LABORATÓRIUMI GYAKORLAT SILLABUSZ SYLLABUS OF A PRACTICAL DEMONSTRATION. financed by the program

Size: px
Start display at page:

Download "LABORATÓRIUMI GYAKORLAT SILLABUSZ SYLLABUS OF A PRACTICAL DEMONSTRATION. financed by the program"

Transcription

1 TÁMOP C-13/1/KONV projekt Az élettudományi-klinikai felsőoktatás gyakorlatorientált és hallgatóbarát korszerűsítése a vidéki képzőhelyek nemzetközi versenyképességének erősítésére program keretében finanszírozott LABORATÓRIUMI GYAKORLAT SILLABUSZ SYLLABUS OF A PRACTICAL DEMONSTRATION financed by the program Practice-oriented, student-friendly modernization of the biomedical education for strengthening the international competitiveness of the rural Hungarian universities Dátum / Date: Helyszín / Place: OKTÓBER 10. / OCTOBER 10, 2018 SZBK NÖVÉNYBIOLÓGIA, 113. LAB. / LAB # 113, PLANT BIOLOGY, BRC SZEGED, TEMESVÁRI KRT. 62. Gyakorlati foglalkozás címe / Title of the practical demonstration: TIME-RESOLVED OPTICAL SPECTROSCOPY Gyakorlatvezető / Demonstrator: PETAR LAMBREV Biological Research Centre Address: H-6726 Szeged, Temesvári krt. 62. Mail: H-6701 Szeged, POB

2 Theoretical background Time resolved fluorescence Time-resolved fluorescence spectroscopy measures the decay of fluorescence intensity over time after a short excitation pulse. Since fluorescence is emitted from the excited fluorophore, the fluorescence intensity directly reflects the concentration of excited states, which typically follows an exponential decay law: where is the fluorescence lifetime, one of the most important characteristics of a fluorophore. It represents the average time the fluorophore remains in the excited state and so depends on all possible excited-state deactivation pathways, hence all interactions of the excited fluorophore with its environment: where are deactivation rate constants. The lifetime also determines the fluorescence quantum yield: where is the radiative decay rate constant and is the radiative, or natural lifetime of the fluorophore. The steady-state fluorescence measured under continuous excitation light is simply the integrated time-resolved fluorescence decay and is proportional to the lifetime: Even in the ideal case of identical fluorophores decaying with a single lifetime, a timeresolved fluorescence measurement has an advantage over the steady-state fluorescence in that it is an absolute measurement of the fluorescence lifetime, independent from fluorophore concentration and instrumental factors, whereas steady-state fluorescence is always a relative measurement. The main advantages of time-resolved fluorescence however are in that it reveals molecular information about the fluorophore in terms of its excited state dynamics. Time-resolved fluorescence can reveal fluorophore conformational states, solvent interactions, quenching mechanisms, excitation energy transfer kinetics, and much more. page 2

3 Principles of time correlated single photon counting (TCSPC) TCSPC is one of several possible technical approaches to conduct time-resolved fluorescence measurements in the time domain. Compared to other techniques, TCSPC has the advantages of requiring low excitation power, which is critical for sensitive biological materials, very high signal-to-noise ratio, or high dynamic range, over a very large time range, usually from several picoseconds up to microseconds. Consequently, one can use iterative fitting analysis to extract several fluorescence lifetimes present in the sample, from a single measurement. As with all time-domain measurements the sample under investigation is excited by short excitation pulses, typically from a mode-locked laser or laser diode. In TCSPC excitation pulses of low power and high repetition rate are used, so that fluorophores are excited no more than once during a single pulse and after each excitation event there is a low probability that a single emitted photon of fluorescence will be detected. The detector is then operated in photon-counting mode the analog amplitude of the detector signal is discarded and only the detection event is registered. When a photon is detected, the time elapsed between the excitation pulse and the detection event is recorded. After the detection of many photons, a histogram of the distribution of measured times is accumulated (Fig. 1), which has the shape of the original waveform, or fluorescence decay function. Original Waveform (Distribution of photon probability) Detector Signal: Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8 Period 9 Period 10 Time Period N Result after many Photons Fig. 1. Principle of TCSPC measurements. From [1]. page 3

4 Unlike any analog recording technique, the time resolution of the single-photon counting measurement is not limited by the response time of the detector, i.e. the time between the arrival of a photon at the sensor and the appearance of an electric signal at its output, but only by the transit time spread, i.e. the variance of the time response, which is much narrower than the time response. The time resolution is characterised by the instrument response function (IRF). The IRF width of instruments equipped with microchannel plate (MCP) detectors is down to 30 ps. With a proper IRF deconvolution technique one can readily resolve lifetimes shorter than 10 ps. A block scheme of a standard TCSPC instrument is shown in Fig. 2. Reference pulses from light source threshold CFD zero cross start Range Gain Memory Histogram Preamplifier threshold stop TAC AMP ADC Address (time) Detector CFD zero cross Singlephoton pulses Fig. 2. Scheme of a TCSPC instrument. From [1]. Offset = control elements data +1 Adder The electronic block of the instrument has two input channels one from the excitation laser source, and one from the detector of fluorescence. Both electrical signals are converted into digital on/off pulses by constant-fraction discriminators (CFD), eliminating their analog amplitude. Using CFDs gives accurate timing of the pulses irrespective of their original amplitude. The CFD pulses are used as the start and stop signals for a time-to-amplitude converter (TAC). The TAC operates as a stopwatch, generating signal amplitude that is proportional to the time elapsed between the start and the stop signals. The amplified TAC signal is digitized by an analog-to-digital converter (ADC) and stored as a time signal in the appropriate histogram bin in the data memory. A modern variation of the TCSPC instrumentation uses so-called time-to-digital converter (TDC) that combines the functions of the TAC and ADC, circumventing the limited number of time channels imposed by the ADC (typically 4096 for a 12-bit ADC) and thus allowing to extend the time span of the measurement. page 4

