# MEP Practice Book SA5

Size: px
Start display at page:

Transcription

1 5 Probability 5.1 Probabilities MEP Practice Book SA5 1. Describe the probability of the following events happening, using the terms Certain Very likely Possible Very unlikely Impossible (d) (e) (f) (g) The next Prime Minister will be Sir Cliff Richard. It will rain tomorrow. England will win the next Football European Cup. You will be late for school tomorrow. You will have a cold next winter. You will get maths homework tonight You will get full marks in your next maths test.. If I toss a fair coin 50 times, how many times would you expect to get heads?. If I throw a fair die 60 times, how many times would you expect to get 6 1 an even number? 5. Simple Probability 1. The probability that you will be late for school is What is the probability of not being late?. With a fair die, the probability of throwing a 6 is 1 6. What is the probability of not throwing a 6?. The probability of it raining tomorrow is 5. What is the probability of it not raining tomorrow? Is it more likely to rain or not to rain? 5

2 4. The probability of a 'white' Christmas is What is the probability of it not being a 'white' Christmas? 5. The probability of Exeter City football team coming last in Division next year is estimated as 0.. What is the probability of Exeter City not coming last? 6. The probability of Newcastle United football team beating Manchester United is estimated as 0.. The probability of Manchester United beating Newcastle United is 0.4. Why do these two probabilities not add up to 1? 7. 'The probability that Nottingham Forest will win the F.A. Cup is 1..' 'The probability that Birmingham City will win the F.A. Cup is 0.5.' Explain why the value of probability in each of these statements is not possible. (NEAB) 5. Outcome of Two Events 1. A coin is tossed, and a die is thrown. List all the possible outcomes.. A die is thrown twice. Copy the diagram below which shows all the possible outcomes. 6 5 nd throw st throw On your diagram, show outcomes which have the same number on both throws, a total score of 8. 54

3 . When this spinner is used, the scores 1,,, 4 and 5 are equally likely. For one spin, (i) what is the probability of scoring a, (ii) what is the probability of not scoring a? When playing a game the spinner is spun twice and the scores are added to give a total. Write down all the different ways of getting a total of The diagram shows a spinner, labelled A. The result shown is Blue. Spinner A is a fair spinner. What is the probability of not getting Green with spinner A? Green Red Blue A The diagram shows another spinner, labelled B. The result shown is. B Spinner B is weighted (biased). The probability of getting a is 0. and the probability of getting a 1 is What is the probability of getting a with spinner B? A game is played with the two spinners. They are spun at the same time. The combined result shown in the diagram is Blue. Green Red 1 Blue Write down the total number of different possible combined results. (LON) 5. A coin is tossed 4 times. List all the possible outcomes. 55

4 5.4 Finding Probabilities Using Relative Frequency 1. Last year it rained on 150 days out of 65. Estimate the probability of it raining on any one day next year. How could your estimate be improved?. Throw a die 10 times. How many times would you expect to obtain the number 6? In an experiment, the following frequencies were obtained. Number Frequency Do you think that the die is fair? If not, give an explanation why not and estimate what you think are the probabilities of obtaining each number.. There are 44 students in a group. Each student plays either hockey or tennis but not both. Hockey Tennis Total Girls 8 0 Boys 18 4 Total 44 Complete the table. A student is chosen at random from the whole group. Calculate the probability that this student is a girl. A girl is chosen at random. Calculate the probability that she plays hockey. 4. John recorded the results of his football team's last 4 matches. W W D L W L W D Key: W Win D L L W W W L L D Draw D W L W W L W L L Lose 56

5 Organise and display this information in a table. Janet told John that, since there are three possible results of any match, the probability that the next match would be drawn was 1. (i) (ii) Explain why Janet's argument is wrong. What might John suggest for the probability of a draw, based on the past performance of his team? Julia estimates that the probability that her hockey team will win their next match is 0.6 and that the probability they will lose is 0. What is the probability that her team will draw? (MEG) 5. The number of serious accidents on a stretch of motorway in each month of one year are given below. January 16 February 1 March 9 April 10 May 6 June 5 July 7 August 8 September 6 October 10 November 9 December 1 Estimate the average number of accidents per month over the whole year. Estimate the probability of an accident happening on any particular day. Would your estimate change if you know that the particular day is in January? 5.5 Determining Probabilities 1. In a raffle 00 tickets are sold. Peter buys 40 tickets. What is the probability that he wins first prize? Give your answer as a fraction in its simplest form. 57

