and 3 and player 2 moves on roles of 4, 5, # of times Player1 wins: 3. What is the theoretical
More informationExam III Review Problems
c Kathryn Bollinger and Benjamin Aurispa, November 10, 2011 1 Exam III Review Problems Fall 2011 Note: Not every topic is covered in this review. Please also take a look at the previous WeekinReviews
More informationMATH8 SOL8.12 Probability CW Exam not valid for Paper Pencil Test Sessions
MTH SOL. Probability W Exam not valid for Paper Pencil Test Sessions [Exam I:NFP0 box contains five cards lettered,,,,. If one card is selected at random from the box and NOT replaced, what is the probability
More informationWhat Do You Expect Unit (WDYE): Probability and Expected Value
Name: Per: What Do You Expect Unit (WDYE): Probability and Expected Value Investigations 1 & 2: A First Look at Chance and Experimental and Theoretical Probability Date Learning Target/s Classwork Homework
More information4.12 Practice problems
4. Practice problems In this section we will try to apply the concepts from the previous few sections to solve some problems. Example 4.7. When flipped a coin comes up heads with probability p and tails
More informationWhat Do You Expect? Concepts
Important Concepts What Do You Expect? Concepts Examples Probability A number from 0 to 1 that describes the likelihood that an event will occur. Theoretical Probability A probability obtained by analyzing
More informationProbability. facts mental math. problem solving. Power Up F
LESSON 7 Probability Power Up facts mental math Power Up F a. Estimation: The width of the paperback book is inches. Round this measurement to the nearest inch. in. b. Geometry: An octagon has how many
More informationReview. Natural Numbers: Whole Numbers: Integers: Rational Numbers: Outline Sec Comparing Rational Numbers
FOUNDATIONS Outline Sec. 31 Gallo Name: Date: Review Natural Numbers: Whole Numbers: Integers: Rational Numbers: Comparing Rational Numbers Fractions: A way of representing a division of a whole into
More informationDate Learning Target/s Classwork Homework SelfAssess Your Learning. Pg. 23: WDYE 3.1: Designing a Spinner. Pg. 56: WDYE 3.2: Making Decisions
What Do You Expect: Probability and Expected Value Name: Per: Investigation 3: Making Decisions and Investigation 4: Area Models Date Learning Target/s Classwork Homework SelfAssess Your Learning Fri,
More informationProbability. Sometimes we know that an event cannot happen, for example, we cannot fly to the sun. We say the event is impossible
Probability Sometimes we know that an event cannot happen, for example, we cannot fly to the sun. We say the event is impossible Impossible In summer, it doesn t rain much in Cape Town, so on a chosen
More information5.6. Independent Events. INVESTIGATE the Math. Reflecting
5.6 Independent Events YOU WILL NEED calculator EXPLORE The Fortin family has two children. Cam determines the probability that the family has two girls. Rushanna determines the probability that the family
More informationDate Learning Target/s Classwork Homework SelfAssess Your Learning. Pg. 23: WDYE 2.3: Designing a Fair Game
What Do You Expect: Probability and Expected Value Name: Per: Investigation 2: Experimental and Theoretical Probability Date Learning Target/s Classwork Homework SelfAssess Your Learning Mon, Feb. 29
More informationName: Class: Date: ID: A
Class: Date: Chapter 0 review. A lunch menu consists of different kinds of sandwiches, different kinds of soup, and 6 different drinks. How many choices are there for ordering a sandwich, a bowl of soup,
More informationGeometry 5. G. Number and Operations in Base Ten 5. NBT. Pieces of Eight Building Fluency: coordinates and compare decimals Materials: pair of dice, gameboard, paper Number of Players:  Directions:. Each
More information