5 The PicoQuant FluoTime 200 spectrometer Description The FluoTime 200 spectrometer from PicoQuant (Germany) is a high performance fluorescence lifetime system. It contains the complete optics and electronics for recording fluorescence decays by TCSPC (as well as multichannel scaling). The system is optimized for high temporal resolution and can be used with femtosecond or picosecond lasers. With the FluoTime 200, decay times down to a few picoseconds can be resolved. The system allows operation at laser repetition rates as high as 100 MHz and count rates up to several million counts/sec. The setup used in this practical demonstration is equipped with a high time resolution MCP detector (Hamamatsu R-3809U) and a computer-controlled monochromator for measuring time-resolved spectra. The instrument s modules are illustrated in Fig. 3. A Fianium WhiteLase Micro supercontinuum laser (1) provides 6 ps white-light excitation pulses at a repetition rate of 20 MHz. The laser beam passes through an optical filter assembly (2) which holds a band-pass filter to select excitation wavelength and attenuating neutral density filters. The beam is focused onto the sample cell holder in the measuring chamber of the FT200 spectrometer (3). The reference signal from the laser is amplified by the PAM 102 amplifier (4), passed through a nanosecond delay box (5), and connected to Channel 0 of the PicoHarp 300 electronic block (6). The detector signal from the spectrometer is connected to Channel 1. The PicoHarp 300 is a stand-alone TCSPC system that contains all the necessary electronics to collect histograms with time bins with 4 ps minimal width. The collected data is transferred to the computer via USB interface. Fig. 3. Diagram of the FluoTime 200 spectrometer setup page 5

6 FluoTime 200 Operating instructions Startup 1. Switch on the mains power 2. Make sure that all modules are powered: a. PicoHarp 300 b. FluoTime 200 c. WhiteLase Micro d. PAM 102 e. PC 3. Make sure the sample holder is empty 4. Start the PC and run the PicoHarp software 5. Open the monochromator dialog box (press the button on the toolbar) 6. Initialize the monochromator. The operating motor is audible. 7. Start the laser turn the key clockwise Caution! Do not remove the fiber guide from its holder! Do not look directly into the laser beam! 8. Make sure the laser repetition rate (1,96e+007) is displayed on the Input0/cps box of the main program window. 9. Turn on the detector power supply, first press the POWER switch, then the OUTPUT button. page 6

7 10. Gradually increase the voltage using the CV knob to 3,000 V. Above 2,900 V observe the appearance of detector signal in the Input1/cps box on the PC screen. Caution! High count rates can saturate and damage the MCP detector. Do not allow the detector count rate to rise above 100k cps (1e+005 at Input1) at any time! Should the count rate rise above that level, immediately open the lid of the measuring compartment to engage the detector shutter! Shutdown 1. Remove any samples from the sample holder. 2. Turn off the laser, turning the key counterclockwise. 3. Decrease the MCP power supply voltage to 0 using the CV knob. 4. Press the output button, then the power switch. 5. Shut down the computer. 6. Switch off the mains power. Measuring IRF 1. Becker, W., Advanced time correlated single photon counting techniques. Vol : Springer. page 7

LABORATÓRIUMI GYAKORLAT SILLABUSZ SYLLABUS OF A PRACTICAL DEMOSTRATION. financed by the program

LABORATÓRIUMI GYAKORLAT SILLABUSZ SYLLABUS OF A PRACTICAL DEMOSTRATION. financed by the program TÁMOP-4.1.1.C-13/1/KONV-2014-0001 projekt Az élettudományi-klinikai felsőoktatás gyakorlatorientált és hallgatóbarát korszerűsítése a vidéki képzőhelyek nemzetközi versenyképességének erősítésére program

More information

TCSPC at Wavelengths from 900 nm to 1700 nm

TCSPC at Wavelengths from 900 nm to 1700 nm TCSPC at Wavelengths from 900 nm to 1700 nm We describe picosecond time-resolved optical signal recording in the spectral range from 900 nm to 1700 nm. The system consists of an id Quantique id220 InGaAs

More information

TCSPC measurements with the InGaAs/InP Single- photon counter

TCSPC measurements with the InGaAs/InP Single- photon counter TCSPC measurements with the InGaAs/InP Single-photon counter A typical setup in which the InGaAs/InP Single- Photon Detection Module is widely employed is a photon- timing one, as illustrated in Figure

More information

PZ-FLIM-110. Piezo Scanning FLIM System. Based on bh s Megapixel FLIM Technology. Complete FLIM Microscopes FLIM Upgrades for Existing Microscopes

PZ-FLIM-110. Piezo Scanning FLIM System. Based on bh s Megapixel FLIM Technology. Complete FLIM Microscopes FLIM Upgrades for Existing Microscopes Based on bh s Megapixel FLIM Technology Complete FLIM Microscopes FLIM Upgrades for Existing Microscopes Multidimensional TCSPC technique Sample Scanning by Piezo Stage Compact Electronics, Controlled

More information

Solea. Supercontinuum Laser. Applications

Solea. Supercontinuum Laser. Applications Solea Supercontinuum Laser Extended Spectral range: 525 nm - 900 nm (ECO mode), 480 nm - 900 nm (BOOST mode) Extended 2-year worldwide warranty* Supercontinuum output or wavelength selected output through

More information

Picosecond Time Analyzer Applications in...