6 . A box contains only blue pencils and red pencils. 6 of the pencils are blue and 5 are red. A pencil is taken at random from the box. Write down the probability that a blue pencil will be taken, a blue pencil will not be taken. (LON). A bag contains 8 marbles of which are green, are red and the rest yellow. A marble is taken out at random. Find the probability that the marble is green, not yellow. 4. In an assortment of 6 calculators, 7 have defective switches, 1 have scratched screens and no calculator has both defects. A calculator is chosen at random for inspection. Find the probability that it has a defective switch, it has no defects. 5. In a raffle, a winning ticket is to be drawn from 00 tickets numbered 1 to 00. Yusof holds 1 ticket, Yanling holds 9 tickets and Sam holds 4 tickets. What is the probability of each of them winning the prize? 6. Each letter of the word 'MATHEMATICS' is written on a separate card. The 11 cards are placed face downwards. A card is drawn at random. What is the probability of picking a card with the letter C, the letter A, a vowel, (d) a consonant? 7. One hundred raffle tickets, numbered from 1 to 100 are placed in a drum. A ticket is taken from the drum at random. What is the probability that the number on the ticket is a multiple of 5? What is the probability that the number on the ticket is a square number? 8. Zaheda conducted a probability experiment using a packet of 0 sweets. She counted the number of sweets of each colour. Her results are shown in the table. Red Green Orange

7 Zaheda is going to take one sweet at random from the packet. Write down the probability that Zaheda will take a green sweet from the packet, that the sweet Zaheda takes will not be red. (LON) 9. The spinner shown is biased. The probabilities of getting a particular colour are shown in the table below. Yellow Red Green Blue Complete the table to show the probability of getting GREEN. Colour RED YELLOW BLUE GREEN Probability The spinner is spun once. What is the probability of getting either RED or BLUE? The spinner is spun 50 times. Approximately how many times would you expect to get RED? (NEAB) 10. A bag contains 50 discs numbered 1 to 50. A disc is selected at random. Find the probability that the number on the disc is an even number, is an odd number, has the digit Probability of Two Events 1. A fair dice is thrown twice. What is the probability of obtaining two sixes? What is the probability of obtaining exactly one six?. A coin is biased so that the probability that it lands showing heads is. The coin is tossed three times. Find the probability that no heads are obtained, more heads than tails are obtained. 59

8 . If a coin and a die are tossed together, calculate the probability of getting a tail with the coin and an even number with the die, the probability of a head with the coin and a number less than three on the die, the probability of a head with the coin and a multiple of on the die. 4. A box contains 5 red, yellow and blue discs. Two discs are drawn at random from the box one after another. What is the probability that the first disc drawn will be red? If the first disc drawn is blue and it is not replaced, what is the probability of drawing a yellow disc on the second draw? 5. Consider the experiment of rolling two dice and noting the two values uppermost. The score is the sum of these two numbers. Complete the table of outcomes, as shown below From your table, deduce the probability that the score: equals 1, is less than 1, equals 7, (d) is less than 7. Remember that each of the 6 entries in the table is equally likely. 6. Two bags contain 9 marbles each. In each bag, there are 4 red marbles, white marbles and green marbles. One marble is drawn from the first bag. Find the probability that it is white. One marble is drawn from the second bag. Find the probability that it is either red or green. These marbles are then returned to their original bags. One marble is drawn from each bag. Calculate the probability that the two marbles are (i) (ii) red, of different colours. 60

9 7. When throwing a dice, the possible outcomes are 1,,, 4, 5 or 6. A particular dice is biased so that the probability of throwing a 6 is 0.5. What is the probability of not throwing a 6? The outcomes 1,,, 4 and 5 have the same probability as each other. What is the probability of throwing a 4? The dice is thrown twice. (i) How many ways are there of reaching a total score of 10? (ii) What is the probability that the total score is 1? (MEG) 5.7 Use of Tree Diagrams 1. A fair coin is tossed three times. By drawing a tree diagram, determine the probability of obtaining exactly two heads, at least two heads.. George passes three sets of traffic lights on his way to work. The lights work independently of each other. The probability that he has to stop at any set of traffic lights is 0.5. What is the probability that George stops at two or three sets of traffic lights?. The faces of a die are marked with the numbers,, 4, 4, 6, 6. If the die is rolled twice what is the probability of getting a 4 each time, either a or a 6 each time, or a and a 6? If the die is rolled three times, what is the probability of getting a each time, (d) either a 4 or a 6 each time, or a combination of 4s and 6s? 4. There are two spinners, one marked into equal sections numbered 1,,, 4, 5 and the second spinner marked into equal sections A, B, C. Calculate the probability of getting a and a B, a 5 and an A, an even number and an A, (d) an odd number and either B or C. 61

10 5. Rob has a bag containing blue balls, 4 red balls and 1 green ball. Sarah has a bag containing blue balls and red balls. The balls are identical except for colour. Rob chooses a ball at random from his bag and Sarah chooses a ball at random from her bag. Draw a tree diagram and write the probability of each of the events on each of the branches of the diagram. Calculate the probability that both Rob and Sarah will choose a blue ball. Calculate the probability that the ball chosen by Rob will be a different colour from the ball chosen by Sarah, (MEG) 6. A letter has a first class stamp on it. The probability that it will be delivered on the next working day is What is the probability that the letter will not be delivered on the next working day? Sam posts letters with first class stamps. Copy and complete the tree diagram. Write all the missing probabilities on the appropriate branches. First letter Second letter Delivered next working day Delivered next working day Not delivered next working day Not delivered next working day Delivered next working day Not delivered next working day Calculate the probability that both letters will be delivered on the next working day. (LON) 6

