5/16/2017. Timber Design

Size: px
Start display at page:

Download "5/16/2017. Timber Design"

Transcription

1 Timber Design Wood is a very versatile raw material and is still widely used in construction, especially in countries such as Canada, Sweden, Finland, Norway and Poland, where there is an abundance of goodqualitytimber. Timber can be used in a range of structural applications including marine works: construction of wharves, piers, cofferdams; heavy civil works: bridges, piles, shoring, pylons; domestic housing: roofs, floors, partitions; shuttering for precast and in situ concrete; falseworkfor brick or stone construction 1

2 Timber is naturally occurring. This makes it a very difficult material to characterise and partly accounts for the wide variation in the strength of timber, not only between different species but also between timber of the same species and even from the same log. Quite naturally, this led to uneconomical use of timber which was costly for individuals and the nation as a whole. However, this problem has now been largely overcome by specifying stress graded timber. There is an enormous variety of timber species. They are divided into softwoods and hardwoods, a botanical distinction, not on the basis of mechanical strength. Softwoods are derived from trees with needleshaped leaves and are usually evergreen, e.g. fir, larch, spruce, hemlock, pine. 2

3 Hardwoods are derived from trees with broad leaves and are usually deciduous, e.g. ash, elm, oak, teak, iroko, ekki, greeheart. elm EKKi OAK Teak The task of the structural engineer has been simplified, however, by grouping timber species into sixteen strength classes for which typical design parameters, e.g. grade stresses and moduli of elasticity, have been produced Some of the characteristics which influence design and are specific to timber are: the moisture content, the difference in strength when loads are applied paralleland perpendicularto the grain direction, the duration of the application of the load, the methodadopted for strength grading of the timber. 3

4 Moisture Content Unlike most structural materials, the behaviour of timber is significantly influenced by the existence and variation of its moisture content. The moisture content, as determined by oven drying of a test piece, is defined in Annex H of BS 5268 as: Fiber saturation point (FSP) The condition in which all free water has been removed but the cell walls are still saturated is known as the fiber saturation point (FSP). At levels of moisture above the FSP, most physical and mechanical properties remain constant. Variations in moisture content below the FSPcause considerable changes to properties such as weight, strength, elasticity, shrinkage and durability. 4

5 The controlled drying of timber is known as seasoning. Air seasoning, in which the timber is stacked and layered with air-space in open sided sheds to promote natural drying. Kiln drying, in which timber is dried out in a heated, ventilated and humidified oven. This requires specialist equipment and is more expensive The anisotropic nature of timber and differential drying out caused by uneven exposure to drying agents such as wind, sun or applied heat can result in a number of defects such as twisting, cupping, bowing and cracking, as shown in Figure 5

6 Defects in Tim The most common and familiar of such defects is a knot (see Figure). Normal branch growth originates near the pith of a tree and consequently its base develops new layers of wood each season which develop with the trunk. ادر طر ود,, A shake is produced when fibresseparate along the grain: this normally occurs between the growth rings, as shown in Figure A wane can occur when part of the bark or rounded periphery of the trunk is present in a cut length, as shown in Figure. 6

7 Classification of Timber Appearance grading is frequently used by architects to reflect the warm, attractive features of the material such as the surface grain pattern, the presence of knots, colour, etc. All structural (load-bearing) timber must be strength-graded according to criteria which reflect its strength and stiffness. In some cases timber may be graded according to both appearance and strength. 7

8 Visual Strength Grading As implied by the name, this method of grading is based on the physical observation of strength-reducing defects such as knots, rate of growth, cracks, wane, bowing, etc. Since the technique is based on the experience and judgment of the grader it is inherently subjective. In addition, important properties such as density, which has a significant influence on stiffness, and strength are not considered. In the UK, visual grading is governed by the requirements of BS 4978:1996 Specification for softwood grades for structural use 8

9 Visual defects considered when assessing timber strength include: location and extent of knots, slope of grain, rate of growth, fissures, wane, distortions such as bowing, springing, twisting, cupping, resin and bark pockets, and insect damage. 9

10 Machine Strength Grading The requirements for machine strength grading are specified in BS EN 519:1995 Structural Timber Grading Requirements for machine strength graded timber and grading machines. Timber is classified into: nine classes of poplar and coniferous species ranging from the weakest grade C14 to the highest grade C40, six classes for deciduous species ranging from the weakest grade D30 to the highest grade D70. In each case the number following either the C or the D represents the characteristic bending strength of the timber. In BS :2002 two additional strength classes, TR20 and TR26, are also given; this is intended for use in the design of trussed rafters. The inherently subjective nature of visual strength grading results in a lower yield of higher strength classes than would otherwise be achieved. Machine strength grading is generally carried out by conducting bending tests on planks of timber which are fed continuously through a grading machine. The results of such tests produce a value for the modulus of elasticity. The correlation between the modulus of elasticity and strength properties such as bending, tensile and compressive strength can be used to define a particular grade/class of timber. 10

11 Material Properties The strength of timber is due to certain types of cells (called tracheids in softwoods and fibres in hardwoods) which make up the many minute hollow cells of which timber is composed. These cells are roughly polygonal in cross-section and the dimension along the grain is many times larger than across it. Material Properties The principal constituents of the cells are cellulose and lignin. Individual cell walls comprise four layers, one of which is more significant with respect to strength than the others. This layer contains chains of cellulose which run nearly parallel to the main axis of thecell.thestructureofthecellenhances thestrengthofthetimberinthegraindirection. Density, which is expressed as mass per unit volume, is one of the principal properties affecting strength. The heaviest species, i.e. those with most wood substance, have thick cell walls and small cell cavities. They also have the highest densities and consequently are the strongest species. Numerous properties in addition to strength, e.g. shrinkage, stiffness and hardness, increase with increasing density. 11

12 Material Properties The slope of the grain can have an important effect on the strength of a timber member. Typically a reduction of 4% in strength can result from a slope of 1 in 25, increasing to an 11% loss for slopes of 1 in 15. The strength of timber is also affected by the rate of growth as indicated by the width of the annual growth rings. For most timbers the number of growth rings to produce the optimum strength is approximately in the range of 6 15 per 25 mm measured radially. Timber which has grown either much more quickly or much more slowly than that required for the optimum growth rate is likely to be weaker. Material Properties Like many materials, e.g. concrete, the stress strain relationship demonstrated by timber under load is linear for low stress values. For all species the strains for a given load increase with moisture content. A consequence of this is that the strain in a beam under constant load will increase in a damp environment and decrease as it dries out again. Timber demonstrates viscoelastic behaviour(creep) as high stress levels induce increasing strains with increasing time. The magnitude of long-term strains increases with higher moisture content. 12