Picosecond Time Analyzer Applications in... ORTEC AN52 Picosecond Time Analyzer Applications in... LIDAR and DIAL Time-of-Flight Mass Spectrometry Fluorescence/Phosphorescence Lifetime Spectrometry Pulse or Signal Jitter Analysis CONTENTS of this

More information

Wide-Field TCSPC FLIM with bh SPC-150 N TCSPC System and Photek FGN Detector

Wide-Field TCSPC FLIM with bh SPC-150 N TCSPC System and Photek FGN Detector Wide-Field TCSPC FLIM with bh SPC-150 N TCSPC System and Photek FGN 392-1000 Detector Abstract: We present a wide-field TCSPC FLIM system consisting of a position-sensitive MCP PMT of the delay-line type,

More information

PCS-150 / PCI-200 High Speed Boxcar Modules

PCS-150 / PCI-200 High Speed Boxcar Modules Becker & Hickl GmbH Kolonnenstr. 29 10829 Berlin Tel. 030 / 787 56 32 Fax. 030 / 787 57 34 email: info@becker-hickl.de http://www.becker-hickl.de PCSAPP.DOC PCS-150 / PCI-200 High Speed Boxcar Modules

More information

DCS-120. Confocal Scanning FLIM Systems. Based on bh s Multidimensional Megapixel FLIM Technology

DCS-120. Confocal Scanning FLIM Systems. Based on bh s Multidimensional Megapixel FLIM Technology Based on bh s Multidimensional Megapixel FLIM Technology Complete Laser Scanning FLIM Microscopes FLIM Upgrades for Existing Conventional Microscopes Multidimensional TCSPC technique High throughput dual-channel

More information

FluoTime 300 EasyTau. A fluorescence spectrometer for beginners and experts

FluoTime 300 EasyTau. A fluorescence spectrometer for beginners and experts FluoTime 300 EasyTau A fluorescence spectrometer for beginners and experts PicoQuant GmbH Rudower Chaussee 29 (IGZ) 12489 Berlin Germany Phone: +49-(0)30-6392-6929 Fax: +49-(0)30-6392-6561 info@picoquant.com

More information

FluoTime 300 for Time-Resolved and Steady-State Spectroscopy

FluoTime 300 for Time-Resolved and Steady-State Spectroscopy FluoTime 300 for Time-Resolved and Steady-State Spectroscopy Christian Litwinski, Sebastian Tannert, Alexander Glatz, Felix Koberling, Manoel Veiga, Steffen Rüttinger, Uwe Ortmann, Matthias Patting, Marcus

More information

Simple setup for nano-second time-resolved spectroscopic measurements by a digital storage oscilloscope

Simple setup for nano-second time-resolved spectroscopic measurements by a digital storage oscilloscope NOTE Simple setup for nano-second time-resolved spectroscopic measurements by a digital storage oscilloscope Goro Nishimura and Mamoru Tamura Biophysics, Research Institute for Electronic Science, Hokkaido

More information

Mass Spectrometry and the Modern Digitizer

Mass Spectrometry and the Modern Digitizer Mass Spectrometry and the Modern Digitizer The scientific field of Mass Spectrometry (MS) has been under constant research and development for over a hundred years, ever since scientists discovered that

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/2/e1700324/dc1 Supplementary Materials for Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures Long Yuan, Ting-Fung

More information

DCS-120. Confocal Scanning FLIM Systems. Based on bh s Multidimensional Megapixel FLIM Technology

DCS-120. Confocal Scanning FLIM Systems. Based on bh s Multidimensional Megapixel FLIM Technology DCS-120 Based on bh s Multidimensional Megapixel FLIM Technology Complete Laser Scanning FLIM Microscopes FLIM Upgrades for Existing Conventional Microscopes FLIM with up to 2048 x 2048 pixels Decay curves

More information

A practical guide to time-resolved luminescence lifetime determination using dedicated Time-Correlated Single-Photon Counting systems.

A practical guide to time-resolved luminescence lifetime determination using dedicated Time-Correlated Single-Photon Counting systems. A practical guide to time-resolved luminescence lifetime determination using dedicated Time-Correlated Single-Photon Counting systems. HORIBA Jobin Yvon IBH Ltd, Glasgow, Scotland, UK. IBH.050.UG.3068.A

More information

Sensors, Signals and Noise

Sensors, Signals and Noise Sensors, Signals and Noise COURSE OUTLINE Introduction Signals and Noise Filtering Sensors: PD 4a -Photon Counting with PMTs Sergio Cova SENSORS SIGNALS AND NOISE Photodetectors 4a - PD4a rv 2015/01/05

More information

SHM-180 Eight Channel Sample & Hold Module

SHM-180 Eight Channel Sample & Hold Module Becker & Hickl GmbH April 2003 Printer HP 4500 PS High Performance Photon Counting Tel. +49 / 30 / 787 56 32 FAX +49 / 30 / 787 57 34 http://www.becker-hickl.com email: info@becker-hickl.com SHM-180 Eight

More information

BDS-MM Family Picosecond Diode Lasers

BDS-MM Family Picosecond Diode Lasers BDS-MM Family Picosecond Diode s Optical power up to 60 mw at MHz Wavelengths 405, 445, 525, 640, 685, 785, 915 nm Power up to 60mW, multi-mode Small-size laser module, 40 mm x 40 mm x 120 mm Free-beam

More information

Measuring Kinetics of Luminescence with TDS 744 oscilloscope

Measuring Kinetics of Luminescence with TDS 744 oscilloscope Measuring Kinetics of Luminescence with TDS 744 oscilloscope Eex Nex Luminescence Photon E 0 Disclaimer Safety the first!!! This presentation is not manual. It is just brief set of rule to remind procedure

More information

IR Antibunching Measurements with id201 InGaAs Gated SPAD Detectors

IR Antibunching Measurements with id201 InGaAs Gated SPAD Detectors IR Antibunching Measurements with id201 GaAs Gated SPAD Detectors Abstract. Antibunching measurements with GaAs SPAD detectors are faced with the problems of high background count rate, afterpulsing, and

More information

Time Correlated Single Photon Counting Systems

Time Correlated Single Photon Counting Systems Boston Electronics Corporation 91 Boylston Street, Brookline MA 02445 USA (800)347-5445 or (617)566-3821 fax (617)731-0935 www.boselec.com boselec@world.std.com Time Correlated Single Photon Counting Systems

