Mammography: Physics of Imaging

Size: px
Start display at page:

Download "Mammography: Physics of Imaging"

Transcription

1 Mammography: Physics of Imaging Robert G. Gould, Sc.D. Professor and Vice Chair Department of Radiology and Biomedical Imaging University of California San Francisco, California Mammographic Imaging: Uniqueness Low subject contrast High spatial resolution requirements Complicated structures Priors critical Dedicated imaging equipment Use compression Page 1

2 Factors Affecting Subject Contrast X-ray energy: contrast decreases with increasing energy Scattered radiation Function of tissue volume irradiated For small objects (e.g. Ca specks), image blurring Tissue Characteristics Glandular tissue Fat Calcium Atomic number ~ Density, gm/cm 3 ~ Page 2

3 Mammography: Subject Contrast t calcium speck µ Ca X-rays Compression paddle µ tissue KeV Tissue µ, cm -1 Ca µ, cm -1 Δµ C, %* Grid I 2 I 1 C s ~ Log I 1 -Log I 2 ~ Δµt *For 100 µm Ca particle w/o scatter! C s (%) = Log I 1 /I 2 = Δµt x 100! Mammographic vs. Standard Radiographic Equipment Lower x-ray energy < 35 KVp vs > 40 KVp Smaller focal spot mm vs mm Shorter source - receptor distance cm vs 100 cm Apply compression Page 3

4 Mammography X-ray Sources Anode materials Molybdenum (Z=42) Rhodium (Z=45) X-ray production efficiency ~ 40% less than in tungsten Nominal focal spot sizes Large 0.3 mm Small 0.1 mm Typical exposure times ~ >1 sec Element Atomic Number Melting Point, C o Relative X-ray Emission W Mo Rh Characteristic Radiation Produced at specific energies Equal to differences in binding energies of orbital electron shells For standard x-ray source, typically < 15% of output Energetic free electron (Kinetic energy > K shell binding energy) Characteristic x-ray (hν = K shell BE - M shell BE) e - e - In mammography, can exceed 25% of output Page 4

5 Characteristic Radiation Use to increase contrast No Bremsstrahlung low energy penalty Increase output relative to Bremsstrahlung Filter with same material Materials relatively translucent to their characteristic emissions Energy, KeV Molybdenum Rhodium " Molybdenum X-Ray Spectrum Filter! 0.3 mm polycarbonate" Number of photons" 20000" 15000" 10000" 0.3 mm polycarbonate mm Mo" K edge Mo" 19.9 KeV" µ (cm -1 ) " 100 0" 0" 5" 10" 15" 20" 25" 30" 10 Photon energy, KeV" Page 5

6 Mammography X-Ray Beam Relative Intensity" Entrance spectrum" Relative Intensity" Exit" spectrum" Increasing breast thickness/ density" 10" 20" 30" Photon Energy, KeV" 10" 20" 30" Photon Energy, KeV" As breast thickness/density increases, characteristic radiation has lesser effect on image! Mammographic Tubes Benefit of characteristic radiation in image formation greatest for thin or fatty breasts Bremsstrahlung component above the K-edge becomes increasingly dominate in exit beam with increasing breast thickness Page 6

7 Compression Reduces anatomical motion Reduces dose Reduces exposure latitude Spreads out detail Less superimposition X-rays! X-rays! Compression! paddle! Decreases distortion Detector! Scatter in Mammography Exit surface to detector ~ 2-3 cm Little air gap effect Scatter/primary ratio ~ 0.5 If contrast is 5% w/o scatter, contrast reduced to 3.4% with 0.5 S/P 33% contrast reduction Use ~5:1 grid Increases dose by 2-3x (Bucky factor) Improves contrast by ~ 40% Contrast of 100 µm Ca speck, % No Sca5er to Primary Ra:o KeV Sca5er Page 7

8 Hologic HTC Grid High-Transmission Cellular Focused, 2 dimensional grid Air interspacing ~ 4-10% improvement in contrast compared to 5:1 linear grid After J. Gray" Mammography Dose Levels Screening exam 2 views per breast Peak (skin) dose 8-10 mgy/view By law in the USA, glandular dose < 3 mgy/view Based on the ACR Phantom = average compressed breast of 50% adipose and 50% glandular tissue 4.2 cm thick (3.5 cm Lucite cm Paraffin) Function of KVp, anode material, filtration (HVL) Page 8

9 Digital Imaging in Mammography Improved diagnostic capability? True in dense breasts Use of digital processing Spatially adaptive Feature enhancing CAD Include in PACS w/o digitizing film Better image management Dose reduction? Digital Mammography-Outcomes ACRIN study Comparison made to screen/film systems Apparently no light shed on differences between FFDM systems Greater sensitivity in woman < 50 years old and in woman with dense breasts Equal to screen/film systems otherwise Page 9

10 Digital Mammographic Systems CR! Carestream DirectView (computed radiography)! Fuji FCRm (computed radiography)! Indirect Conversion DR! General Electric Senographe 2000D, DS, Essential, Senographe Care! Direct Conversion DR! Hologic Loard Selenia, Selenia S, Selenia Dimensions, Selenia Encore! Siemens Mammomat Novation DR, Mammomat Novation S, Mammomat Inspiration, Mammomat Inspiration Pure! Scanning systems! Fischer Senoscan! Sectra MicroDose Mammography L30! Fuji CR Use conventional mammo unit (eg GE DMR) BaFBr phosphor Coverage (plate size): 18 x 24 cm or 24 x 30 cm 50 µm pixels 3328 x4096 (24 MB) image size 14 bit dynamic range Page 10

11 GE Senographe Indirect DR using CsI phosphor Mo and Rh anodes, Mo and Rh filters Coverage: 19.2 x 23 cm or 24 x 30.7 cm 100 µm pixels 1914 x 2294 (9 MB) or 2394 x 3062 (14 MB) image size 14 bit dynamic range Hologic Selenia Direct DR using amorphous selenium Mo anode, Mo and Rh filters Coverage: 24 x 29 cm 70 µm pixels 3328 x 4096 (24 MB) image size 14 bit dynamic range Page 11