13 Material Properties The fire resistance of timber generally compares favourablywith other structural materials and is often better than most. Steel is subject to loss of strength, distortion, expansion and collapse, whilst concrete may spall and crack. The charcoal produced during the fire is a poor conductor and will eventually provide an insulating layer between the flame and the unburned timber. Fire authorities usually consider that a normal timber door will prevent the spread of fire to an adjoining room for about 30 minutes. Permissible Stress Design The laws of structural mechanics referred to are those well established in recognised elastic theory, as follows. The material is homogeneous, The material is isotropic, which implies that the elastic properties are the same in all directions. The material obeys Hooke s Law The material is elastic, The modulus of elasticity is the same in tension and compression. Plane sections remain plane during deformation 13

14 Modification Factors The inherently variable nature of timber and its effects on structural material properties such as stress strain characterisfcs, elasfcity and creep has resulted in more than eighty different modification factors which are used in converting grade stresses to permissible stresses for design purposes. Modification Factors The applied stresses are calculated using elastic theory, and the permissible stresses are determined from the code using the appropriate values relating to the strength classification multiplied by the modification factors which are relevant to the stress condition being considered. Symbols are defined relating to stresses and other variables in Clause 1.4 of BS :2002 as follows: 14

15 Modification Factors In many instances subscripts are also used to identify various types of force, stress or geometry; these are as follows: Modification Factors As mentioned previously, the permissible stress is evaluated by multiplying the grade stress for a particular strength class by the appropriate modification factors, e.g. 15

16 Modification Factors Modification Factors 16

17 Flexural Members Beams are the most commonly used structural elements, for example as floor joists, and as trimmer joists around openings, rafters, etc. The cross-section of a timber beam may be one of a number of frequently used sections such as those indicated in Figure The principal considerations in the design of all beams are: shear, bending, deflection, bearing, and lateral stability. Flexural Members The size of timber beams may be governed by the requirements of: the elastic section modulus (Z), to limit the bending stresses and ensure that neither lateral torsional buckling of the compression flange nor fracture of the tension flange induces failure, the cross-section, to ensure that the vertical and/or horizontal shear stresses do not induce failure, the second moment of area, to limit the deflection induced by bending and/or shear action to acceptable limits. 17

18 Effective Span Most timber beams are designed as simply supported and the effective span which should be used is defined in Clause of BS :2002, as illustrated in Figure Since the required bearing length on most beams is relatively small when compared with the actual span it is common practice to assume an effective span equal to: the clear distance between the supports + 50 mm for solid beams, and the clear distance between the supports mm for ply-web beams. In the case of long span beams (e.g. in excess of 10.0 m), or heavily loaded beams with consequently larger end reactions, the validity of this assumption should be checked. Solid Rectangular Beams The modification factors, which are pertinent when designing solid timber beams, are summarized in Table. 18

19 Solid Rectangular Beams Shear The grade and hence permissible stresses given in the BS relate to the maximum shear stress parallel to the grain for a particular species or strength class. In solid beams of rectangular cross-section the maximum horizontal shear stress occurs at the level of the neutral axis, and is equal to 1.5 the average value: Bending Solid Rectangular Beams the applied bending stress is determined using simple elastic bending theory: K2, K3, K6, K7 and K8 are modification factors used when appropriate. Note: K6 = 1.0 for rectangular cross-sections. 19

20 Solid Rectangular Beams Deflection In the absence of any special requirements for deflection in buildings, it is customary to adopt an arbitrary limiting value based on experience and good practice. The recommended value adopted in BS 5268 : Part 2 is (0.003 span) when fully loaded. In the case of domestic floor joists there is an additional recommendation of limiting deflection to less than or equal to 14 mm. The calculated deflection for solid beams is usually based on the bending action of the beam ignoring the effects of shear deflection Bearing (Clause ) The behaviour of timber under the action of concentrated loads, e.g. at positions of support, is complex and influenced by both the length and location of the bearing, as shown in Figures Solid Rectangular Beams Note: In case (b), an additional modification factor K4 for bearing stress has been included. 20

21 Solid Rectangular Beams The actual bearing area is the net area of the contact surface and allowance must be made for any reduction in the width of bearing due to wane, as shown in Figure Lateral Stability Solid Rectangular Beams A beam in which the depth and length are large in comparison to the width (i.e. a slender cross-section) may fail at a lower bending stress value due to lateral torsional buckling, as shown in Figure The critical value of bending moment which induces this type of failure is dependent on several parameters, such as: the relative cross-section dimensions (i.e. aspect ratio), shape, modulus of elasticity (E), shear modulus (G), span, degree of lateral restraint to the compression flange, and the type of loading. 21

22 Solid Rectangular Beams Notched Beams (Clause ) It is often necessary to create notches or holes in beams to accommodate fixing details such as gutters, reduced fascias and connections with other members. In such circumstances high stress concentrations occur at the locations of the notches or holes. Whilst notches and holes should be kept to a minimum, when they are necessary cuts with square re-entrant corners should be avoided. This can be achieved by providing a fillet or taper or cutting the notch to a pre-drilled hole, typically of 8 mm diameter. Effect on Shear Strength (Clause ) The projection of a notch beyond the inside edge of the bearing line at the point of support reduces the shear capacity of a beam. There are two situations to consider, as shown in Figure Solid Rectangular Beams Effect on Shear Strength (Clause ) The projection of a notch beyond the inside edge of the bearing line at the point of support reduces the shear capacity of a beam. There are two situations to consider, as shown in Figure 22

23 Solid Rectangular Beams The reduction in shear capacity is reflected in the use of the net area and a reduction factor K5, as indicated. Effect on Bending Strength The calculated bending strength of notched beams is based on the net cross-section, as shown in Figure Solid Rectangular Beams When considering simply supported floor and roof joists which are not more than 250 mm deep and which satisfy the restrictions indicated in Figures (a) and (b), the effects of notches and holes can be neglected. 23

24 Solid Rectangular Beams Example 7.1: Suspended Timber Floor System Consider the design of a suspended timber floor system in a domestic building in which the joists at 500 mm centres are simply supported by timber beams on load-bearing brickwork, as shown in Figure (a) The support beams are notched at the location of the wall, as shown in Figure (b). Determine a suitable section size for the tongue and groove floor boards. Determine a suitable section size for the joists. Check the suitability of the main support beams. Design data: Centre of timber joists 500 mm Distance between the centre-lines of the brickwork wall 4.5 m Strength class of timber for joists and tongue and groove boarding and beams C22 Imposed loading (long-term) 3.0 kn/m2 Exposure condition Service Class 1 24

25 25

Wood. Wood construction

Wood. Wood construction CEEN 3144 Construction Materials Wood Francisco Aguíñiga Assistant Professor Civil Engineering Program Texas A&M University Kingsville Page 1 Wood construction Page 2 1 Wood construction Page 3 Advantages

More information

What materials are available?