More information

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband Continuum White Light Generation WhiteLase: High Power Ultrabroadband Light Sources Technology Ultrafast Pulses + Fiber Laser + Non-linear PCF = Spectral broadening from 400nm to 2500nm Ultrafast Fiber

More information

Photon Counting and Timing. Reliable and easy-to-use modules with high-end performance

Photon Counting and Timing. Reliable and easy-to-use modules with high-end performance Photon Counting and Timing Reliable and easy-to-use modules with high-end performance Photon Counting and Timing Photon Counting and Timing Reliable and easy-to-use modules with high-end performance PicoQuant's

More information

Multiphoton FLIM with the Leica HyD RLD Detectors

Multiphoton FLIM with the Leica HyD RLD Detectors Multiphoton FLIM with the Leica HyD RLD Detectors Leica have recently introduced hybrid detectors for the non-descanned (RLD) ports their SP5 and SP8 multiphoton laser scanning microscopes. We have tested

More information

An 8-Channel Parallel Multispectral TCSPC FLIM System

An 8-Channel Parallel Multispectral TCSPC FLIM System An 8-Channel Parallel Multispectral TCSPC FLIM System Abstract. We describe a TCSPC FLIM system that uses 8 parallel TCSPC channels to record FLIM data at a peak count rate on the order of 50 10 6 s -1.

More information

Horiba LabRAM ARAMIS Raman Spectrometer Revision /28/2016 Page 1 of 11. Horiba Jobin-Yvon LabRAM Aramis - Raman Spectrometer

Horiba LabRAM ARAMIS Raman Spectrometer Revision /28/2016 Page 1 of 11. Horiba Jobin-Yvon LabRAM Aramis - Raman Spectrometer Page 1 of 11 Horiba Jobin-Yvon LabRAM Aramis - Raman Spectrometer The Aramis Raman system is a software selectable multi-wavelength Raman system with mapping capabilities with a 400mm monochromator and

More information

User Handbook. DPC Channel Photon Correlator

User Handbook. DPC Channel Photon Correlator High Performance Photon Counting User Handbook DPC-230 16 Channel Photon Correlator Becker & Hickl GmbH (c) Becker & Hickl GmbH Becker & Hickl GmbH April 2008 High Performance Photon Counting Tel. +49

More information

Non-Descanned FLIM Detection in Multiphoton Microscopes

Non-Descanned FLIM Detection in Multiphoton Microscopes Non-Descanned FLIM Detection in Multiphoton Microscopes Abstract. Multiphoton microscopes use a femtosecond NIR laser to excite fluorescence in the sample. Excitation is performed via a multi-photon absorption

More information

Multi-wavelength TCSPC lifetime imaging Wolfgang Becker a, Axel Bergmann a, Christoph Biskup b, Thomas Zimmer b, Nikolaj Klöcker c, Klaus Benndorf b

Multi-wavelength TCSPC lifetime imaging Wolfgang Becker a, Axel Bergmann a, Christoph Biskup b, Thomas Zimmer b, Nikolaj Klöcker c, Klaus Benndorf b Multi-wavelength TCSPC lifetime imaging Wolfgang Becker a, Axel Bergmann a, Christoph Biskup b, Thomas Zimmer b, Nikolaj Klöcker c, Klaus Benndorf b a Becker & Hickl GmbH, Nahmitzer Damm 30, D-12277 Berlin,

More information

Instrument response function. Left linear scale, right logarithmic scale. FWHM is 120 ps.

Instrument response function. Left linear scale, right logarithmic scale. FWHM is 120 ps. High Speed Hybrid Detector for TCSPC HPM-100-40 GaAsP cathode: Excellent detection efficiency Instrument response function 120 ps FWHM Clean response, no tails or secondary peaks No afterpulsing Excellent

More information

High collection efficiency MCPs for photon counting detectors

High collection efficiency MCPs for photon counting detectors High collection efficiency MCPs for photon counting detectors D. A. Orlov, * T. Ruardij, S. Duarte Pinto, R. Glazenborg and E. Kernen PHOTONIS Netherlands BV, Dwazziewegen 2, 9301 ZR Roden, The Netherlands

More information

NUV and Blue ps Diode Lasers

NUV and Blue ps Diode Lasers High Performance Photon Counting User Manual NUV and Blue ps Diode Lasers Designed and manufactured in cooperation with BDL-SMC Picosecond Diode Lasers 1 BDL-375-SMC BDL-405-SMC BDL-440-SMC BDL-473-SMC

More information

High Performance Photon Counting. User Manual PML-16-C. 16 Channel Detector Head for Time-Correlated Single Photon Counting. Becker & Hickl GmbH

High Performance Photon Counting. User Manual PML-16-C. 16 Channel Detector Head for Time-Correlated Single Photon Counting. Becker & Hickl GmbH High Performance Photon Counting User Manual PML-16-C 16 Channel Detector Head for Time-Correlated Single Photon Counting Becker & Hickl GmbH PML-16C User Handbook 1 Becker & Hickl GmbH March 2006 High

More information

quantiflash Calibration Light Source for Cytometry

quantiflash Calibration Light Source for Cytometry quantiflash Calibration Light Source for Cytometry quantiflash Key Facts Cytometer calibration with light pulses Routine detector / PMT performance test Distinguish dim populations from noise Calibrate

More information

Supplemental Information

Supplemental Information Optically Activated Delayed Fluorescence Blake C. Fleischer, Jeffrey T. Petty, Jung-Cheng Hsiang, Robert M. Dickson, * School of Chemistry & Biochemistry and Petit Institute for Bioengineering and Bioscience,