11 5.8 Multiplication for Independent Events 1. A die is thrown and a coin is tossed. What is the probability of obtaining an even number on the die and a Head on the coin?. Three dice are thrown and their scores are added. What is the probability of scoring in total ?. A day which is fine has probability 4 of being followed by another fine day. A day which is wet has a probability of being followed by another wet day. Given that days are classified either fine or wet, and that June 6th is fine, set out a tree diagram for June 7th, 8th and 9th. Calculate the probability that at least two of the three days are fine. 4. On a stretch of main road there are 4 independent sets of traffic lights, each phased for 10 seconds red, 60 seconds green. What is the probability that a motorist arriving at random will have to stop at least once? 5. Four balls are drawn at random, one after the other and without replacement, from a bag containing 5 Red, 4 White, 8 Blue and Purple balls. Find the probability that you obtain one ball of each colour. 6. A fair dice is thrown three times. What is the probability of throwing sixes? What is the probability of throwing a six on the first throw, a six on the second throw but not a six on the third throw? What is the probability of throwing exactly two sixes in the three throws? (d) What is the probability of throwing at least two sixes in the three throws? 7. The diagrams show two fair spinners. Both spinners are spun and the scores are added together What is the probability that the sum of the scores is at least 5? (NEAB) 6

12 8. Mrs Collins drives to work. On her way to work she has to cross two sets of traffic lights marked A and B in the diagram. The probability of having to stop at the traffic lights is shown in the table. WORK B A HOME Traffic Probability of having to stop A 0. B 0.6 On Monday Mrs Collins drives to work. What is the probability that she will not have to stop at traffic lights A? What is the probability that she will not have to stop at either set of traffic lights? What is the probability that she will have to stop at only one set of traffic lights? 9. A car driver has 4 keys, only one of which will open the car door. Given that the keys are otherwise indistinguishable, find the probability (before he starts trying them) that the door will open on the first, second, third and fourth attempts. Consider two cases where (i) he discards each key which fails to open the door, (ii) he returns each key to the collection before choosing the next one at random. Consider the cumulative probabilities with each strategy. i.e. the probability that he will have succeeded by the first, second, third and fourth attempts. 10. A company secretary carries out a survey of incoming post to compare the delivery times of 1st and nd class letters. His results are shown below. Days to deliver 1 4 1st class letter 9% 7% 1% 0% nd class letter 5% 55% 4% 6% 64

14 1. START 'SWEET SIXTEEN' is a game for any number of players. To play the game, players take it in turns to throw a fair die and then move their counter the number of places shown uppermost on the die. If a player lands on one of the shaded squares the player must start again. The first player to land on a square 16 is the winner. If a player would move past square 16 on a throw, the player is not allowed to move and misses that turn. What is the probability that a player lands on a shaded square on the first throw? A player moves to square on the first throw. What is the probability that the player lands on a shaded square on the second throw? (i) A player is on square 1 after three turns. Write, in the order thrown, three scores the player could have had. (ii) In how many different ways could a player have reached square 1 with three throws? Show working to support your answer. (d) (i) What is the minimum number of turns necessary to complete the game? (ii) What is the probability of this happening? 5.9 Mutually Exclusive Events 1. A man throws a die and a coin. Find the probability that he will get the number followed by a head, an even number followed by a tail.. In an experiment, a card is drawn from a pack of playing cards and a coin is tossed. Find the probability of obtaining a card which is a king and a head on the coin, the ace of diamonds and a tail on the coin. 66

15 . In an experiment consisting of throwing a die followed by drawing a card from a pack of playing cards, find the probability of obtaining an odd number on the die and a card which is an ace, a six on the die and a picture card, a six on the die and a club. 4. In a certain class, 1 of the pupils read the local newspaper and watch the local news on television. None of these pupils read the local newspaper and also watch the local news on television. What is the probability that a pupil chosen at random reads the local newspaper or watch television? 5. In an inter-school mathematics quiz, the probability of school A winning the competition is 1, the probability of school B winning is 1 6 and the probability of school C winning is Find the probability that B or C wins the competition, A, B or C wins the competition, none of these wins the competition. 6. A box contains buttons of various colours. The probability of drawing a red button at random is 1 5 and the probability of drawing a white button at random in 7. What is the probability of drawing neither a red nor a white button? 7. A box contains eight marbles: 1 is red, are blue and 5 are green, One marble is drawn at random from the box. A second marble is drawn at random from the remaining seven marbles in the box. Find the probability that both marbles are green. If the first marble is red, find the probability that the second marble is blue. 8. Nine slips of paper are numbered 1 to 9. A slip is drawn at random. This is replaced before a second slip is drawn. Find the probability that one is an odd number and the other is an even number. 67