12 Photon counting, multi-slit scanning system Scan time: 3-15 sec Direct detector of crystalline silicon W target/al filter Coverage: 24 x 26 cm 50 µm pixels 4800 x 5200 (37 MB) image size 12 bit dynamic range Sectra MicroDose Image Interpretation All systems come with a dual, high resolution display system 5 megapixels Obfuscation on using display for images from other vendors Critical features: Zoom and pan Ability to annotate and save annotations to PACS Easy comparison with priors CAD software Page 12

13 Digital Mammo: Image Quality Compared to Screen/film Lower limiting spatial resolution < 10 lp/mm vs > 12 lp/mm Higher DQE More pronounced at lower spatial frequencies (< 2 lp/mm) Density more uniform across the image Adaptive filtering Skin line to chest wall Screen-film vs Digital Page 13

14 Digital Mammography-Dose Considerations Geometric efficiency (fill factor) < 100% 50-80% depending on pixel size Screen-film systems = 100% Quantum noise Influence on processing algorithms? Influence on CAD performance? Dose savings remain potential Developments in Mammography Computer-aided diagnosis (CAD) Widespread for screening mammography Improved performance compared to singleset of eyes Relative improvement depends on experience of mammographer Little or no improvement over double reading by experienced mammographers Higher false positive rate Tomosynthesis Dedicated breast CT systems Page 14

15 Digital Tomosynthesis exposures! Acquire a series of low dose projection images at different angles Electronically align and weight images to isolate a plane through the breast Scroll through breast 15-25! Digital Tomosynthesis Active area of development by multiple vendors Hologic Selenia Dimensions system has FDA approval Can total dose be kept same as for screening mammogram? Page 15

16 Selenia Dimensions 3D FDA approved Allows both 3D and 2D images to be obtained with same compression ~140 µm pixels (3D) 70 µm pixels (2D) Scans 15 in 3.7 sec Obtains 15 projections by pulsing the x-ray tube Continuous tube movement W target x-ray tube 200 ma capable Al filter (3D) Rh or Ag filters (2D) Selenia Dimensions 3D Dose 2D: 12 mgy 3D Tomo: 14.5 mgy Combo: 26.5 mgy Each projection: 1 mgy Low dose detector performance critical (DQE) Grid removed for tomo acquisition Page 16

17 Selenia Dimensions 3D: Reconstruction 1 mm thick tomographic slices Number of slices = compressed breast thickness/1mm ~ 20 to 80 slices per tomographic image Pixels binned into 2x2 size (140 µm) 2-5 sec reconstruction time Breast CT Experimental Challenge to minimize dose Challenge to achieve adequate spatial resolution Challenge to image near the chest wall Impressive preliminary results Page 17

18 Conclusions Digital mammography is currently the gold standard for breast imaging Not a dose saving technique Remains an active area of development Tomographic acquisitions Page 18

Breast Tomosynthesis. Bob Liu, Ph.D. Department of Radiology Massachusetts General Hospital And Harvard Medical School

Breast Tomosynthesis. Bob Liu, Ph.D. Department of Radiology Massachusetts General Hospital And Harvard Medical School Breast Tomosynthesis Bob Liu, Ph.D. Department of Radiology Massachusetts General Hospital And Harvard Medical School Outline Physics aspects of breast tomosynthesis Quality control of breast tomosynthesis

More information

Acceptance Testing of a Digital Breast Tomosynthesis Unit

Acceptance Testing of a Digital Breast Tomosynthesis Unit Acceptance Testing of a Digital Breast Tomosynthesis Unit 2012 AAPM Spring Clinical Meeting Jessica Clements, M.S., DABR Objectives Review of technology and clinical advantages Acceptance Testing Procedures

More information

Quality Control of Full Field Digital Mammography Units

Quality Control of Full Field Digital Mammography Units Quality Control of Full Field Digital Mammography Units Melissa C. Martin, M.S., FACMP, FACR, FAAPM Melissa@TherapyPhysics.com 310-612-8127 ACMP Annual Meeting Virginia Beach, VA May 2, 2009 History of

More information

Digital Breast Tomosynthesis

Digital Breast Tomosynthesis Digital Breast Tomosynthesis OLIVE PEART MS, RT(R) (M) HTTP://WWW.OPEART.COM 2D Mammography Not 100% effective Limited by tissue superimposition Overlapping tissue can mask tumors False negative Overlapping

More information

Mammography is a radiographic procedure specially designed for detecting breast pathology Approximately 1 woman in 8 will develop breast cancer over

Mammography is a radiographic procedure specially designed for detecting breast pathology Approximately 1 woman in 8 will develop breast cancer over Mammography is a radiographic procedure specially designed for detecting breast pathology Approximately 1 woman in 8 will develop breast cancer over a lifetime Breast cancer screening programs rely on

More information

Imaging Technique Optimization of Tungsten Anode FFDM System

Imaging Technique Optimization of Tungsten Anode FFDM System Imaging Technique Optimization of Tungsten Anode FFDM System Biao Chen a*, Andrew P. Smith b, Zhenxue Jing a, Elena Ingal a a Hologic, Inc. 600 Technology Drive, DE 1970 b Hologic, Inc. 35 Crosby Drive,

More information

Practical Aspects of Medical Physics Surveys of Mammography Equipment and Facilities

Practical Aspects of Medical Physics Surveys of Mammography Equipment and Facilities Practical Aspects of Medical Physics Surveys of Mammography Equipment and Facilities Melissa Martin, M.S., FAAPM, FACR, FACMP AAPM Annual Meeting - Philadelphia July 19, 2010 MO-B-204C-1 Educational Objectives