More information

Fluorescence Lifetime Measurements of BODIPY and Alexa Dyes on ChronosFD and K2

Fluorescence Lifetime Measurements of BODIPY and Alexa Dyes on ChronosFD and K2 Fluorescence Lifetime Measurements of BODIPY and Alexa Dyes on ChronosFD and K2 ISS, Inc. Introduction ChronosFD is the first frequency-domain fluorometer that enables measurement of time-resolved data

More information

SINPHOS SINGLE PHOTON SPECTROMETER FOR BIOMEDICAL APPLICATION

SINPHOS SINGLE PHOTON SPECTROMETER FOR BIOMEDICAL APPLICATION -LNS SINPHOS SINGLE PHOTON SPECTROMETER FOR BIOMEDICAL APPLICATION Salvatore Tudisco 9th Topical Seminar on Innovative Particle and Radiation Detectors 23-26 May 2004 Siena, Italy Delayed Luminescence

More information

Photon Counters SR430 5 ns multichannel scaler/averager

Photon Counters SR430 5 ns multichannel scaler/averager Photon Counters SR430 5 ns multichannel scaler/averager SR430 Multichannel Scaler/Averager 5 ns to 10 ms bin width Count rates up to 100 MHz 1k to 32k bins per record Built-in discriminator No interchannel

More information

FLIM Protocol. 1. Install IRF sample on the microscope using the stage insert. IRF sample options include urea crystals or BBO crystal.

FLIM Protocol. 1. Install IRF sample on the microscope using the stage insert. IRF sample options include urea crystals or BBO crystal. Data Collection FLIM Protocol 1. Install IRF sample on the microscope using the stage insert. IRF sample options include urea crystals or BBO crystal. 2. Install appropriate SHG filter. (890nm = 445/20nm,

More information

Basic Instrumentation

Basic Instrumentation Basic Instrumentation Joachim Mueller Principles of Fluorescence Spectroscopy Genova, Italy June 30 July 3, 2008 Figure and slide acknowledgements: Theodore Hazlett Fluorometer ISS PC1 (ISS Inc., Champaign,

More information

Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region

Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region Feature Article JY Division I nformation Optical Spectroscopy Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region Raymond Pini, Salvatore Atzeni Abstract Multichannel

More information

Extension of the MCP-PMT lifetime

Extension of the MCP-PMT lifetime RICH2016 Bled, Slovenia Sep. 6, 2016 Extension of the MCP-PMT lifetime K. Matsuoka (KMI, Nagoya Univ.) S. Hirose, T. Iijima, K. Inami, Y. Kato, K. Kobayashi, Y. Maeda, R. Omori, K. Suzuki (Nagoya Univ.)

More information

A new picosecond Laser pulse generation method.

A new picosecond Laser pulse generation method. PULSE GATING : A new picosecond Laser pulse generation method. Picosecond lasers can be found in many fields of applications from research to industry. These lasers are very common in bio-photonics, non-linear

More information

Wavelength LDH - P / D - _ / C / F / FA / TA - N - XXX - _ / B / M / L / XL. Narrow linewidth (on request) Tappered amplified

Wavelength LDH - P / D - _ / C / F / FA / TA - N - XXX - _ / B / M / L / XL. Narrow linewidth (on request) Tappered amplified LDH Series Picosecond Laser Diode Heads for PDL 800-D / PDL 828 Wavelengths between 375 nm and 1990 nm Pulse widths as short as 40 ps (FWHM) Adjustable (average) power up to 50 mw Repetition rate from

More information

Time-Correlated Single Photon Counting

Time-Correlated Single Photon Counting UK Agents: Photonic Solutions plc TCSPC1.DOC 24. Apr. 2001 40 Captains Rd Edinburgh, EH17 8QF Tel. 0131 664 8122 Fax. 0131 664 8144 email: sales@psplc.com http://www.psplc.com i n t e l l i g e n t measurement

More information

Detectors for microscopy - CCDs, APDs and PMTs. Antonia Göhler. Nov 2014

Detectors for microscopy - CCDs, APDs and PMTs. Antonia Göhler. Nov 2014 Detectors for microscopy - CCDs, APDs and PMTs Antonia Göhler Nov 2014 Detectors/Sensors in general are devices that detect events or changes in quantities (intensities) and provide a corresponding output,

More information

InGaAs SPAD BIOMEDICAL APPLICATION INDUSTRIAL APPLICATION ASTRONOMY APPLICATION QUANTUM APPLICATION

InGaAs SPAD BIOMEDICAL APPLICATION INDUSTRIAL APPLICATION ASTRONOMY APPLICATION QUANTUM APPLICATION InGaAs SPAD The InGaAs Single-Photon Counter is based on InGaAs/InP SPAD for the detection of Near-Infrared single photons up to 1700 nm. The module includes a pulse generator for gating the detector,

More information

Boston Electronics Corporation 91 Boylston Street, Brookline MA USA (800) or (617) fax (617)

Boston Electronics Corporation 91 Boylston Street, Brookline MA USA (800) or (617) fax (617) Single Photon Counting APD, MCP & PMT Detectors plus High Speed Amplifiers, Routers, Trigger Detectors, Constant Fraction Discriminators From Becker & Hickl, id Quantique and Hamamatsu F Boston Electronics

More information

Photon Counting and Timing. Reliable and easy-to-use modules with high-end performance

Photon Counting and Timing. Reliable and easy-to-use modules with high-end performance Photon Counting and Timing Reliable and easy-to-use modules with high-end performance Photon Counting and Timing Photon Counting and Timing Reliable and easy-to-use modules with high-end performance HydraHarp

More information

Characterisation of SiPM Index :

Characterisation of SiPM Index : Characterisation of SiPM --------------------------------------------------------------------------------------------Index : 1. Basics of SiPM* 2. SiPM module 3. Working principle 4. Experimental setup

More information

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS By Jason O Daniel, Ph.D. TABLE OF CONTENTS 1. Introduction...1 2. Pulse Measurements for Pulse Widths

More information

Chemistry 524--"Hour Exam"--Keiderling Mar. 19, pm SES

Chemistry 524--Hour Exam--Keiderling Mar. 19, pm SES Chemistry 524--"Hour Exam"--Keiderling Mar. 19, 2013 -- 2-4 pm -- 170 SES Please answer all questions in the answer book provided. Calculators, rulers, pens and pencils permitted. No open books allowed.