### MEP Practice Book ES5. 1. A coin is tossed, and a die is thrown. List all the possible outcomes.

5 Probability MEP Practice Book ES5 5. Outcome of Two Events 1. A coin is tossed, and a die is thrown. List all the possible outcomes. 2. A die is thrown twice. Copy the diagram below which shows all the

### Worksheets for GCSE Mathematics. Probability. mr-mathematics.com Maths Resources for Teachers. Handling Data

Worksheets for GCSE Mathematics Probability mr-mathematics.com Maths Resources for Teachers Handling Data Probability Worksheets Contents Differentiated Independent Learning Worksheets Probability Scales

### Section A Calculating Probabilities & Listing Outcomes Grade F D

Name: Teacher Assessment Section A Calculating Probabilities & Listing Outcomes Grade F D 1. A fair ordinary six-sided dice is thrown once. The boxes show some of the possible outcomes. Draw a line from

### LC OL Probability. ARNMaths.weebly.com. As part of Leaving Certificate Ordinary Level Math you should be able to complete the following.

A Ryan LC OL Probability ARNMaths.weebly.com Learning Outcomes As part of Leaving Certificate Ordinary Level Math you should be able to complete the following. Counting List outcomes of an experiment Apply

### 1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 100 calculators is tested.

1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 0 calculators is tested. Write down the expected number of faulty calculators in the sample. Find

### Probability. Sometimes we know that an event cannot happen, for example, we cannot fly to the sun. We say the event is impossible

Probability Sometimes we know that an event cannot happen, for example, we cannot fly to the sun. We say the event is impossible Impossible In summer, it doesn t rain much in Cape Town, so on a chosen

### Probability Essential Math 12 Mr. Morin

Probability Essential Math 12 Mr. Morin Name: Slot: Introduction Probability and Odds Single Event Probability and Odds Two and Multiple Event Experimental and Theoretical Probability Expected Value (Expected

### Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11

Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value

### KS3 Levels 3-8. Unit 3 Probability. Homework Booklet. Complete this table indicating the homework you have been set and when it is due by.

Name: Maths Group: Tutor Set: Unit 3 Probability Homework Booklet KS3 Levels 3-8 Complete this table indicating the homework you have been set and when it is due by. Date Homework Due By Handed In Please

### This unit will help you work out probability and use experimental probability and frequency trees. Key points

Get started Probability This unit will help you work out probability and use experimental probability and frequency trees. AO Fluency check There are 0 marbles in a bag. 9 of the marbles are red, 7 are

### Topic : ADDITION OF PROBABILITIES (MUTUALLY EXCLUSIVE EVENTS) TIME : 4 X 45 minutes

Worksheet 6 th Topic : ADDITION OF PROBABILITIES (MUTUALLY EXCLUSIVE EVENTS) TIME : 4 X 45 minutes STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of

### THOMAS WHITHAM SIXTH FORM

THOMAS WHITHAM SIXTH FORM Handling Data Levels 6 8 S. J. Cooper Probability Tree diagrams & Sample spaces Statistical Graphs Scatter diagrams Mean, Mode & Median Year 9 B U R N L E Y C A M P U S, B U R

### Revision Topic 17: Probability Estimating probabilities: Relative frequency

Revision Topic 17: Probability Estimating probabilities: Relative frequency Probabilities can be estimated from experiments. The relative frequency is found using the formula: number of times event occurs.

### STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of probability in problem solving.

Worksheet 4 th Topic : PROBABILITY TIME : 4 X 45 minutes STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of probability in problem solving. BASIC COMPETENCY:

### STRAND: PROBABILITY Unit 1 Probability of One Event

STRAND: PROBABILITY Unit 1 Probability of One Event TEXT Contents Section 1.1 Probabilities 1.2 Straightforward Probability 1.3 Finding Probabilities Using Relative Frequency 1.4 Determining Probabilities

### , x {1, 2, k}, where k > 0. (a) Write down P(X = 2). (1) (b) Show that k = 3. (4) Find E(X). (2) (Total 7 marks)

1. The probability distribution of a discrete random variable X is given by 2 x P(X = x) = 14, x {1, 2, k}, where k > 0. Write down P(X = 2). (1) Show that k = 3. Find E(X). (Total 7 marks) 2. In a game

### Page 1 of 22. Website: Mobile:

Exercise 15.1 Question 1: Complete the following statements: (i) Probability of an event E + Probability of the event not E =. (ii) The probability of an event that cannot happen is. Such as event is called.

### PROBABILITY. 1. Introduction. Candidates should able to:

PROBABILITY Candidates should able to: evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events (e.g for the total score when two fair dice are thrown), or by calculation

### PROBABILITY M.K. HOME TUITION. Mathematics Revision Guides. Level: GCSE Foundation Tier

Mathematics Revision Guides Probability Page 1 of 18 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Foundation Tier PROBABILITY Version: 2.1 Date: 08-10-2015 Mathematics Revision Guides Probability

### Math : Probabilities

20 20. Probability EP-Program - Strisuksa School - Roi-et Math : Probabilities Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 200 :Wattana Toutip wattou@kku.ac.th http://home.kku.ac.th/wattou

### Unit 7 Central Tendency and Probability

Name: Block: 7.1 Central Tendency 7.2 Introduction to Probability 7.3 Independent Events 7.4 Dependent Events 7.1 Central Tendency A central tendency is a central or value in a data set. We will look at

### Chapter-wise questions. Probability. 1. Two coins are tossed simultaneously. Find the probability of getting exactly one tail.