More information

Introduction. Digital Mammography QA: Comparing the Manufacturers Recommendations. What is QC and why is it important? Review & compare QC tests

Introduction. Digital Mammography QA: Comparing the Manufacturers Recommendations. What is QC and why is it important? Review & compare QC tests Slide 1 Digital Mammography QA: Comparing the Manufacturers Recommendations Eric A. Berns, Ph.D. Slide 2 Introduction What is QC and why is it important? Review & compare QC tests Key take home points

More information

Radiology Physics Lectures: Digital Radiography. Digital Radiography. D. J. Hall, Ph.D. x20893

Radiology Physics Lectures: Digital Radiography. Digital Radiography. D. J. Hall, Ph.D. x20893 Digital Radiography D. J. Hall, Ph.D. x20893 djhall@ucsd.edu Background Common Digital Modalities Digital Chest Radiograph - 4096 x 4096 x 12 bit CT - 512 x 512 x 12 bit SPECT - 128 x 128 x 8 bit MRI -

More information

GE Healthcare. Senographe 2000D Full-field digital mammography system

GE Healthcare. Senographe 2000D Full-field digital mammography system GE Healthcare Senographe 2000D Full-field digital mammography system Digital has arrived. The Senographe 2000D Full-Field Digital Mammography (FFDM) system gives you a unique competitive advantage. That

More information

Features and Weaknesses of Phantoms for CR/DR System Testing

Features and Weaknesses of Phantoms for CR/DR System Testing Physics testing of image detectors Parameters to test Features and Weaknesses of Phantoms for CR/DR System Testing Spatial resolution Contrast resolution Uniformity/geometric distortion Dose response/signal

More information

Predicted image quality of a CMOS APS X-ray detector across a range of mammographic beam qualities

Predicted image quality of a CMOS APS X-ray detector across a range of mammographic beam qualities Journal of Physics: Conference Series PAPER OPEN ACCESS Predicted image quality of a CMOS APS X-ray detector across a range of mammographic beam qualities Recent citations - Resolution Properties of a

More information

Collimation Assessment Using GAFCHROMIC XR-M2

Collimation Assessment Using GAFCHROMIC XR-M2 Collimation Assessment Using GAFCHROMIC XR-M2 I. Introduction A method of collimation assessment for GE Senographe full-field digital mammography (FFDM) systems is described that uses a self-developing

More information

Mammography Solution. AMULET Innovality. The new leader in the AMULET series. Tomosynthesis, 3D mammography and biopsy are all available.

Mammography Solution. AMULET Innovality. The new leader in the AMULET series. Tomosynthesis, 3D mammography and biopsy are all available. Mammography Solution AMULET Innovality The new leader in the AMULET series. Tomosynthesis, 3D mammography and biopsy are all available. FUJIFILM supports the Pink Ribbon Campaign for early detection of

More information

X-ray Imaging. PHYS Lecture. Carlos Vinhais. Departamento de Física Instituto Superior de Engenharia do Porto

X-ray Imaging. PHYS Lecture. Carlos Vinhais. Departamento de Física Instituto Superior de Engenharia do Porto X-ray Imaging PHYS Lecture Carlos Vinhais Departamento de Física Instituto Superior de Engenharia do Porto cav@isep.ipp.pt Overview Projection Radiography Anode Angle Focal Spot Magnification Blurring

More information

Overview. Professor Roentgen was a Physicist!!! The Physics of Radiation Oncology X-ray Imaging

Overview. Professor Roentgen was a Physicist!!! The Physics of Radiation Oncology X-ray Imaging The Physics of Radiation Oncology X-ray Imaging Charles E. Willis, Ph.D. DABR Associate Professor Department of Imaging Physics The University of Texas M.D. Anderson Cancer Center Houston, Texas Overview

More information

COMPUTED RADIOGRAPHY CHAPTER 4 EFFECTIVE USE OF CR

COMPUTED RADIOGRAPHY CHAPTER 4 EFFECTIVE USE OF CR This presentation is a professional collaboration of development time prepared by: Rex Christensen Terri Jurkiewicz and Diane Kawamura New Technology https://www.youtube.com/watch?v=ptkzznazb 7U COMPUTED

More information

Surveying and QC of Stereotactic Breast Biopsy Units for ACR Accreditation

Surveying and QC of Stereotactic Breast Biopsy Units for ACR Accreditation Surveying and QC of Stereotactic Breast Biopsy Units for ACR Accreditation AAPM Annual Clinical Meeting Indianapolis, IN August 5, 2013 Learning Objectives Become familiar with the recommendations and

More information

Current technology in digital image production (CR/DR and other modalities) Jaroonroj Wongnil 25 Mar 2016

Current technology in digital image production (CR/DR and other modalities) Jaroonroj Wongnil 25 Mar 2016 Current technology in digital image production (CR/DR and other modalities) Jaroonroj Wongnil 25 Mar 2016 Current technology in digital image production (CR/DR and other modalities) 2/ Overview Digital

More information

X-rays. X-rays are produced when electrons are accelerated and collide with a target. X-rays are sometimes characterized by the generating voltage

X-rays. X-rays are produced when electrons are accelerated and collide with a target. X-rays are sometimes characterized by the generating voltage X-rays Ouch! 1 X-rays X-rays are produced when electrons are accelerated and collide with a target Bremsstrahlung x-rays Characteristic x-rays X-rays are sometimes characterized by the generating voltage

More information

10/3/2012. Study Harder

10/3/2012. Study Harder This presentation is a professional collaboration of development time prepared by: Rex Christensen Terri Jurkiewicz and Diane Kawamura Study Harder CR detection is inefficient, inferior to film screen

More information

10/26/2015. Study Harder

10/26/2015. Study Harder This presentation is a professional collaboration of development time prepared by: Rex Christensen Terri Jurkiewicz and Diane Kawamura Study Harder CR detection is inefficient, inferior to film screen

More information

Performance and care. all in one

Performance and care. all in one Performance and care all in one INNOVATION IS WHAT DRIVES US THINKING ABOUT THE FUTURE Preventive diagnostics remains an essential weapon in defeating breast cancer. Metaltronica s forward-thinking design

More information

TECHNICAL DATA. GIOTTO IMAGE SDL/W is pre-arranged for Full Field Digital Biopsy examination with the patient in prone position.