More information

Time-Correlated Single Photon Counting Systems

Time-Correlated Single Photon Counting Systems 91 Boylston Street, Brookline, MA 02445 tel: (617)566-3821 fax: (617)731-0935 www.boselec.com tcspc@boselec.com Time-Correlated Single Photon Counting Systems PC Based Systems 12277 Berlin, Gemany Tel:

More information

Progress towards a 256 channel multianode microchannel plate photomultiplier system with picosecond timing

Progress towards a 256 channel multianode microchannel plate photomultiplier system with picosecond timing Progress towards a 256 channel multianode microchannel plate photomultiplier system with picosecond timing J S Lapington 1, T Conneely 1,3, T J R Ashton 1, P Jarron 2, M Despeisse 2, and F Powolny 2 1

More information

InGaAs SPAD freerunning

InGaAs SPAD freerunning InGaAs SPAD freerunning The InGaAs Single-Photon Counter is based on a InGaAs/InP SPAD for the detection of near-infrared single photons up to 1700 nm. The module includes a front-end circuit for fast

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 18.

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 18. FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 18 Optical Sources- Introduction to LASER Diodes Fiber Optics, Prof. R.K. Shevgaonkar,

More information

ORTEC. Time-to-Amplitude Converters and Time Calibrator. Choosing the Right TAC. Timing with TACs

ORTEC. Time-to-Amplitude Converters and Time Calibrator. Choosing the Right TAC. Timing with TACs ORTEC Time-to-Amplitude Converters Choosing the Right TAC The following topics provide the information needed for selecting the right time-to-amplitude converter (TAC) for the task. The basic principles

More information

Temperature Dependence of Photoluminescence Lifetime of Rhodamine B. Heather Longstaff Hogg

Temperature Dependence of Photoluminescence Lifetime of Rhodamine B. Heather Longstaff Hogg Temperature Dependence of Photoluminescence Lifetime of Rhodamine B Heather Longstaff Hogg A senior thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements

More information

Terahertz spectroscopy measurements

Terahertz spectroscopy measurements 0 Terahertz spectroscopy measurements For general medicine and pharmacy students author: József Orbán, PhD. teaching facility: Univerity of Pécs, Medical School Department of Biophysics research facility:

More information

Fluorolog and Fluorocube for Picosecond Molecular Dynamics. Lifetime Systems from HORIBA Jobin Yvon. Frequency Domain or Time Domain? Why Lifetimes?

Fluorolog and Fluorocube for Picosecond Molecular Dynamics. Lifetime Systems from HORIBA Jobin Yvon. Frequency Domain or Time Domain? Why Lifetimes? Fluorolog and for Picosecond Molecular Dynamics Time is always on your side with a lifetime system from HORIBA Jobin Yvon. Drawing on the expertise of Spex, SLM, and IBH, we ve put together solutions that

More information

Gamma Spectrometer Initial Project Proposal

Gamma Spectrometer Initial Project Proposal Gamma Spectrometer Initial Project Proposal Group 9 Aman Kataria Johnny Klarenbeek Dean Sullivan David Valentine Introduction There are currently two main types of gamma radiation detectors used for gamma

More information

DeltaMyc. Fluorescence Lifetime Mapping Microscope. Affordable Fluorescence Lifetime Imaging Microscopy (FLIM)

DeltaMyc. Fluorescence Lifetime Mapping Microscope. Affordable Fluorescence Lifetime Imaging Microscopy (FLIM) DeltaMyc Fluorescence Lifetime Mapping Microscope Affordable Fluorescence Lifetime Imaging Microscopy (FLIM) DeltaMyc Affordable Fluorescence Imaging Lifetime Microscopy (FLIM) At last, an affordable yet

More information

C1587 UNIVERSAL STREAK CAMERA Selectable features to suit a variety of applications from the vacuum ultraviolet through the near infrared.

C1587 UNIVERSAL STREAK CAMERA Selectable features to suit a variety of applications from the vacuum ultraviolet through the near infrared. C1587 UNIVERSAL STREAK CAMERA Selectable features to suit a variety of applications from the vacuum ultraviolet through the near infrared. HAMAMATSU 1.515 t,5!l 1.525 1.5» UftVCLCMCTH (RICIOKTCO A Measurement

More information

Femtosecond to millisecond transient absorption spectroscopy: two lasers one experiment

Femtosecond to millisecond transient absorption spectroscopy: two lasers one experiment 7 Femtosecond to millisecond transient absorption spectroscopy: two lasers one experiment 7.1 INTRODUCTION The essential processes of any solar fuel cell are light absorption, electron hole separation

More information

Boston Electronics Corporation 91 Boylston Street, Brookline MA USA (800) or (617) fax (617)

Boston Electronics Corporation 91 Boylston Street, Brookline MA USA (800) or (617) fax (617) Single Photon Counting APD, MCP & PMT Detectors plus High Speed Amplifiers, Routers, Trigger Detectors, Constant Fraction Discriminators From Becker & Hickl, id Quantique and Hamamatsu F Boston Electronics

More information

Single-Photon Counting Detectors for the Visible Range Between 300 and 1,000 nm

Single-Photon Counting Detectors for the Visible Range Between 300 and 1,000 nm Single-Photon Counting Detectors for the Visible Range Between 300 and 1,000 nm Andreas Bülter Abstract Single-photon counting in the visible spectral range has become a standard method for many applications

More information

Photon Count. for Brainies.