What materials are available? Traditional materials: Timber, stone and Brick What materials are available? Technological advancements have introduced a larger selection of materials such as: Concrete blocks Structurally engineered

More information

Korean standards of visual grading and establishing allowable properties of softwood structural lumber

Korean standards of visual grading and establishing allowable properties of softwood structural lumber Korean standards of visual grading and establishing allowable properties of softwood structural lumber Park, Moon-Jae 1, Shim, Kug-Bo 1 ABSTRACT Korean standards related to wood products such as "Sizes

More information

VERSA-LAM. An Introduction to VERSA-LAM Products

VERSA-LAM. An Introduction to VERSA-LAM Products 44 VERSA-LAM An Introduction to VERSA-LAM Products VERSA-LAM is one of the strongest and stiffest engineered wood products approved in the UK. 241 302 356 406 VERSA-LAM products are excellent as floor

More information

WOODEN BUILDINGS 6.1 INTRODUCTION 6.2 TYPICAL DAMAGE AND FAILURE OF WOODEN BUILDINGS. Chapter 6

WOODEN BUILDINGS 6.1 INTRODUCTION 6.2 TYPICAL DAMAGE AND FAILURE OF WOODEN BUILDINGS. Chapter 6 Chapter 6 WOODEN BUILDINGS 6.1 INTRODUCTION Wood has higher strength per unit weight and is, therefore, very suitable for earthquake resistant construction. But heavy cladding walls could impose high lateral

More information

Section Downloads. Lumber Design Values. Lumber Standard. Western Lumber Product Use Manual. Section 05: Truss Materials.

Section Downloads. Lumber Design Values. Lumber Standard. Western Lumber Product Use Manual. Section 05: Truss Materials. Section Downloads Download & Print TTT I Sec 05 Slides TTT I Sec 05 Problem Handout TTT I Sec 05 Design Values Section 05: Truss Materials 1 PS 20-2010 Non-Printable Downloads Version 2.1 2 Lumber Design

More information

STRUCTURAL TIMBER DESIGN

STRUCTURAL TIMBER DESIGN STRUCTURAL TIMBER DESIGN to Eurocode 5 2nd Edition Jack Porteous BSc, MSc, DIC, PhD, CEng, MIStructE, FICE Director lack Porteous Consultancy and Abdy Kernlani BSc, MSc, PhD, CEng, FIStructE, FIWSc Professor

More information

Wood & Timber. Wood & Timber

Wood & Timber. Wood & Timber Introduction Important points concerning wood: 1. Many kinds (>30,000 species of trees) 2. Wood is a composite material 3. Natural material (many flaws, imperfections) 4. Anisotropic (mechanical properties

More information

APPENDIX A. WOOD CHARACTERISTICS. Structure of Wood

APPENDIX A. WOOD CHARACTERISTICS. Structure of Wood APPENDIX A. WOOD CHARACTERISTICS Structure of Wood Wood Cells The cells which make up the structural elements of wood are generally tubular and quite firmly grown together. Dry wood cells may be empty,

More information

Exam Sheet, Part 1. hardwood softwood. pith, heartwood, sapwood, vascular cambium, phloem, outer bark. sapwood, phloem, vascular cambium, outer bark.

Exam Sheet, Part 1. hardwood softwood. pith, heartwood, sapwood, vascular cambium, phloem, outer bark. sapwood, phloem, vascular cambium, outer bark. Exam Sheet, Part 1 name A) Anatomy and Biology of Wood Formation; Wood Identification 1. The average length of longitudinally oriented cells is greater in hardwoods than in softwoods. 2. Is the following

More information

5. Timber Application, Products and their use

5. Timber Application, Products and their use TIMBER 5. Timber Application, Products and their use Lecturer: Prof. Dr. Mohammad Ismail Faculty of Civil Engineering, -Skudai, Johor Darul Ta zim, MALAYSIA 1 Room : C09-313 Tel : 07-5531688 December 6,

More information

STRUCTURAL FINGER JOINTED SOLID TIMBER

STRUCTURAL FINGER JOINTED SOLID TIMBER STRUCTURAL FINGER JOINTED SOLID TIMBER THE BEAM WITH THE CHARACTER OF SOLID TIMBER. 01 AT A GLANCE AREAS OF APPLICATION Single and multiple family houses Multi-storey residential buildings Industrial and

More information

The Behaviour Of Round Timber Sections Notched Over The Support On The Tension Face. Justin Dewey

The Behaviour Of Round Timber Sections Notched Over The Support On The Tension Face. Justin Dewey The Behaviour Of Round Timber Sections Notched Over The Support On The Tension Face Justin Dewey Need for research In Queensland there are approximately 400 timber bridges still in use. Very little research

More information

nineteen Wood Construction 1 and design APPLIED ARCHITECTURAL STRUCTURES: DR. ANNE NICHOLS FALL 2016 lecture STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631

nineteen Wood Construction 1 and design APPLIED ARCHITECTURAL STRUCTURES: DR. ANNE NICHOLS FALL 2016 lecture STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631 APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS FALL 2016 lecture nineteen wood construction and design Wood Construction 1 Timber Construction all-wood framing systems

More information

Glulam Connection Details

Glulam Connection Details T E C H N I C A L N O T E Glulam Connection Details Note: This version is superseded by a more current edition. Check the current edition for updated design and application recommendations. ENGINEERED

More information

Introduction to timber as an engineering material

Introduction to timber as an engineering material 02-08-01 Introduction to timber as an engineering material Annette Harte BE MEngSc PhD CEng FIEI MIWSc National University of Ireland Galway This chapter includes a description of the anatomy of wood,

More information

TIMBERS BEAMS & STRINGERS, POSTS & TIMBERS

TIMBERS BEAMS & STRINGERS, POSTS & TIMBERS TIMBERS BEAMS & STRINGERS, POSTS & TIMBERS -1 -2 TIMBERS ASPEN SPRUCE PINE FIR(s) EASTERN SPRUCE *RED MAPLE EASTERN HEMLOCK *MIXED MAPLE TAMARACK *BEECH BIRCH BALSAM FIR HICKORY NORTHERN WHITE CEDAR *MIXED