TECHNICAL DATA. GIOTTO IMAGE SDL/W is pre-arranged for Full Field Digital Biopsy examination with the patient in prone position. Ver. 01/06/07 TECHNICAL DATA GIOTTO IMAGE SDL/W LOW DOSE, FULL FIELD DIGITAL MAMMOGRAPHY UNIT USING AMORPHOUS SELENIUM (a-se) TECHNOLOGY DETECTOR (pre-arranged for stereotactic biopsy with the same digital

More information

Introduction. Chapter 16 Diagnostic Radiology. Primary radiological image. Primary radiological image

Introduction. Chapter 16 Diagnostic Radiology. Primary radiological image. Primary radiological image Introduction Chapter 16 Diagnostic Radiology Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. http://www.utoledo.edu/med/depts/radther In diagnostic radiology

More information

STEREOTACTIC BREAST BIOPSY EQUIPMENT SURVEYS

STEREOTACTIC BREAST BIOPSY EQUIPMENT SURVEYS STEREOTACTIC BREAST BIOPSY EQUIPMENT SURVEYS JAMES A. TOMLINSON, M.S. Diagnostic Radiological Physicist American Board of Radiology Certified Medical Physics Consultants, Inc. Bio 28 yrs experience 100%

More information

X-RAY IMAGING EE 472 F2017. Prof. Yasser Mostafa Kadah

X-RAY IMAGING EE 472 F2017. Prof. Yasser Mostafa Kadah X-RAY IMAGING EE 472 F2017 Prof. Yasser Mostafa Kadah www.k-space.org Recommended Textbook Stewart C. Bushong, Radiologic Science for Technologists: Physics, Biology, and Protection, 10 th ed., Mosby,

More information

Beam-Restricting Devices

Beam-Restricting Devices Beam-Restricting Devices Three factors contribute to an increase in scatter radiation: Increased kvp Increased Field Size Increased Patient or Body Part Size. X-ray Interactions a some interact with the

More information

ACPSEM Position Paper RECOMMENDATIONS FOR A DIGITAL MAMMOGRAPHY QUALITY ASSURANCE PROGRAM V4.0

ACPSEM Position Paper RECOMMENDATIONS FOR A DIGITAL MAMMOGRAPHY QUALITY ASSURANCE PROGRAM V4.0 Heggie et al ACPSEM Position Paper: Digital Mammography V4.0 ACPSEM Position Paper RECOMMENDATIONS FOR A DIGITAL MAMMOGRAPHY QUALITY ASSURANCE PROGRAM V4.0 JCP Heggie 1, P Barnes 2, L Cartwright 3, J Diffey

More information

Investigation of the line-pair pattern method for evaluating mammographic focal spot performance

Investigation of the line-pair pattern method for evaluating mammographic focal spot performance Investigation of the line-pair pattern method for evaluating mammographic focal spot performance Mitchell M. Goodsitt, a) Heang-Ping Chan, and Bob Liu Department of Radiology, University of Michigan, Ann

More information

X-ray Tube and Generator Basic principles and construction

X-ray Tube and Generator Basic principles and construction X-ray Tube and Generator Basic principles and construction Dr Slavik Tabakov - Production of X-rays OBJECTIVES - X-ray tube construction - Anode - types, efficiency - X-ray tube working characteristics

More information

Unit thickness. Unit area. σ = NΔX = ΔI / I 0

Unit thickness. Unit area. σ = NΔX = ΔI / I 0 Unit thickness I 0 ΔI I σ = ΔI I 0 NΔX = ΔI / I 0 NΔX Unit area Δx Average probability of reaction with atom for the incident photons at unit area with the thickness of Delta-X Atom number at unit area

More information

3/31/2011. Objectives. Emory University. Historical Development. Historical Development. Historical Development

3/31/2011. Objectives. Emory University. Historical Development. Historical Development. Historical Development Teaching Radiographic Technique in a Digital Imaging Paradigm Objectives 1. Discuss the historical development of digital imaging. Dawn Couch Moore, M.M.Sc., RT(R) Assistant Professor and Director Emory

More information

FFDM in the Field: Physicist's Role in the QC of Mammography Laser Printers May Carl R. Keener, Ph.D., DABMP, DABR

FFDM in the Field: Physicist's Role in the QC of Mammography Laser Printers May Carl R. Keener, Ph.D., DABMP, DABR FFDM in the Field: Physicist's Role in the QC of Mammography Laser Printers May 2010 Carl R. Keener, Ph.D., DABMP, DABR keener@marpinc.com MARP Medical & Radiation Physics, Inc. Physicist's Role in the

More information

Optimization of Digital Mammography Resolution Using Magnification Technique in Computed Radiography 1

Optimization of Digital Mammography Resolution Using Magnification Technique in Computed Radiography 1 Optimization of Digital Mammography Resolution Using Magnification Technique in Computed Radiography 1 Gham Hur, M.D., Yoon Joon Hwang, M.D., Soon Joo Cha, M.D., Su Young Kim, M.D., Yong Hoon Kim, M.D.