Photon Count. for Brainies. Page 1/12 Photon Count ounting for Brainies. 0. Preamble This document gives a general overview on InGaAs/InP, APD-based photon counting at telecom wavelengths. In common language, telecom wavelengths

More information

Becker & Hickl GmbH. Technology Leader in Photon Counting

Becker & Hickl GmbH. Technology Leader in Photon Counting Becker & Hickl GmbH Technology Leader in Photon Counting Contents Overview TCSPC Module Gated Photon Counter / Multiscaler Spectral Lifetime Detection Picosecond Diode Laser FLIM System Technology Leader

More information

TRAINING MANUAL. Multiphoton Microscopy LSM 510 META-NLO

TRAINING MANUAL. Multiphoton Microscopy LSM 510 META-NLO TRAINING MANUAL Multiphoton Microscopy LSM 510 META-NLO September 2010 Multiphoton Microscopy Training Manual Multiphoton microscopy is only available on the LSM 510 META-NLO system. This system is equipped

More information

BDS-SM Family Picosecond Diode Lasers

BDS-SM Family Picosecond Diode Lasers BDS-SM Family Picosecond Diode s BDS-SM Small-size OEM Module, 40 mm x 40 mm x 120 mm Wavelengths 375 nm, 405 nm, 445 nm, 473 nm, 488 nm, 515 nm, 640 nm, 685 nm, 785 nm, 1064 nm Free-beam or single-mode

More information

Training Guide for Leica SP8 Confocal/Multiphoton Microscope

Training Guide for Leica SP8 Confocal/Multiphoton Microscope Training Guide for Leica SP8 Confocal/Multiphoton Microscope LAS AF v3.3 Optical Imaging & Vital Microscopy Core Baylor College of Medicine (2017) Power ON Routine 1 2 Turn ON power switch for epifluorescence

More information

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Background theory. 1. The temporal and spatial coherence of light. 2. Interaction of electromagnetic waves

More information

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices Dr. Rüdiger Paschotta RP Photonics Consulting GmbH Competence Area: Fiber Devices Topics in this Area Fiber lasers, including exotic types Fiber amplifiers, including telecom-type devices and high power

More information

BDS-SM Family Picosecond Diode Lasers

BDS-SM Family Picosecond Diode Lasers BDS-SM Family Picosecond Diode s BDS-SM Small-size OEM Module, 40 mm x 40 mm x 120 mm Wavelengths 375 nm, 405 nm, 445 nm, 473 nm, 488 nm, 515 nm, 640 nm, 685 nm, 785 nm, 1064 nm Free-beam or single-mode

More information

CHAPTER 8 PHOTOMULTIPLIER TUBE MODULES

CHAPTER 8 PHOTOMULTIPLIER TUBE MODULES CHAPTER 8 PHOTOMULTIPLIER TUBE MODULES This chapter describes the structure, usage, and characteristics of photomultiplier tube () modules. These modules consist of a photomultiplier tube, a voltage-divider

More information

Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION:

Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION: Theoretical Approach Why do we need ultra short technology?? INTRODUCTION: Generating ultrashort laser pulses that last a few femtoseconds is a highly active area of research that is finding applications

More information

WHITE PAPER FAST PROTEIN INTERACTION BINDING CURVES WITH INO S F-HS CONFOCAL MICROSCOPE

WHITE PAPER FAST PROTEIN INTERACTION BINDING CURVES WITH INO S F-HS CONFOCAL MICROSCOPE WHITE PAPER FAST PROTEIN INTERACTION BINDING CURVES WITH INO S F-HS CONFOCAL MICROSCOPE Christian Tardif, Jean-Pierre Bouchard Pascal Gallant, Sebastien Roy, Ozzy Mermut September 2017 Introduction Protein-protein

More information

MULTI-STAGE YTTERBIUM FIBER-AMPLIFIER SEEDED BY A GAIN-SWITCHED LASER DIODE

MULTI-STAGE YTTERBIUM FIBER-AMPLIFIER SEEDED BY A GAIN-SWITCHED LASER DIODE MULTI-STAGE YTTERBIUM FIBER-AMPLIFIER SEEDED BY A GAIN-SWITCHED LASER DIODE Authors: M. Ryser, S. Pilz, A. Burn, V. Romano DOI: 10.12684/alt.1.101 Corresponding author: e-mail: M. Ryser manuel.ryser@iap.unibe.ch

More information

An improved instrument for measuring time-resolved lanthanide emission and resonance energy transfer

An improved instrument for measuring time-resolved lanthanide emission and resonance energy transfer REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 70, NUMBER 10 OCTOBER 1999 An improved instrument for measuring time-resolved lanthanide emission and resonance energy transfer Ming Xiao and Paul R. Selvin a) Physics

More information

Timing and cross-talk properties of BURLE multi-channel MCP PMTs

Timing and cross-talk properties of BURLE multi-channel MCP PMTs Timing and cross-talk properties of BURLE multi-channel MCP PMTs Faculty of Chemistry and Chemical Engineering, University of Maribor, and Jožef Stefan Institute, Ljubljana, Slovenia E-mail: samo.korpar@ijs.si

More information

Instruction manual for T3DS software. Tool for THz Time-Domain Spectroscopy. Release 4.0

Instruction manual for T3DS software. Tool for THz Time-Domain Spectroscopy. Release 4.0 Instruction manual for T3DS software Release 4.0 Table of contents 0. Setup... 3 1. Start-up... 5 2. Input parameters and delay line control... 6 3. Slow scan measurement... 8 4. Fast scan measurement...