Probability 1. Two coins are tossed simultaneously. Find the probability of getting exactly one tail. 2. 26 cards marked with English letters A to Z (one letter on each card) are shuffled well. If one

### PROBABILITY Case of cards

WORKSHEET NO--1 PROBABILITY Case of cards WORKSHEET NO--2 Case of two die Case of coins WORKSHEET NO--3 1) Fill in the blanks: A. The probability of an impossible event is B. The probability of a sure

### 4.1 Sample Spaces and Events

4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an

### Instructions: Choose the best answer and shade the corresponding space on the answer sheet provide. Be sure to include your name and student numbers.

Math 3201 Unit 3 Probability Assignment 1 Unit Assignment Name: Part 1 Selected Response: Instructions: Choose the best answer and shade the corresponding space on the answer sheet provide. Be sure to

### Chapter 1 - Set Theory

Midterm review Math 3201 Name: Chapter 1 - Set Theory Part 1: Multiple Choice : 1) U = {hockey, basketball, golf, tennis, volleyball, soccer}. If B = {sports that use a ball}, which element would be in

### Notes #45 Probability as a Fraction, Decimal, and Percent. As a result of what I learn today, I will be able to

Notes #45 Probability as a Fraction, Decimal, and Percent As a result of what I learn today, I will be able to Probabilities can be written in three ways:,, and. Probability is a of how an event is to.

### Functional Skills Mathematics

Functional Skills Mathematics Level Learning Resource Probability D/L. Contents Independent Events D/L. Page - Combined Events D/L. Page - 9 West Nottinghamshire College D/L. Information Independent Events

### Unit 9: Probability Assignments

Unit 9: Probability Assignments #1: Basic Probability In each of exercises 1 & 2, find the probability that the spinner shown would land on (a) red, (b) yellow, (c) blue. 1. 2. Y B B Y B R Y Y B R 3. Suppose

### Find the probability of an event by using the definition of probability

LESSON 10-1 Probability Lesson Objectives Find the probability of an event by using the definition of probability Vocabulary experiment (p. 522) trial (p. 522) outcome (p. 522) sample space (p. 522) event

### A. 15 B. 24 C. 45 D. 54

A spinner is divided into 8 equal sections. Lara spins the spinner 120 times. It lands on purple 30 times. How many more times does Lara need to spin the spinner and have it land on purple for the relative

### out one marble and then a second marble without replacing the first. What is the probability that both marbles will be white?

Example: Leah places four white marbles and two black marbles in a bag She plans to draw out one marble and then a second marble without replacing the first What is the probability that both marbles will

### Independent Events B R Y

. Independent Events Lesson Objectives Understand independent events. Use the multiplication rule and the addition rule of probability to solve problems with independent events. Vocabulary independent

### 5.6. Independent Events. INVESTIGATE the Math. Reflecting

5.6 Independent Events YOU WILL NEED calculator EXPLORE The Fortin family has two children. Cam determines the probability that the family has two girls. Rushanna determines the probability that the family

### Probability Interactives from Spire Maths A Spire Maths Activity

Probability Interactives from Spire Maths A Spire Maths Activity https://spiremaths.co.uk/ia/ There are 12 sets of Probability Interactives: each contains a main and plenary flash file. Titles are shown

### CLASSIFIED A-LEVEL PROBABILITY S1 BY: MR. AFDZAL Page 1

5 At a zoo, rides are offered on elephants, camels and jungle tractors. Ravi has money for only one ride. To decide which ride to choose, he tosses a fair coin twice. If he gets 2 heads he will go on the

### KS3 Questions Probability. Level 3 to 5.

KS3 Questions Probability. Level 3 to 5. 1. A survey was carried out on the shoe size of 25 men. The results of the survey were as follows: 5 Complete the tally chart and frequency table for this data.