More information

Do you have any other questions? Please call us at (Toll Free) or , or

Do you have any other questions? Please call us at (Toll Free) or , or INSTRUCTIONS Read the appropriate course/ textbook. This is an open book test. A score of 75% or higher is needed to receive CE credit. You will have a maximum of three attempts to pass this course. Please

More information

KODAK DIRECTVIEW CR Mammography Feature User s Guide

KODAK DIRECTVIEW CR Mammography Feature User s Guide KODAK DIRECTVIEW CR Mammography Feature User s Guide 17 September 2010 9G3741 Version 1.0 Carestream Health, Inc. 150 Verona Street Rochester, NY 14608 CARESTREAM, DIRECTVIEW, and DRYVIEW are trademarks

More information

I. PERFORMANCE OF X-RAY PRODUCTION COMPONENTS FLUOROSCOPIC ACCEPTANCE TESTING: TEST PROCEDURES & PERFORMANCE CRITERIA

I. PERFORMANCE OF X-RAY PRODUCTION COMPONENTS FLUOROSCOPIC ACCEPTANCE TESTING: TEST PROCEDURES & PERFORMANCE CRITERIA FLUOROSCOPIC ACCEPTANCE TESTING: TEST PROCEDURES & PERFORMANCE CRITERIA EDWARD L. NICKOLOFF DEPARTMENT OF RADIOLOGY COLUMBIA UNIVERSITY NEW YORK, NY ACCEPTANCE TESTING GOALS PRIOR TO 1st CLINICAL USAGE

More information

- KiloVoltage. Technique 101: Getting Back to Basics

- KiloVoltage. Technique 101: Getting Back to Basics Why do I need to know technique? Technique 101: Getting Back to Basics Presented by: Thomas G. Sandridge, M.S., M.Ed., R.T.(R) Program Director Northwestern Memorial Hospital School of Radiography Chicago,

More information

New spectral benefi ts, proven low dose

New spectral benefi ts, proven low dose New spectral benefi ts, proven low dose Philips MicroDose mammography SI, technical data sheet Philips MicroDose SI with single-shot spectral imaging is a fullfi eld digital mammography solution that delivers

More information

Protocol for the Quality Control of the Physical and Technical Aspects of Digital Breast Tomosynthesis Systems

Protocol for the Quality Control of the Physical and Technical Aspects of Digital Breast Tomosynthesis Systems Protocol for the Quality Control of the Physical and Technical Aspects of Digital Breast Tomosynthesis Systems Draft version 0.10 February 2013 European Reference Organisation for Quality Assured Breast

More information

Image Quality. HTC Grid High Transmission Cellular Grid provides higher contrast images

Image Quality. HTC Grid High Transmission Cellular Grid provides higher contrast images B R E A S T I M A G I N G S O L U T I O N S Setting the benchmark for mammography M-IV Series Innovations in breast imaging The Lorad M-IV Series exemplifies Hologic s commitment to developing advanced

More information

RADIOGRAPHIC EXPOSURE

RADIOGRAPHIC EXPOSURE RADIOGRAPHIC EXPOSURE Receptor Exposure Receptor Exposure the that interacts with the receptor. Computed Radiography ( ) requires a. Direct Digital Radiography (DR) requires a. Exposure Indicators Exposure

More information

Quality Control for Stereotactic Breast Biopsy. Robert J. Pizzutiello, Jr., F.A.C.M.P. Upstate Medical Physics, Inc

Quality Control for Stereotactic Breast Biopsy. Robert J. Pizzutiello, Jr., F.A.C.M.P. Upstate Medical Physics, Inc Quality Control for Stereotactic Breast Biopsy Robert J. Pizzutiello, Jr., F.A.C.M.P. Upstate Medical Physics, Inc. 716-924-0350 Methods of Imaging Guided Breast Biopsy Ultrasound guided, hand-held needle

More information

Image Quality. HTC Grid High Transmission Cellular Grid provides higher contrast images

Image Quality. HTC Grid High Transmission Cellular Grid provides higher contrast images B R E A S T I M A G I N G S O L U T I O N S Setting the benchmark for mammography M-IV Series Innovations in breast imaging The Lorad M-IV Series exemplifies Hologic's commitment to developing advanced

More information

A Comprehensive Review of Image Production

A Comprehensive Review of Image Production A Comprehensive Review of Image Production Presented by: John Fleming, M.Ed., RT(R)(MR)(CT) St. Petersburg College Office: (727) 341-3758 E-mail: flemingj@spcollege.edu Lesson Objectives: ARRT Content

More information

Published text: Institute of Cancer Research Repository Please direct all s to:

Published text: Institute of Cancer Research Repository   Please direct all  s to: This is an author produced version of an article that appears in: MEDICAL PHYSICS The internet address for this paper is: https://publications.icr.ac.uk/1316/ Copyright information: http://www.aip.org/pubservs/web_posting_guidelines.html

More information

Visibility of Detail

Visibility of Detail Visibility of Detail Radiographic Quality Quality radiographic images represents the, and information is for diagnosis. The of the anatomic structures and the accuracy of their ( ) determine the overall

More information

4/19/2016. Quality Control Activities for the RadiologicTechnologist. Objectives. 3D Tomosynthesis QC differences

4/19/2016. Quality Control Activities for the RadiologicTechnologist. Objectives. 3D Tomosynthesis QC differences Quality Control Activities for the RadiologicTechnologist Quality Control Tests 2D QC Tomosynthesis QC DICOM Printer Quality Control Weekly Detector Flat Field Calibration Weekl Artifact Evaluation Weekly

More information

DRAFT Technical evaluation of Philips Microdose SI digital mammography system

DRAFT Technical evaluation of Philips Microdose SI digital mammography system DRAFT Technical evaluation of Philips Microdose SI digital mammography system NHSBSP Equipment Report 1310 August 2013 About the NHS Cancer Screening Programmes The national office of the NHS Cancer Screening

More information

MILADY. Product Data. Page 1 of 8

MILADY. Product Data. Page 1 of 8 Page 1 of 8 The MILADY Mammographic Unit offers the best quality-to-price ratio to our customers worldwide. The unit advanced technology together with the application of industrial production standards,

More information

Protocol for the Quality Control of the Physical and Technical Aspects of Digital Breast Tomosynthesis Systems

Protocol for the Quality Control of the Physical and Technical Aspects of Digital Breast Tomosynthesis Systems Protocol for the Quality Control of the Physical and Technical Aspects of Digital Breast Tomosynthesis Systems Draft version 0.15 January 2014 European Reference Organisation for Quality Assured Breast

More information

Investigation of Effective DQE (edqe) parameters for a flat panel detector

Investigation of Effective DQE (edqe) parameters for a flat panel detector Investigation of Effective DQE (edqe) parameters for a flat panel detector Poster No.: C-1892 Congress: ECR 2013 Type: Authors: Keywords: DOI: Scientific Exhibit D. Bor 1, S. Cubukcu 1, A. Yalcin 1, O.