More information

GLUED SOLID TIMBER DUO/TRIO

GLUED SOLID TIMBER DUO/TRIO GLUED SOLID TIMBER DUO/TRIO THE DIMENSIONALLY STABLE AESTHETE. 01 AT A GLANCE AREAS OF APPLICATION Single and multiple family houses Multi-storey residential buildings Visual application with the highest

More information

Beam & Header Technical Guide. LP SolidStart LVL. 2900F b -2.0E. U.S. Technical Guide U.S. TECHNICAL GUIDE

Beam & Header Technical Guide. LP SolidStart LVL. 2900F b -2.0E. U.S. Technical Guide U.S. TECHNICAL GUIDE U.S. Technical Guide U.S. TECHNICAL GUIDE LP SolidStart LVL & Header Technical Guide 2900F b -2.0E Please verify availability with the LP SolidStart Engineered Wood Products distributor in your area prior

More information

MAT105: Floor Framing

MAT105: Floor Framing MAT105: Copyright 2007 American Forest & Paper Association, Inc. Because the common applications for wood framing are in residential construction, the details of this program will be based on the IRC which

More information

ALONA YANSHINA EXERCISE 1.1

ALONA YANSHINA EXERCISE 1.1 material makeup: log ALONA YANSHINA EXERCISE 1.1 timeline + development log cabin - interlocked corners by cutting notches in the ends of the logs. using log joinery technique, structures grew higher logs

More information

AQA GCSE Design and Technology 8552

AQA GCSE Design and Technology 8552 AQA GCSE Design and Technology 8552 Natural and manufactured timbers Unit 3 Materials and their working properties 2 Objectives Know the primary sources of materials for producing natural and manufactured

More information

Forming and Shoring Product Selector

Forming and Shoring Product Selector Forming and Shoring Product Selector Including RedForm LVL and RedForm-I65, I90, and I90H s Lightweight for Fast Installation Resists Bowing, Twisting, and Shrinking Available in Long Lengths Uniform and

More information

Expressed Hardwood Structures

Expressed Hardwood Structures Expressed Hardwood Structures Introduction This guide provides ideas and design information to assist in the development of expressed native timber structures in buildings. Basic information on how to

More information

Section Downloads. Terminology Outline. Industry Standards/ Publications. American Softwood Lumber Standard ANSI/TPI 1. Section 02: Terminology

Section Downloads. Terminology Outline. Industry Standards/ Publications. American Softwood Lumber Standard ANSI/TPI 1. Section 02: Terminology Section Downloads Download & Print TTT I Sec 02 Slides TTT I Sec 02 Handouts Version 2.1 Section 02: Terminology 1 2 Terminology Outline Industry Standards/Publications Truss Terms Bracing Terms Design

More information

LOOK AROUND and you will see the

LOOK AROUND and you will see the Selecting Lumber LOOK AROUND and you will see the many applications of lumber. A great amount is used in building construction, but it is also used for furniture, tool handles, paper, and many more uses.

More information

LP SolidStart LSL. LP SolidStart LSL Prescriptive Roof Framing Technical Guide 2500F b-1.75e, 2360F b -1.55E and 1730F b -1.

LP SolidStart LSL. LP SolidStart LSL Prescriptive Roof Framing Technical Guide 2500F b-1.75e, 2360F b -1.55E and 1730F b -1. LP SolidStart LSL LP SolidStart LSL Prescriptive Roof Framing Technical Guide 2500F b-1.75e, 2360F b -1.55E and 1730F b -1.35E LSL Please verify availability with the LP SolidStart Engineered Wood Products

More information

LVL8 H1.2 GENERAL FRAMING. Eco Friendly Revolutionary H1.2 Treatment Azotek by Zelam

LVL8 H1.2 GENERAL FRAMING. Eco Friendly Revolutionary H1.2 Treatment Azotek by Zelam LVL8 H1.2 GENERAL FRAMING Eco Friendly Revolutionary H1.2 Treatment Azotek by Zelam NPIL/MARCH2015 Introduction to NelsonPine LVL8 H1.2 NelsonPine LVL is an engineered wood composite made from rotary peeled

More information

Eurocode EN Eurocode 3: 3 Design of steel structures. Part 1-1: General rules and rules for buildings

Eurocode EN Eurocode 3: 3 Design of steel structures. Part 1-1: General rules and rules for buildings Eurocode EN 1993-1-1 Eurocode 3: 3 Design of steel structures Part 1-1: General rules and rules for buildings Eurocode EN 1993-1-1 Eurocode 3 applies to the design of buildings and civil engineering works

More information

Technical Bulletin

Technical Bulletin Technical Bulletin 2018 11 First Release: January 2018 Revised: Prepared by: Ron Anthony and Tom Nehil, P.E. Title: Determining Allowable Design Stresses for Timber using ASTM Standards D2555 and D245

More information

Module 3 Selection of Manufacturing Processes

Module 3 Selection of Manufacturing Processes Module 3 Selection of Manufacturing Processes Lecture 4 Design for Sheet Metal Forming Processes Instructional objectives By the end of this lecture, the student will learn the principles of several sheet

More information

Wood anatomy. 600 Wood anatomy

Wood anatomy. 600 Wood anatomy 600 Wood anatomy Wood anatomy Wood is composed mostly of hollow, elongated, Spindle-shaped cells that are arranged parallel to each other along the trunk of a tree. The characteristics of these fibrous

More information

Structural Strength of Lapped Cold-Formed Steel Z-Shaped Purlin Connections with Vertical Slotted Holes

Structural Strength of Lapped Cold-Formed Steel Z-Shaped Purlin Connections with Vertical Slotted Holes Missouri University of Science and Technology Scholars' Mine International Specialty Conference on Cold- Formed Steel Structures (2014) - 22nd International Specialty Conference on Cold-Formed Steel Structures

More information

THE ENGINEERED WOOD ASSOCIATION

THE ENGINEERED WOOD ASSOCIATION D A T A F I L E APA Performance Rated Rim Boards A rim board is the wood component that fills the space between the sill plate and bottom plate of a wall or, in second floor construction, between the top

More information

SPECIFICATIONS FOR TIMBER CROSSTIES (Latest Revision as of January 2014)

SPECIFICATIONS FOR TIMBER CROSSTIES (Latest Revision as of January 2014) SPECIFICATIONS FOR TIMBER CROSSTIES (Latest Revision as of January 2014) These specifications were arrived at by a joint committee of the Railway Tie Association and the American Railway Engineering and