More information

Basic e Instrumentation

Basic e Instrumentation 1 Basic e Instrumentation Martin vandeven Principles of Fluorescence Techniques 2010 Madrid, Spain May 31 June 04, 2010 Slide acknowledgements Dr. Theodore Hazlett, Dr. Joachim Müller 1 Fluorometers 2

More information

The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width

The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width Ryo Kawahara *1, Hiroshi Hashimoto *1, Jeffrey W. Nicholson *2, Eisuke Otani *1,

More information

A Coherent White Paper May 15, 2018

A Coherent White Paper May 15, 2018 OPSL Advantages White Paper #3 Low Noise - No Mode Noise 1. Wavelength flexibility 2. Invariant beam properties 3. No mode noise ( green noise ) 4. Superior reliability - huge installed base The optically

More information

Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment

Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment K. Matsuoka (KMI, Nagoya Univ.) on behalf of the Belle II TOP group 5th International Workshop on New

More information

Grant No. DE-FG-05-85ER Progress Report One. R. H. Atalla. The Institute of Paper Chemistry. April, Prepared for

Grant No. DE-FG-05-85ER Progress Report One. R. H. Atalla. The Institute of Paper Chemistry. April, Prepared for DOE DE-FG-05-85ER75212 THE INSTITUTE OF PAPER CHEMISTRY, APPLETON, WISCONSIN TIME RESOLVED RAMAN MICROPROBE SYSTEM Grant No. DE-FG-05-85ER75212 Progress Report One R. H. Atalla The Institute of Paper Chemistry

More information

RENISHAW INVIA RAMAN SPECTROMETER

RENISHAW INVIA RAMAN SPECTROMETER STANDARD OPERATING PROCEDURE: RENISHAW INVIA RAMAN SPECTROMETER Purpose of this Instrument: The Renishaw invia Raman Spectrometer is an instrument used to analyze the Raman scattered light from samples

More information

Laser Locking with Doppler-free Saturated Absorption Spectroscopy

Laser Locking with Doppler-free Saturated Absorption Spectroscopy Laser Locking with Doppler-free Saturated Absorption Spectroscopy Paul L. Stubbs, Advisor: Irina Novikova W&M Quantum Optics Group May 12, 2010 Abstract The goal of this project was to lock the frequency

More information

Dead-time optimized time-correlated photon counting instrument with synchronized, independent timing channels

Dead-time optimized time-correlated photon counting instrument with synchronized, independent timing channels REVIEW OF SCIENTIFIC INSTRUMENTS 78, 033106 2007 Dead-time optimized time-correlated photon counting instrument with synchronized, independent timing channels Michael Wahl a and Hans-Jürgen Rahn PicoQuant

More information

Timing and cross-talk properties of Burle multi-channel MCP PMTs

Timing and cross-talk properties of Burle multi-channel MCP PMTs Timing and cross-talk properties of Burle multi-channel MCP PMTs Peter Križan University of Ljubljana and J. Stefan Institute RICH07, October 15-20, 2007 Contents Motivation for fast single photon detection

More information

Silicon Photomultiplier Evaluation Kit. Quick Start Guide. Eval Kit SiPM. KETEK GmbH. Hofer Str Munich Germany.

Silicon Photomultiplier Evaluation Kit. Quick Start Guide. Eval Kit SiPM. KETEK GmbH. Hofer Str Munich Germany. KETEK GmbH Hofer Str. 3 81737 Munich Germany www.ketek.net info@ketek.net phone +49 89 673 467 70 fax +49 89 673 467 77 Silicon Photomultiplier Evaluation Kit Quick Start Guide Eval Kit Table of Contents

More information

ECE 340 Lecture 29 : LEDs and Lasers Class Outline:

ECE 340 Lecture 29 : LEDs and Lasers Class Outline: ECE 340 Lecture 29 : LEDs and Lasers Class Outline: Light Emitting Diodes Lasers Semiconductor Lasers Things you should know when you leave Key Questions What is an LED and how does it work? How does a

More information

Renishaw InVia Raman microscope

Renishaw InVia Raman microscope Laser Spectroscopy Labs Renishaw InVia Raman microscope Operation instructions 1. Turn On the power switch, system power switch is located towards the back of the system on the right hand side. Wait ~10

More information

Training Guide for Carl Zeiss LSM 510 META Confocal Microscope

Training Guide for Carl Zeiss LSM 510 META Confocal Microscope Training Guide for Carl Zeiss LSM 510 META Confocal Microscope AIM 4.2 Optical Imaging & Vital Microscopy Core Baylor College of Medicine (2017) Power ON Routine 1 2 Turn ON Components and System/PC switches

More information

Diode Lasers. Flexible picosecond pulsed solutions

Diode Lasers. Flexible picosecond pulsed solutions Diode Lasers Flexible picosecond pulsed solutions A Family of Diode Lasers Compact turn-key diode laser solutions All PicoQuant laser products are based on small, compact, and reliable laser diodes. Complex

More information

PoS(PhotoDet 2012)051

PoS(PhotoDet 2012)051 Optical to electrical detection delay in avalanche photodiode based detector and its interpretation Josef Blažej 1 E-mail: blazej@fjfi.cvut.cz Ivan Procházka Jan Kodet Technical University in Munich FSG,

More information

Key Questions. What is an LED and how does it work? How does a laser work? How does a semiconductor laser work? ECE 340 Lecture 29 : LEDs and Lasers

Key Questions. What is an LED and how does it work? How does a laser work? How does a semiconductor laser work? ECE 340 Lecture 29 : LEDs and Lasers Things you should know when you leave Key Questions ECE 340 Lecture 29 : LEDs and Class Outline: What is an LED and how does it How does a laser How does a semiconductor laser How do light emitting diodes

More information

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture No. # 27 EDFA In the last lecture, we talked about wavelength

More information

How-to guide. Working with a pre-assembled THz system

How-to guide. Working with a pre-assembled THz system How-to guide 15/06/2016 1 Table of contents 0. Preparation / Basics...3 1. Input beam adjustment...4 2. Working with free space antennas...5 3. Working with fiber-coupled antennas...6 4. Contact details...8

More information