More information

Exposure Indices and Target Values in Radiography: What Are They and How Can You Use Them?

Exposure Indices and Target Values in Radiography: What Are They and How Can You Use Them? Exposure Indices and Target Values in Radiography: What Are They and How Can You Use Them? Definition and Validation of Exposure Indices Ingrid Reiser, PhD DABR Department of Radiology University of Chicago

More information

2 nd generation TOMOSYNTHESIS

2 nd generation TOMOSYNTHESIS 2 nd generation TOMOSYNTHESIS 2 nd generation DBT true innovation in breast imaging synthesis graphy Combo mode Stereotactic Biopsy Works in progress: Advanced Technology, simplicity and ergonomics Raffaello

More information

FFDM -FCRm QC Requirements- What You REALLY Need to Know

FFDM -FCRm QC Requirements- What You REALLY Need to Know FFDM -FCRm QC Requirements- What You REALLY Need to Know Melissa C. Martin, M.S., FACR, FAAPM, FACMP AAPM Annual Meeting July 28, 2008 FDA Approval for Mammography Fuji FCRm System approved for Mammography

More information

GE Healthcare. Essential for life. Senographe Essential Full-Field Digital Mammography system

GE Healthcare. Essential for life. Senographe Essential Full-Field Digital Mammography system GE Healthcare Essential for life Senographe Essential Full-Field Digital Mammography system Excellence in FFDM is a process. An ongoing quest, fueled by our continuing breakthroughs in breast cancer detection

More information

Digital Imaging Considerations Computed Radiography

Digital Imaging Considerations Computed Radiography Digital Imaging Considerations Digital Radiography Computed Radiography o Cassette based Direct or Indirect Digital Radiography o Cassetteless Computed Radiography 1 CR Image Acquisition Most like conventional

More information

RAD 150 RADIOLOGIC EXPOSURE TECHNIQUE II

RAD 150 RADIOLOGIC EXPOSURE TECHNIQUE II RAD 150 RADIOLOGIC EXPOSURE TECHNIQUE II APPROVED 12/O2/2011 EFFECTIVE SPRING 2013-14 Prefix & Number RAD 150 Course Title: Radiologic Exposure Technique II & Lab Purpose of this submission: New Change/Updated

More information

Distributed source x-ray tube technology for tomosynthesis imaging

Distributed source x-ray tube technology for tomosynthesis imaging Distributed source x-ray tube technology for tomosynthesis imaging Authors: F. Sprenger a*, X. Calderon-Colon b, Y. Cheng a, K. Englestad a, J. Lu b, J. Maltz c, A. Paidi c, X. Qian b, D. Spronk a, S.

More information

Breast Imaging Basics: Module 10 Digital Mammography

Breast Imaging Basics: Module 10 Digital Mammography Module 10 Transcript For educational and institutional use. This test bank is licensed for noncommercial, educational inhouse or online educational course use only in educational and corporate institutions.

More information

Tailoring automatic exposure control toward constant detectability in digital mammography

Tailoring automatic exposure control toward constant detectability in digital mammography Tailoring automatic exposure control toward constant detectability in digital mammography Elena Salvagnini a) Department of Imaging and Pathology, Medical Physics and Quality Assessment, KUL, Herestraat

More information

THE ART OF THE IMAGE: IDENTIFICATION AND REMEDIATION OF IMAGE ARTIFACTS IN MAMMOGRAPHY

THE ART OF THE IMAGE: IDENTIFICATION AND REMEDIATION OF IMAGE ARTIFACTS IN MAMMOGRAPHY THE ART OF THE IMAGE: IDENTIFICATION AND REMEDIATION OF IMAGE ARTIFACTS IN MAMMOGRAPHY William Geiser, MS DABR Senior Medical Physicist MD Anderson Cancer Center Houston, Texas wgeiser@mdanderson.org INTRODUCTION

More information

PRACTICE GUIDELINE FOR DETERMINANTS OF IMAGE QUALITY IN DIGITAL MAMMOGRAPHY

PRACTICE GUIDELINE FOR DETERMINANTS OF IMAGE QUALITY IN DIGITAL MAMMOGRAPHY The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College

More information

Maximizing clinical outcomes

Maximizing clinical outcomes Maximizing clinical outcomes Digital Tomosynthesis Dual Energy Subtraction Automated Long Length Imaging Improved image quality at a low dose Xray Xray Patented ISS capture technology promotes high sensitivity

More information

MAMMOGRAPHY - HIGH LEVEL TROUBLESHOOTING

MAMMOGRAPHY - HIGH LEVEL TROUBLESHOOTING MAMMOGRAPHY - HIGH LEVEL TROUBLESHOOTING Maynard High New York Medical College SS2001-M.High 1 Objectives: Review MQSA and ACR annual QC tests as opportunities for troubleshooting before a significant

More information

Abstract. ZEIGLER, GARY BOYCE, II. Direct Detection of Microcalcification Pairs in Simulated

Abstract. ZEIGLER, GARY BOYCE, II. Direct Detection of Microcalcification Pairs in Simulated Abstract ZEIGLER, GARY BOYCE, II. Direct Detection of Microcalcification Pairs in Simulated Digital Mammograms. (Under the Direction of Professor Kuruvilla Verghese.) Using the MCMIS (Monte Carlo for Mammography