More information

APA Performance Rated Rim Boards

APA Performance Rated Rim Boards D a t a F i l e APA Performance Rated Rim Boards A Rim Board is the wood component that fills the space between the sill plate and bottom plate of a wall or, in second floor construction, between the top

More information

Course Syllabus ARCHITECTURE 544 WOOD FRAMING. Organization. Evaluation. Text

Course Syllabus ARCHITECTURE 544 WOOD FRAMING. Organization. Evaluation. Text ARCHITECTURE 544 WOOD FRAMING Prof. Dr. Ing. Peter von Buelow pvbuelow@umich.edu 1205c Art & Architecture Bldg. Lecture Topics : Course Structure Codes NDS Approach Sawn Lumber Engineering Properties Engineered

More information

Sections & Details. WOOD SILL and FLOOR CONSTRUCTION NOTES

Sections & Details. WOOD SILL and FLOOR CONSTRUCTION NOTES 2 Sections & Details WOOD SILL and FLOOR CONSTRUCTION NOTES 1 Commonly Used Lumber Common LENGTHS include: 8, 10, 12, 14, 16 NOMINAL SIZES 2 x 4 2 x 6 2 x 8 2 x 10 2 x 12 ACTUAL SIZES 1 ½ x 3 ½ 1 ½ x 5

More information

BRACING BRACING SECTION 7 SECTION 7

BRACING BRACING SECTION 7 SECTION 7 If we are to learn from the past, it is clear that there is generally a lack of understanding of the purpose of roof bracing and who should be responsible for it. This has led to disputes, claims and,

More information

TEST SERIES TO EVALUATE THE STRUCTURAL BEHAVIOUR OF ISOBOARD OVER RAFTER SYSTEM

TEST SERIES TO EVALUATE THE STRUCTURAL BEHAVIOUR OF ISOBOARD OVER RAFTER SYSTEM TEST SERIES TO EVALUATE THE STRUCTURAL BEHAVIOUR OF ISOBOARD OVER RAFTER SYSTEM J A Wium Institute of Structural Engineering 19 November 2007 ISI2007-3 TEST SERIES TO EVALUATE THE STRUCTURAL BEHAVIOUR

More information

T Wooden Structures 1

T Wooden Structures 1 T512903 Wooden Structures 1 Load Bearing Wooden Structures Structure of Wood Structural Properties of Wood Timber Glued Laminated Timber Laminated Veneer Lumber 1 T512903 Wooden Structures 1 Load Bearing

More information

Two basic types of single

Two basic types of single Designing with Single Plate Connections M. Thomas Ferrell M. Thomas Ferrell is president of Ferrell Engineering, Inc., of Birmingham, AL. He is a member of the AISC Committee on Manuals and Textbooks,

More information

Introducing AJSTM INSTALLATION GUIDE USA. 8 th Edition USA

Introducing AJSTM INSTALLATION GUIDE USA. 8 th Edition USA The SIMPLE FRAMING SYSTEMSM INSTALLATION GUIDE USA for Floors This Installation Guide is intended to provide general information for the designer and end-user. For further information, please refer to

More information

Glulam Curved Members. Glulam Design. General Glulam Design. General Glulam Beams are Designed in the SAME Manner as Solid Sawn Beams

Glulam Curved Members. Glulam Design. General Glulam Design. General Glulam Beams are Designed in the SAME Manner as Solid Sawn Beams Glulam Curved Members Glulam Design General Glulam Beams are Designed in the SAME Manner as Solid Sawn Beams There is an Additional Adjustment Factor, C v, the Volume Factor C v and C L (Lateral Stability

More information

Tension Perpendicular to Grain Strength of Wood, Laminated Veneer Lumber, and a Wood Plastic Composite.

Tension Perpendicular to Grain Strength of Wood, Laminated Veneer Lumber, and a Wood Plastic Composite. Tension Perpendicular to Grain Strength of Wood, Laminated Veneer Lumber, and a Wood Plastic Composite. Tracy Hummer, Research Assistant J. Daniel Dolan, Professor Michael Wolcott, Professor Wood Materials

More information

ADDENDUM (February 2014) 2012 NDS Changes John Buddy Showalter, P.E., Bradford K. Douglas, P.E., Philip Line, P.E., and Peter Mazikins, P.Eng.

ADDENDUM (February 2014) 2012 NDS Changes John Buddy Showalter, P.E., Bradford K. Douglas, P.E., Philip Line, P.E., and Peter Mazikins, P.Eng. ADDENDUM (February 2014) 2012 NDS Changes John Buddy Showalter, P.E., Bradford K. Douglas, P.E., Philip Line, P.E., and Peter Mazikins, P.Eng. 1) Add to section on Dowel-type Fasteners as follows: Section

More information

SPECIAL PRODUCTS FOR EVERY CHALLENGE, A SOLUTION.

SPECIAL PRODUCTS FOR EVERY CHALLENGE, A SOLUTION. SPECIAL PRODUCTS FOR EVERY CHALLENGE, A SOLUTION. 01 TERRACE COMFORT PLANK A minimised deformation due to bonding Edge-grain minimises any warping, with hardly any fibre separation Homogeneous appearance

More information

Design of structural connections for precast concrete buildings

Design of structural connections for precast concrete buildings BE2008 Encontro Nacional Betão Estrutural 2008 Guimarães 5, 6, 7 de Novembro de 2008 Design of structural connections for precast concrete buildings Björn Engström 1 ABSTRACT A proper design of structural

More information

Module 10 : Improvement of rock mass responses. Content

Module 10 : Improvement of rock mass responses. Content IMPROVEMENT OF ROCK MASS RESPONSES Content 10.1 INTRODUCTION 10.2 ROCK REINFORCEMENT Rock bolts, dowels and anchors 10.3 ROCK BOLTING MECHANICS Suspension theory Beam building theory Keying theory 10.4

More information

AN IMPROVED SHEAR TEST FIXTURE USING THE IOSIPESCU SPECIMEN

AN IMPROVED SHEAR TEST FIXTURE USING THE IOSIPESCU SPECIMEN AMD-VOl. 231/MD-VOl. 85 Mechanics of Cellulosic Materials 1999 ASME 1999 ABSTRACT AN IMPROVED SHEAR TEST FIXTURE USING THE IOSIPESCU SPECIMEN Jen Y. Liu, Dwight D. Flach, Robert J. Ross, and Gary J. Lichtenberg

More information

Sawn timber grading in Lao PDR. Product grading manual: rules and recommendations

Sawn timber grading in Lao PDR. Product grading manual: rules and recommendations Sawn timber grading in Lao PDR Product grading manual: rules and recommendations Adam Redman 2016 Contents Contents 2 Introduction 3 Background 3 International rules 4 Australian and New Zealand standard

More information

Design Nailed and Wood Screwed Connections with Spreadsheet. Course Content

Design Nailed and Wood Screwed Connections with Spreadsheet. Course Content Design Nailed and Wood Screwed Connections with Spreadsheet Course Content INTRODUCTION The complete design of a wood structure includes the design of connections between the various structural members.