### Probability Test Review Math 2. a. What is? b. What is? c. ( ) d. ( )

Probability Test Review Math 2 Name 1. Use the following venn diagram to answer the question: Event A: Odd Numbers Event B: Numbers greater than 10 a. What is? b. What is? c. ( ) d. ( ) 2. In Jason's homeroom

### Lesson 1: Chance Experiments

Student Outcomes Students understand that a probability is a number between and that represents the likelihood that an event will occur. Students interpret a probability as the proportion of the time that

### Chance and Probability

F Student Book Name Series F Contents Topic Chance and probability (pp. 0) ordering events relating fractions to likelihood chance experiments fair or unfair the mathletics cup create greedy pig solve

### D1 Probability of One Event

D Probability of One Event Year 3/4. I have 3 bags of marbles. Bag A contains 0 marbles, Bag B contains 20 marbles and Bag C contains 30 marbles. One marble in each bag is red. a) Join up each statement

### Probability 1. Name: Total Marks: 1. An unbiased spinner is shown below.

Probability 1 A collection of 9-1 Maths GCSE Sample and Specimen questions from AQA, OCR and Pearson-Edexcel. Name: Total Marks: 1. An unbiased spinner is shown below. (a) Write a number to make each sentence

### Probability. Probabilty Impossibe Unlikely Equally Likely Likely Certain

PROBABILITY Probability The likelihood or chance of an event occurring If an event is IMPOSSIBLE its probability is ZERO If an event is CERTAIN its probability is ONE So all probabilities lie between 0

### OCR Maths S1. Topic Questions from Papers. Probability

OCR Maths S1 Topic Questions from Papers Probability PhysicsAndMathsTutor.com 16 Louise and Marie play a series of tennis matches. It is given that, in any match, the probability that Louise wins the first

### Diamond ( ) (Black coloured) (Black coloured) (Red coloured) ILLUSTRATIVE EXAMPLES

CHAPTER 15 PROBABILITY Points to Remember : 1. In the experimental approach to probability, we find the probability of the occurence of an event by actually performing the experiment a number of times

### Section 7.1 Experiments, Sample Spaces, and Events

Section 7.1 Experiments, Sample Spaces, and Events Experiments An experiment is an activity with observable results. 1. Which of the follow are experiments? (a) Going into a room and turning on a light.

### Use the table above to fill in this simpler table. Buttons. Sample pages. Large. Small. For the next month record the weather like this.

5:01 Drawing Tables Use the picture to fill in the two-way table. Buttons Red Blue Green Use the table above to fill in this simpler table. Buttons Red Blue Green Show the data from Question 1 on a graph.

### COMPOUND EVENTS. Judo Math Inc.

COMPOUND EVENTS Judo Math Inc. 7 th grade Statistics Discipline: Black Belt Training Order of Mastery: Compound Events 1. What are compound events? 2. Using organized Lists (7SP8) 3. Using tables (7SP8)

### STRAND: PROBABILITY Unit 2 Probability of Two or More Events

STRAND: PROAILITY Unit 2 Probability of Two or More Events TEXT Contents Section 2. Outcome of Two Events 2.2 Probability of Two Events 2. Use of Tree Diagrams 2 Probability of Two or More Events 2. Outcome

### 1. The masses, x grams, of the contents of 25 tins of Brand A anchovies are summarized by x =

P6.C1_C2.E1.Representation of Data and Probability 1. The masses, x grams, of the contents of 25 tins of Brand A anchovies are summarized by x = 1268.2 and x 2 = 64585.16. Find the mean and variance of

### Instructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include your name and student ID.

Math 3201 Unit 3 Probability Test 1 Unit Test Name: Part 1 Selected Response: Instructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include

### Module 4 Project Maths Development Team Draft (Version 2)

5 Week Modular Course in Statistics & Probability Strand 1 Module 4 Set Theory and Probability It is often said that the three basic rules of probability are: 1. Draw a picture 2. Draw a picture 3. Draw

### 6. In how many different ways can you answer 10 multiple-choice questions if each question has five choices?

Pre-Calculus Section 4.1 Multiplication, Addition, and Complement 1. Evaluate each of the following: a. 5! b. 6! c. 7! d. 0! 2. Evaluate each of the following: a. 10! b. 20! 9! 18! 3. In how many different

### Section Theoretical and Experimental Probability...Wks 3

Name: Class: Date: Section 6.8......Theoretical and Experimental Probability...Wks 3. Eight balls numbered from to 8 are placed in a basket. One ball is selected at random. Find the probability that it

### Name: Probability, Part 1 March 4, 2013

1) Assuming all sections are equal in size, what is the probability of the spinner below stopping on a blue section? Write the probability as a fraction. 2) A bag contains 3 red marbles, 4 blue marbles,

### Chapter 1: Sets and Probability

Chapter 1: Sets and Probability Section 1.3-1.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping

### On the probability scale below mark, with a letter, the probability that the spinner will land

GCSE Exam Questions on Basic Probability. Richard has a box of toy cars. Each car is red or blue or white. 3 of the cars are red. 4 of the cars are blue. of the cars are white. Richard chooses one car

### This Probability Packet Belongs to:

This Probability Packet Belongs to: 1 2 Station #1: M & M s 1. What is the sample space of your bag of M&M s? 2. Find the theoretical probability of the M&M s in your bag. Then, place the candy back into

### Math 1313 Section 6.2 Definition of Probability

Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability

### 7.1 Experiments, Sample Spaces, and Events

7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment

### 2. A bubble-gum machine contains 25 gumballs. There are 12 green, 6 purple, 2 orange, and 5 yellow gumballs.

A C E Applications Connections Extensions Applications. A bucket contains one green block, one red block, and two yellow blocks. You choose one block from the bucket. a. Find the theoretical probability