More information

SYLLABUS. TITLE: Equipment Operation I. DEPARTMENT: Radiologic Technology

SYLLABUS. TITLE: Equipment Operation I. DEPARTMENT: Radiologic Technology CODE: RADT 156 INSTITUTE: Health Science TITLE: Equipment Operation I DEPARTMENT: Radiologic Technology COURSE DESCRIPTION: This course covers the principles of equipment operation and maintenance of radiographic

More information

Introduction of Computed Radiography in Two Mammography Services: Image Quality and Dose Analysis

Introduction of Computed Radiography in Two Mammography Services: Image Quality and Dose Analysis Introduction of Computed Radiography in Two Mammography Services: Image Quality and Dose Analysis Rosangela Requi Jakubiak* a, Humberto Remigio Gamba a, Maria Manuela Ramos a, Gislene Gabrielle Faversani

More information

HISTORY. CT Physics with an Emphasis on Application in Thoracic and Cardiac Imaging SUNDAY. Shawn D. Teague, MD

HISTORY. CT Physics with an Emphasis on Application in Thoracic and Cardiac Imaging SUNDAY. Shawn D. Teague, MD CT Physics with an Emphasis on Application in Thoracic and Cardiac Imaging Shawn D. Teague, MD DISCLOSURES 3DR- advisory committee CT PHYSICS WITH AN EMPHASIS ON APPLICATION IN THORACIC AND CARDIAC IMAGING

More information

Acquisition, Processing and Display

Acquisition, Processing and Display Acquisition, Processing and Display Terri L. Fauber, R.T. (R)(M) Department of Radiation Sciences School of Allied Health Professions Virginia Commonwealth University Topics Image Characteristics Image

More information

Digital Mammography Quality Control for the Mammographic Physicist

Digital Mammography Quality Control for the Mammographic Physicist Ontario Breast Screening Program Digital Mammography Quality Control for the Mammographic Physicist Authors: G.E. Mawdsley, A.K. Bloomquist, M.J. Yaffe March 2014 Revision 3.2 Mammographic Physics Consulting

More information

CR Basics and FAQ. Overview. Historical Perspective

CR Basics and FAQ. Overview. Historical Perspective Page: 1 of 6 CR Basics and FAQ Overview Computed Radiography is a term used to describe a system that electronically records a radiographic image. Computed Radiographic systems use unique image receptors

More information

K-edge subtraction X-ray imaging with a pixellated spectroscopic detector

K-edge subtraction X-ray imaging with a pixellated spectroscopic detector K-edge subtraction X-ray imaging with a pixellated spectroscopic detector Silvia Pani Department of Physics, University of Surrey Summary Hyperspectral imaging K-edge subtraction X-ray imaging for mammography

More information

Dose Reduction and Image Preservation After the Introduction of a 0.1 mm Cu Filter into the LODOX Statscan unit above 110 kvp

Dose Reduction and Image Preservation After the Introduction of a 0.1 mm Cu Filter into the LODOX Statscan unit above 110 kvp Dose Reduction and Image Preservation After the Introduction of a into the LODOX Statscan unit above 110 kvp Abstract: CJ Trauernicht 1, C Rall 1, T Perks 2, G Maree 1, E Hering 1, S Steiner 3 1) Division

More information

The importance of radiation quality for optimisation in radiology

The importance of radiation quality for optimisation in radiology Available online at http://www.biij.org/2007/2/e38 doi: 10.2349/biij.3.2.e38 biij Biomedical Imaging and Intervention Journal COMMENTARY The importance of radiation quality for optimisation in radiology

More information

Phase Imaging Using Focused Polycapillary Optics

Phase Imaging Using Focused Polycapillary Optics Phase Imaging Using Focused Polycapillary Optics Sajid Bashir, Sajjad Tahir, Jonathan C. Petruccelli, C.A. MacDonald Dept. of Physics, University at Albany, Albany, New York Abstract Contrast in conventional

More information

X-RAYS - NO UNAUTHORISED ENTRY

X-RAYS - NO UNAUTHORISED ENTRY Licencing of premises Premises Refer Guidelines A radiation warning sign and warning notice, X-RAYS - NO UNAUTHORISED ENTRY must be displayed at all entrances leading to the rooms where x-ray units are

More information

DIGITAL IMAGE PROCESSING IN X-RAY IMAGING

DIGITAL IMAGE PROCESSING IN X-RAY IMAGING DIGITAL IMAGE PROCESSING IN X-RAY IMAGING Shalini Kumari 1, Bachan Prasad 2,Aliya Nasim 3 Department of Electronics And Communication Engineering R.V.S College of Engineering & Technology, Jamshedpur,

More information

Dosepix Detector as kvp-meter in Radiology and Mammography: First steps

Dosepix Detector as kvp-meter in Radiology and Mammography: First steps Dosepix Detector as kvp-meter in Radiology and Mammography: First steps F.Bisello, I.Ritter, F.Tennert, A.Zang MediPix Collaboration Meeting, 19th February 2014, CERN Protect, Enhance, and Save Lives -

More information

The Evaluation of Collimator Alignment of Diagnostic X-ray Tube Using Computed Radiography System

The Evaluation of Collimator Alignment of Diagnostic X-ray Tube Using Computed Radiography System The Evaluation of Collimator Alignment of Diagnostic X-ray Tube Using Computed Radiography System The Evaluation of Collimator Alignment of Diagnostic X-ray Tube Using Computed Radiography System Manus

More information

Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC

Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC R. Bellazzini a,b, G. Spandre a*, A. Brez a, M. Minuti a, M. Pinchera a and P. Mozzo b a INFN Pisa

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. RA110 test 3 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. An object 35 cm in width is radiographed at 100 cm SID and at a 50 cm SOD. What

More information

LECTURE 1 The Radiographic Image

LECTURE 1 The Radiographic Image LECTURE 1 The Radiographic Image Prepared by:- KAMARUL AMIN ABDULLAH @ ABU BAKAR UiTM Faculty of Health Sciences Medical Imaging Department 11/23/2011 KAMARUL AMIN (C) 1 Lesson Objectives At the end of

More information

ADVANCED MEDICAL SYSTEMS PTE LTD Singapore Malaysia India Australia

ADVANCED MEDICAL SYSTEMS PTE LTD Singapore Malaysia India Australia Innovative design is combined with cutting-edge technology to yield a definitive diagnosis and never before seen ergonomics GIOTTO CLASS is the result of 25 years of experience in the research and development

More information

Comparison of computed radiography and filmõscreen combination using a contrast-detail phantom

Comparison of computed radiography and filmõscreen combination using a contrast-detail phantom JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 4, NUMBER 1, WINTER 2003 Comparison of computed radiography and filmõscreen combination using a contrast-detail phantom Z. F. Lu,* E. L. Nickoloff, J.

More information

1. Carlton, Richard R., and Arlene M. Adler. Principles of Radiographic Imaging: An Art and a Science, 5th edition (2013).

1. Carlton, Richard R., and Arlene M. Adler. Principles of Radiographic Imaging: An Art and a Science, 5th edition (2013). CODE: RADT 151 INSTITUTE: Health Science TITLE: Radiographic Exposure DEPARTMENT: Radiologic Technology COURSE DESCRIPTION: This course covers the principles of radiographic exposure selection and manipulation

More information

Digital radiography (DR) post processing techniques for pediatric radiology

Digital radiography (DR) post processing techniques for pediatric radiology Digital radiography (DR) post processing techniques for pediatric radiology St Jude Children s Research Hospital Samuel Brady, MS PhD DABR samuel.brady@stjude.org Purpose Review common issues and solutions

More information

Mammograph FFDM PRODUCT DATA

Mammograph FFDM PRODUCT DATA PRODUCT DATA Product data Rev.1 (May 2010) Page Description and Configurations 3 Technical Features 7 Mammography Unit 8 Acquisition Unit 12 Diagnostic Unit (Optional) 12 Size and Dimensions 13 Classifications

More information

Disclosures. Outline 7/31/2017. Current Implementation Status of IEC Standard : Exposure Index (EI) for Digital Radiography

Disclosures. Outline 7/31/2017. Current Implementation Status of IEC Standard : Exposure Index (EI) for Digital Radiography Current Implementation Status of IEC Standard 62494-1: Exposure Index (EI) for Digital Radiography July 31, 2017 Ryan Fisher, PhD, DABR Katie Hulme, MS, DABR None Disclosures Outline Review of IEC Standard

More information

Digital radiography: Practical advantages of Digital Radiography. Practical Advantages in image quality

Digital radiography: Practical advantages of Digital Radiography. Practical Advantages in image quality Digital radiography: Digital radiography is set to become the most common form of processing radiographic images in the next 10 years. This is due to a number of practical and image quality issues. Practical

More information

Amorphous Selenium Direct Radiography for Industrial Imaging

Amorphous Selenium Direct Radiography for Industrial Imaging DGZfP Proceedings BB 67-CD Paper 22 Computerized Tomography for Industrial Applications and Image Processing in Radiology March 15-17, 1999, Berlin, Germany Amorphous Selenium Direct Radiography for Industrial

More information

Setting up digital imaging department!

Setting up digital imaging department! Outline Setting up digital imaging department! From screen/film to digital radiography PACS/Tele radiology Setting up digital department Digital Imaging Napapong Pongnapang, Ph.D. Department of Radiological

More information

Digital mammography: DQE versus optimized image quality in clinical environment an on site study

Digital mammography: DQE versus optimized image quality in clinical environment an on site study Digital mammography: DQE versus optimized image quality in clinical environment an on site study Nadia Oberhofer* a, Alessandro Fracchetti a, Margareth Springeth a, Ehrenfried Moroder a a Health Service

More information

PD233: Design of Biomedical Devices and Systems

PD233: Design of Biomedical Devices and Systems PD233: Design of Biomedical Devices and Systems (Lecture-8 Medical Imaging Systems) (Imaging Systems Basics, X-ray and CT) Dr. Manish Arora CPDM, IISc Course Website: http://cpdm.iisc.ac.in/utsaah/courses/

More information

Exposure System Selection

Exposure System Selection Principles of Imaging Science II (RAD120) Exposure Systems Exposure System Selection Radiographic exposure is a very complex process Best technique systems manipulate one variable while holding others

More information

Seminar 8. Radiology S8 1

Seminar 8. Radiology S8 1 Seminar 8 Radiology Medical imaging. X-ray image formation. Energizing and controlling the X-ray tube. Image detectors. The acquisition of analog and digital images. Digital image processing. Selected

More information

ACR AAPM SIIM Practice Guideline for Determinants of Image Quality in Digital Mammography

ACR AAPM SIIM Practice Guideline for Determinants of Image Quality in Digital Mammography J Digit Imaging (2013) 26:10 25 DOI 10.1007/s10278-012-9521-3 EDITORIAL ACR AAPM SIIM Practice Guideline for Determinants of Image Quality in Digital Mammography Kalpana M. Kanal & Elizabeth Krupinski

More information

AN ABSTRACT OF THE THESIS OF. W. Scott Helms for the degree of Master of Science in Radiation Health Physics

AN ABSTRACT OF THE THESIS OF. W. Scott Helms for the degree of Master of Science in Radiation Health Physics AN ABSTRACT OF THE THESIS OF W. Scott Helms for the degree of Master of Science in Radiation Health Physics presented on November 24, 2014 Title: A Quantitative Comparison of Cardiovascular Imaging Systems

More information

of sufficient quality and quantity

of sufficient quality and quantity of sufficient quality and quantity The patient s body attenuates the beam as it passes though the body More energy is deposited in organs located near the entry of the beam than near the exit of the beam

More information