More information

3.1 General Provisions

3.1 General Provisions WOOD FRAME CONSTRUCTION MANUAL 107 3.1 General Provisions 3.1.1 Prescriptive Requirements The provisions of this Chapter establish a specific set of resistance requirements for buildings meeting the scope

More information

AUSTRALIAN HARDWOOD AND CYPRESS

AUSTRALIAN HARDWOOD AND CYPRESS AUSTRALIAN HARDWOOD AND CYPRESS 1 Expressed Hardwood Structures Trusses, Cathedral Ceilings, Post and Beam Frames SCOPE This guide provides ideas and design information to assist in the development of

More information

Nailed Structural-Use Panel and Lumber Beams

Nailed Structural-Use Panel and Lumber Beams D A T A F I L E Nailed Structural-Use Panel and Lumber Beams When roof load or span requirements are too great to allow use of commonly available dimension lumber or timbers, a box beam constructed of

More information

TECHNICAL MANUAL. TERADOWEL and ULTRADOWEL. Reliable Dowel System for Floor Joints

TECHNICAL MANUAL. TERADOWEL and ULTRADOWEL. Reliable Dowel System for Floor Joints TECHNICAL MANUAL TERADOWEL and ULTRADOWEL Reliable Dowel System for Floor Joints Version: PEIKKO GROUP 11/2018 TERADOWEL and ULTRADOWEL Reliable Dowel System for Floor Joints Dowels manufactured from high

More information

WHY YOU SHOULD USE TUFFLOOR. components

WHY YOU SHOULD USE TUFFLOOR. components Tuffloor DESIGN GUIDE WHY YOU SHOULD USE TUFFLOOR Strong and Easily Installed Tuffloor is a steel floor framing system designed for strength and ease of installation, and is an easy and economical alternative

More information

How to build your Sauno kiln dryer

How to build your Sauno kiln dryer How to build your Sauno kiln dryer The following description shows our recommendation how to build an efficient low price kiln dryer for indoor or outdoor use. We are here showing how to make a chamber

More information

Timber Check Moisture Meter

Timber Check Moisture Meter Timber Check Moisture Meter (99N15.01) The following instructions were provided by the manufacturer. Using Your Timber Check Moisture Meter Step 1. Push the pins into the wood sample. Step 2. Turn the

More information

eb^sv=qfj_bo UNIVERSITY OF WISCONSIN - STOUT COLLEGE OF SCIENCE TECHNOLOGY ENGINEERING & MATHEMATICS Architectural Technology AEC 233

eb^sv=qfj_bo UNIVERSITY OF WISCONSIN - STOUT COLLEGE OF SCIENCE TECHNOLOGY ENGINEERING & MATHEMATICS Architectural Technology AEC 233 eb^sv=qfj_bo UNIVERSITY OF WISCONSIN - STOUT COLLEGE OF SCIENCE TECHNOLOGY ENGINEERING & MATHEMATICS Architectural Technology AEC 233 Dr. Jason E. Charalambides fkqolar`qflk Heavy timber construction consists

More information

PINE WOODS OAK METALS POLYMERS ASH SOFTWOODS CHIPBOARD MAHOGANY MAN MADE HARDWOOD WOODS MDF PLYWOOD BEECH HARDBOARD THERMOSET FERROUS METALS CARBON

PINE WOODS OAK METALS POLYMERS ASH SOFTWOODS CHIPBOARD MAHOGANY MAN MADE HARDWOOD WOODS MDF PLYWOOD BEECH HARDBOARD THERMOSET FERROUS METALS CARBON ASH PINE MAHOGANY SOFTWOODS CHIPBOARD HARDWOOD MAN MADE WOODS OAK WOODS MDF PLYWOOD BEECH HARDBOARD RESISTANT METALS MATERIALS ALUMINIUM POLYMERS NON-FERROUS METALS UREA FORMALDEHYDE COPPER ZINC THERMOSET

More information

Structural Timber Design

Structural Timber Design 2nd Edition 2nd Edition 2nd Edition Structural Timber Design Jack Porteous and Abdy Kermani The Authors Abdy Kermani is the Professor of Timber Engineering and Director of the UK s Centre for Timber Engineering

More information

!DETECTION OF COMPRESSION FAILURES IN WOOD

!DETECTION OF COMPRESSION FAILURES IN WOOD AGRICULTURE ROOM!DETECTION OF COMPRESSION FAILURES IN WOOD Information Reviewed and Reaffirmed May 1961 No. 1388 FOREST PRODUCTS LABORATORY MADISON 5, WISCONSIN UNITED STATES DEPARTMENT OF AGRICULTURE

More information

Composite Sections. Introduction BETON PRATEGANG TKS Session 10: 2015/4/27

Composite Sections. Introduction BETON PRATEGANG TKS Session 10: 2015/4/27 BETON PRATEGANG TKS - 4023 Session 10: Composite Sections Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Introduction A composite section in context of prestressed

More information

Dowel-type fasteners. Timber Connections. Academic resources. Introduction. Deferent types of dowel-type fasteners. Version 1

Dowel-type fasteners. Timber Connections. Academic resources. Introduction. Deferent types of dowel-type fasteners. Version 1 Academic resources Timber Connections Dowel-type fasteners Version 1 This unit covers the following topics: Deferent types of dowel-type fasteners Introduction There are four criteria designers should

More information

Dowel connections in laminated strand lumber

Dowel connections in laminated strand lumber Dowel connections in laminated strand lumber Cranswick, Chad J. 1, M c Gregor, Stuart I. 2 ABSTRACT Laminated strand lumber (LSL) is a relatively new structural composite lumber. As such, very limited

More information

The Location of the Neutral Axis in Wood Beams with Multiple Knots. An Abstract of the Thesis of