### A collection of 9-1 Maths GCSE Sample and Specimen questions from AQA, OCR, Pearson-Edexcel and WJEC Eduqas. Name: Total Marks:

Probability 2 (H) A collection of 9-1 Maths GCSE Sample and Specimen questions from AQA, OCR, Pearson-Edexcel and WJEC Eduqas. Name: Total Marks: 1. Andy sometimes gets a lift to and from college. When

### MAT 17: Introduction to Mathematics Final Exam Review Packet. B. Use the following definitions to write the indicated set for each exercise below:

MAT 17: Introduction to Mathematics Final Exam Review Packet A. Using set notation, rewrite each set definition below as the specific collection of elements described enclosed in braces. Use the following

### 2. Let E and F be two events of the same sample space. If P (E) =.55, P (F ) =.70, and

c Dr. Patrice Poage, August 23, 2017 1 1324 Exam 1 Review NOTE: This review in and of itself does NOT prepare you for the test. You should be doing this review in addition to all your suggested homework,

### Chapter 3: PROBABILITY

Chapter 3 Math 3201 1 3.1 Exploring Probability: P(event) = Chapter 3: PROBABILITY number of outcomes favourable to the event total number of outcomes in the sample space An event is any collection of

### Mathematics 3201 Test (Unit 3) Probability FORMULAES

Mathematics 3201 Test (Unit 3) robability Name: FORMULAES ( ) A B A A B A B ( A) ( B) ( A B) ( A and B) ( A) ( B) art A : lace the letter corresponding to the correct answer to each of the following in

### Probability: introduction

May 6, 2009 Probability: introduction page 1 Probability: introduction Probability is the part of mathematics that deals with the chance or the likelihood that things will happen The probability of an

### ALL FRACTIONS SHOULD BE IN SIMPLEST TERMS

Math 7 Probability Test Review Name: Date Hour Directions: Read each question carefully. Answer each question completely. ALL FRACTIONS SHOULD BE IN SIMPLEST TERMS! Show all your work for full credit!

### SERIES Chance and Probability

F Teacher Student Book Name Series F Contents Topic Section Chance Answers and (pp. Probability 0) (pp. 0) ordering chance and events probability_ / / relating fractions to likelihood / / chance experiments

### Probability - Grade 10 *

OpenStax-CNX module: m32623 1 Probability - Grade 10 * Rory Adams Free High School Science Texts Project Sarah Blyth Heather Williams This work is produced by OpenStax-CNX and licensed under the Creative

### Probability Name: To know how to calculate the probability of an outcome not taking place.

Probability Name: Objectives: To know how to calculate the probability of an outcome not taking place. To be able to list all possible outcomes of two or more events in a systematic manner. Starter 1)

### Chapter 13 Test Review

1. The tree diagrams below show the sample space of choosing a cushion cover or a bedspread in silk or in cotton in red, orange, or green. Write the number of possible outcomes. A 6 B 10 C 12 D 4 Find

### PLC Papers Created For:

PLC Papers Created For: Year 10 Topic Practice Papers: Probability Mutually Exclusive Sum 1 Grade 4 Objective: Know that the sum of all possible mutually exclusive outcomes is 1. Question 1. Here are some

### Compound Events. Identify events as simple or compound.

11.1 Compound Events Lesson Objectives Understand compound events. Represent compound events. Vocabulary compound event possibility diagram simple event tree diagram Understand Compound Events. A compound

### Part 1: I can express probability as a fraction, decimal, and percent

Name: Pattern: Part 1: I can express probability as a fraction, decimal, and percent For #1 to #4, state the probability of each outcome. Write each answer as a) a fraction b) a decimal c) a percent Example:

### Unit 1: Statistics and Probability (Calculator) Wednesday 6 November 2013 Morning Time: 1 hour 15 minutes

Write your name here Surname Other names Pearson Edexcel GCSE Centre Number Candidate Number Mathematics B Unit 1: Statistics and Probability (Calculator) Wednesday 6 November 2013 Morning Time: 1 hour

### Here are two situations involving chance:

Obstacle Courses 1. Introduction. Here are two situations involving chance: (i) Someone rolls a die three times. (People usually roll dice in pairs, so dice is more common than die, the singular form.)