The Location of the Neutral Axis in Wood Beams with Multiple Knots. An Abstract of the Thesis of An Abstract of the Thesis of Levi R. Voigt for the degree of Honors Baccalaureate of Science in Civil Engineering presented May 31, 2011. Title: The Location of the Neutral Axis in Wood Beams with Multiple

More information

COPYRIGHTED MATERIAL. one I NTRODUCTION:WOOD P ROPERTIES,SPECIES, AND G RADES. chapter 1.1 INTRODUCTION. The Project-based Approach

COPYRIGHTED MATERIAL. one I NTRODUCTION:WOOD P ROPERTIES,SPECIES, AND G RADES. chapter 1.1 INTRODUCTION. The Project-based Approach chapter one I NTRODUCTION:WOOD P ROPERTIES,SPECIES, AND G RADES 1.1 INTRODUCTION The purpose of this book is to present the design process for wood structures in a quick and simple way, yet thoroughly

More information

ROOF-CEILING CONSTRUCTION

ROOF-CEILING CONSTRUCTION CHAPTER 8 ROOF-CEILING CONSTRUCTION SECTION R801 GENERAL R801.1 Application. The provisions of this chapter shall control the design and construction of the roof-ceiling system for all buildings. R801.2

More information

General Layout. Eng. Maha Moddather

General Layout. Eng. Maha Moddather General Layout Eng. Maha Moddather mahamoddather@eng.cu.edu.eg Introduction Concrete Beam subjected to Bending Moment around Major Axis M x Compression d Concrete tensile strength is neglected A S Tension

More information

NATIONAL GRADING RULE FOR SOFTWOOD DIMENSION LUMBER INTERPRETATIONS

NATIONAL GRADING RULE FOR SOFTWOOD DIMENSION LUMBER INTERPRETATIONS NATIONAL GRADING RULE FOR SOFTWOOD DIMENSION LUMBER INTERPRETATIONS Index PART - National Grading Rule for Softwood Dimension Lumber Interpretations.. 5-9.0 General...5. Bark and Pitch Pockets...5.2 Bevel

More information

Featuring TJ Rim Board and TimberStrand LSL

Featuring TJ Rim Board and TimberStrand LSL #TJ-8000 SPECIFIER S GUIDE TRUS JOIST RIM BOARD Featuring TJ Rim Board and TimberStrand LSL Multiple thicknesses, grades, and products to cover all your rim board needs 1¼" Thickness matches lateral load

More information

Anti-check bolts as means of repair for damaged split ring connections

Anti-check bolts as means of repair for damaged split ring connections Anti-check bolts as means of repair for damaged split ring connections Quenneville, J.H.P. 1 and Mohammad, M. 2 ABSTRACT There are numerous large span timber hangars dating back to the Second World War.

More information

Dowels for the 21st Century

Dowels for the 21st Century Dowels for the 21st Century by Wayne W. Walker and Jerry A. Holland sing plate dowels in slabs on ground for shear load transfer at the joints offer many advantages over the traditional round dowels. By

More information

Module 2 WAVE PROPAGATION (Lectures 7 to 9)

Module 2 WAVE PROPAGATION (Lectures 7 to 9) Module 2 WAVE PROPAGATION (Lectures 7 to 9) Lecture 9 Topics 2.4 WAVES IN A LAYERED BODY 2.4.1 One-dimensional case: material boundary in an infinite rod 2.4.2 Three dimensional case: inclined waves 2.5

More information

Timber Just Needs To Move: Compliant Joinery and Timber Shrinkage

Timber Just Needs To Move: Compliant Joinery and Timber Shrinkage Timber Just Needs To Move: Compliant Joinery and Timber Shrinkage Paul Malko Foard Panel www.foardpanel.com Presentation Rules Ask This questions any time. is a conversation, not a lecture. Learning Environment

More information

WITH HEAT - NATURALLY

WITH HEAT - NATURALLY WITH HEAT - NATURALLY Clock House, Station Approach, Shepperton, Middlesex TW17 8AN T +44 (0)1932 256590 F +44 (0)1932 229989 E info@mbmspeciality.co.uk W www.mbmspeciality.co.uk Continue About the company

More information

Connection Philosophy. p NDS Chapter-by-chapter description Changes from previous editions Examples. Part 1: Member Design Webinar.

Connection Philosophy. p NDS Chapter-by-chapter description Changes from previous editions Examples. Part 1: Member Design Webinar. Outline ASD and LRFD with the 2005 NDS Part 2 Connection Design Presented by: John Buddy Showalter, P.E. Vice President, Technology Transfer Connection philosophy p NDS Chapter-by-chapter description Changes

More information

UPPER FLOORS TIMBER AND CONCRETE

UPPER FLOORS TIMBER AND CONCRETE UPPER FLOORS TIMBER AND CONCRETE FUNCTIONS OF AN UPPER FLOOR Functions: Support imposed loads Not deflect under load Strength and stability Provide restraint for external walls Fire resistance (30 minutes)

More information

a) If a bolt is over-tightened, which will fail first the bolt, or the plastic?

a) If a bolt is over-tightened, which will fail first the bolt, or the plastic? 2.2.75 6.525 Problem Set 3: Solutions to ME problems Fall 2013 Jacob Bayless Problem 1: Bolted joint a) If a bolt is over-tightened, which will fail first the bolt, or the plastic? The bolt is made of

More information

Bolt Material Types and Grades 1- Bolts made of carbon steel and alloy steel: 4.6, 4.8, 5.6, 5.8, 6.8, 8.8, 10.9 Nuts made of carbon steel and alloy

Bolt Material Types and Grades 1- Bolts made of carbon steel and alloy steel: 4.6, 4.8, 5.6, 5.8, 6.8, 8.8, 10.9 Nuts made of carbon steel and alloy Bolt Material Types and Grades 1- Bolts made of carbon steel and alloy steel: 4.6, 4.8, 5.6, 5.8, 6.8, 8.8, 10.9 Nuts made of carbon steel and alloy steel: 4, 5, 6, 8, 10, 12 2- Bolts made of stainless

More information

4.0 MECHANICAL TESTS. 4.2 Structural tests of cedar shingles

4.0 MECHANICAL TESTS. 4.2 Structural tests of cedar shingles 4.0 MECHANICAL TESTS 4.1 Basis for the test methodology The essence of deterioration is that while it may be caused by insects, weather, fungi or bacteria, the decay is not identical. Further, no two physical

More information

Moment Resisting Connections for Load Bearing Walls

Moment Resisting Connections for Load Bearing Walls PRECAST: MOMENT RESISTING CONNECTIONS Moment Resisting Connections for Load Bearing Walls Manish Khandelwal Sr. Structural Engineer, Building Structures, Sweco India Private Limited Design philosophy for

More information

2.3 SPECIFIC DESIGN DHS PURLINS

2.3 SPECIFIC DESIGN DHS PURLINS 2.3 SPECIFIC DESIGN DHS PURLINS 2.3.1 INTRODUCTION Dimond Hi-Span (DHS) Purlin Systems have been designed to comply with AS/NZS 4600:1996, based on physical testing and analysis carried out by the University

More information

Pryda Timber Connectors

Pryda Timber Connectors Pryda Timber Connectors Pryda Lintel Guide Engineered Steel Wall Lintels March 2014 ESSENTIAL NOTES PRYDA PRODUCT GUIDES INTRODUCTION The information in this Product Guide is provided for use in Australia

More information

REINFORCEMENT DESIGN FOR METAL BUILDING SYSTEMS

REINFORCEMENT DESIGN FOR METAL BUILDING SYSTEMS REINFORCEMENT DESIGN FOR METAL BUILDING SYSTEMS By Donald L. Johnson, P.E. RETROFIT PROJECTS CAN BE NECESSARY FOR ANY NUMBER OF REASONS, though change in use is one of the most common. Change of use can

More information

Fridley, K.J. Timber Structures Structural Engineering Handbook Ed. Chen Wai-Fah Boca Raton: CRC Press LLC, 1999

Fridley, K.J. Timber Structures Structural Engineering Handbook Ed. Chen Wai-Fah Boca Raton: CRC Press LLC, 1999 Fridley, K.J. Timber Structures Structural Engineering Handbook Ed. Chen Wai-Fah Boca Raton: CRC Press LLC, 1999 Timber Structures Kenneth J. Fridley Department of Civil & Environmental Engineering, Washington

More information

ESR-2403 Reissued October 1, 2009 This report is subject to re-examination in one year.

ESR-2403 Reissued October 1, 2009 This report is subject to re-examination in one year. ICC-ES Evaluation Report ESR-403 Reissued October, 009 This report is subject to re-examination in one year. www.icc-es.org (800) 43-6587 (56) 699-0543 A Subsidiary of the International Code Council DIVISION:

More information

GARDEN SHED BRIGHTOLN

GARDEN SHED BRIGHTOLN ASSEMBLY INSTRUCTIONS GARDEN SHED BRIGHTOLN Dimensions: 10x10 (1 1/8") IMPORTANT Before beginning the assembly of your garden shed, please read the instructions carefully and follow them closely. By doing

More information

Machining of Wood using a Rip Tooth: Effects of Work-piece Variations on Cutting Mechanics

Machining of Wood using a Rip Tooth: Effects of Work-piece Variations on Cutting Mechanics Machining of Wood using a Rip Tooth: Effects of Work-piece Variations on Cutting Mechanics Naylor, Andrew. 1* Hackney, Philip. 1 Clahr, Emil. 2 1 School of Computing, Engineering and Information Sciences,

More information

CONTENTS

CONTENTS P A N M A R W O O D B R O C H U R E P A N M A R W O O D B R O C H U R E CONTENTS ABOUT COMPANY CONSTRUCTION OF PANMAR PLANKS PATTERNS AND SIZES OF PANMAR PLANKS AESTHETIC AND OPERATIONAL PROPERTIES FINISHING

More information

Wood structure I: Basic features, structure and cell types

Wood structure I: Basic features, structure and cell types CHEM-E0120: An Introduction to Wood Properties and Wood Products Wood structure I: Basic features, structure and cell types Mark Hughes 18 th September 2017 Today Making trees: photosynthesis Tree types

More information

1. Enumerate the most commonly used engineering materials and state some important properties and their engineering applications.

1. Enumerate the most commonly used engineering materials and state some important properties and their engineering applications. Code No: R05310305 Set No. 1 III B.Tech I Semester Regular Examinations, November 2008 DESIGN OF MACHINE MEMBERS-I ( Common to Mechanical Engineering and Production Engineering) Time: 3 hours Max Marks:

More information

SPECIFIC ENGINEERING DESIGN GUIDE

SPECIFIC ENGINEERING DESIGN GUIDE SPECIFIC ENGINEERING DESIGN GUIDE LIMIT STATE DESIGN CHARACTERISTIC PROPERTIES AND STRUCTURAL DESIGN INFORMATION NPIL/03/DECEMBER2016 Introduction to NelsonPine LVL NelsonPine LVL is an engineered wood

More information

MATERIALS` PROPERTIES

MATERIALS` PROPERTIES MATERIALS` PROPERTIES MALLEABILITY - if a material can be deformed in all directions by such as hammering and pressing without it cracking or splitting it is said to be malleable. These materials need

More information

Experimental and numerical study of nailed laminated timber elements for in plane and transverse loading

Experimental and numerical study of nailed laminated timber elements for in plane and transverse loading Experimental and numerical study of nailed laminated timber elements for in plane and transverse loading Haller, Peer 1 SUMMARY Nailed laminated timber elements are used in housing construction for floor,

More information

optimisation of pre-cast support beams

optimisation of pre-cast support beams optimisation of pre-cast support beams Design Optimisation of Pre-cast Support Beams Investigation into pile and beam systems for a client in the civil engineering industry with the following objectives:

More information

The fracture of wood under torsional loading

The fracture of wood under torsional loading J Mater Sci (2006) 41:7247 7259 DOI 10.1007/s10853-006-0913-y The fracture of wood under torsional loading Zheng Chen Æ Brian Gabbitas Æ David Hunt Received: 14 September 2005 / Accepted: 22 December 2005

More information

LOAD CARRYING CAPACITY OF METAL DOWEL TYPE CONNECTIONS OF TIMBER STRUCTURES

LOAD CARRYING CAPACITY OF METAL DOWEL TYPE CONNECTIONS OF TIMBER STRUCTURES Vol. 10, Issue /014, 51-60 DOI: 10.478/cee-014-0011 LOAD CARRYING CAPACITY OF METAL DOWEL TYPE CONNECTIONS OF TIMBER STRUCTURES Jozef GOCÁL 1,* 1 Department of Structures and Bridges, Faculty of Civil

More information

Design of Bolted Connections per the 2015 NDS

Design of Bolted Connections per the 2015 NDS Design of Bolted Connections per the 2015 NDS EARN 0.1 ICC Continuing Education Unit (CEU) DES335-A Design of Bolted Connections per the 2015 NDS Description: This article provides an overview of a bolt

More information