### CSC/MTH 231 Discrete Structures II Spring, Homework 5

CSC/MTH 231 Discrete Structures II Spring, 2010 Homework 5 Name 1. A six sided die D (with sides numbered 1, 2, 3, 4, 5, 6) is thrown once. a. What is the probability that a 3 is thrown? b. What is the

### TEST A CHAPTER 11, PROBABILITY

TEST A CHAPTER 11, PROBABILITY 1. Two fair dice are rolled. Find the probability that the sum turning up is 9, given that the first die turns up an even number. 2. Two fair dice are rolled. Find the probability

### Exercise Class XI Chapter 16 Probability Maths

Exercise 16.1 Question 1: Describe the sample space for the indicated experiment: A coin is tossed three times. A coin has two faces: head (H) and tail (T). When a coin is tossed three times, the total

### CHAPTER 9 - COUNTING PRINCIPLES AND PROBABILITY

CHAPTER 9 - COUNTING PRINCIPLES AND PROBABILITY Probability is the Probability is used in many real-world fields, such as insurance, medical research, law enforcement, and political science. Objectives:

### A 20% B 25% C 50% D 80% 2. Which spinner has a greater likelihood of landing on 5 rather than 3?

1. At a middle school, 1 of the students have a cell phone. If a student is chosen at 5 random, what is the probability the student does not have a cell phone? A 20% B 25% C 50% D 80% 2. Which spinner

### PROBABILITY.0 Concept Map Contents Page. Probability Of An Event. Probability Of Two Events. 4. Probability of Mutually Exclusive Events.4 Probability

PROGRAM DIDIK CEMERLANG AKADEMIK SPM ADDITIONAL MATHEMATICS FORM MODULE PROBABILITY PROBABILITY.0 Concept Map Contents Page. Probability Of An Event. Probability Of Two Events. 4. Probability of Mutually

### Section Introduction to Sets

Section 1.1 - Introduction to Sets Definition: A set is a well-defined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase

### Foundations to Algebra In Class: Investigating Probability

Foundations to Algebra In Class: Investigating Probability Name Date How can I use probability to make predictions? Have you ever tried to predict which football team will win a big game? If so, you probably

### Date. Probability. Chapter

Date Probability Contests, lotteries, and games offer the chance to win just about anything. You can win a cup of coffee. Even better, you can win cars, houses, vacations, or millions of dollars. Games

### Before giving a formal definition of probability, we explain some terms related to probability.

probability 22 INTRODUCTION In our day-to-day life, we come across statements such as: (i) It may rain today. (ii) Probably Rajesh will top his class. (iii) I doubt she will pass the test. (iv) It is unlikely

### Lesson 3: Chance Experiments with Equally Likely Outcomes

Lesson : Chance Experiments with Equally Likely Outcomes Classwork Example 1 Jamal, a 7 th grader, wants to design a game that involves tossing paper cups. Jamal tosses a paper cup five times and records

### CHAPTER 7 Probability

CHAPTER 7 Probability 7.1. Sets A set is a well-defined collection of distinct objects. Welldefined means that we can determine whether an object is an element of a set or not. Distinct means that we can

### MTH 103 H Final Exam. 1. I study and I pass the course is an example of a. (a) conjunction (b) disjunction. (c) conditional (d) connective

MTH 103 H Final Exam Name: 1. I study and I pass the course is an example of a (a) conjunction (b) disjunction (c) conditional (d) connective 2. Which of the following is equivalent to (p q)? (a) p q (b)

### Class XII Chapter 13 Probability Maths. Exercise 13.1

Exercise 13.1 Question 1: Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E F) = 0.2, find P (E F) and P(F E). It is given that P(E) = 0.6, P(F) = 0.3, and P(E F) = 0.2 Question 2:

### S = {(1, 1), (1, 2),, (6, 6)}

Part, MULTIPLE CHOICE, 5 Points Each An experiment consists of rolling a pair of dice and observing the uppermost faces. The sample space for this experiment consists of 6 outcomes listed as pairs of numbers:

### MATH STUDENT BOOK. 7th Grade Unit 6

MATH STUDENT BOOK 7th Grade Unit 6 Unit 6 Probability and Graphing Math 706 Probability and Graphing Introduction 3 1. Probability 5 Theoretical Probability 5 Experimental Probability 13 Sample Space 20

### Name. Is the game fair or not? Prove your answer with math. If the game is fair, play it 36 times and record the results.

Homework 5.1C You must complete table. Use math to decide if the game is fair or not. If Period the game is not fair, change the point system to make it fair. Game 1 Circle one: Fair or Not 2 six sided

### Math 102 Practice for Test 3

Math 102 Practice for Test 3 Name Show your work and write all fractions and ratios in simplest form for full credit. 1. If you draw a single card from a standard 52-card deck what is P(King face card)?

### Probability and Counting Techniques

Probability and Counting Techniques Diana Pell (Multiplication Principle) Suppose that a task consists of t choices performed consecutively. Suppose that choice 1 can be performed in m 1 ways; for each

### episteme Probability

episteme Probability Problem Set 3 Please use CAPITAL letters FIRST NAME LAST NAME SCHOOL CLASS DATE / / Set 3 1 episteme, 2010 Set 3 2 episteme, 2010 Coin A fair coin is one which is equally likely to

### PRE TEST KEY. Math in a Cultural Context*

PRE TEST KEY Salmon Fishing: Investigations into A 6 th grade module in the Math in a Cultural Context* UNIVERSITY OF ALASKA FAIRBANKS Student Name: PRE TEST KEY Grade: Teacher: School: Location of School: