Trigger Gating: Circulating Loop and Burst Data Analysis with the Agilent 86100A Infiniium DCA Wide Bandwidth Oscilloscope

Size: px
Start display at page:

Download "Trigger Gating: Circulating Loop and Burst Data Analysis with the Agilent 86100A Infiniium DCA Wide Bandwidth Oscilloscope"

Transcription

1 Copyright 2000 Agilent Technologies, Inc. Trigger Gating: Circulating and Burst Data Analysis with the Agilent 86100A Infiniium DCA Wide Bandwidth

2 Trigger Gating: Circulating and Burst Data Analysis with the Agilent 86100A Infiniium DCA Wide Bandwidth There are experiments incorporating wide-bandwidth oscilloscopes that require select portions of a waveform to be viewed while other portions of the waveform are intentionally ignored. Examples include circulating loops, or data that occurs in bursts. In the specific example of the circulating loop, signal propagation through an extremely long length of fiber, typically in excess of 1000 km, is simulated with multiple circulations through a shorter length of fiber. For example, a 9000 km trans-pacific fiber link can be simulated by routing a signal 18 times through a loop of fiber 500 km in length. When an oscilloscope is used to view such a signal, the instrument should only sample the elements that have propagated the correct number of circulations. Thus the oscilloscope needs to be synchronized with the signals used to control the loading and circulation within the loop. Wide-bandwidth oscilloscopes typically require a signal synchronous to the data as a timing reference. For each trigger edge/event, one and only one data point is sampled. To acquire a waveform that is composed of 1000 data points, 1000 trigger edge/events must be responded to by the oscilloscope. The Agilent Infiniium DCA has an external BNC connector port called the trigger gate. This port responds to TTL compatible signals. With the trigger gate feature enabled, a high voltage at the port will enable the oscilloscope to respond to trigger edges and thus acquire data. When the signal at the port is low, the oscilloscope will not respond to triggers even if they are presented to the instrument. They are simply ignored and waveform data is not captured. An example of the control signals used in a circulating loop experiment is shown in figure 1. The basic process is to configure the switching to load the loop with data, and then close the loop so that the data continuously propagates around the loop. Once the data has traversed the loop the correct number of times, the oscilloscope is gated to allow it to respond to the always-present trigger signal and acquire only this portion of data. It is important to note that the signals used to control the loop switches as well as the signal used to gate the oscilloscope are defined and provided by the user. The oscilloscope itself does not generate or control any of these signals.

3 Transmitter Transmitter Load state state Transmitter switch switch Trigger gate Figure 1: Timing diagram The exact timing required for loading the loop and circulating within the loop is determined by the time to propagate through the loop and the number of circulations required. It should also be noted that it is ideal to have the duration of the trigger gate enable be less than the round trip time through the loop. This is necessary to guarantee that any signals acquired are temporally distant and within the time between the switching transients as well as to allow for the delay required to enable and disable the oscilloscope gating. In the example mentioned above, the 500 km loop has a roundtrip time of about 2.5 ms. The trigger gate was set to about 1.5 ms in duration to avoid the switching transients. The gating pulse is enabled only after 18 roundtrips through the loop, so the gating function, loop switch, and transmitter switch have periods of 450 ms.

4 Figure 2: Measurement results: Output waveform of loop after 18 circulations If an experiment is to be conducted which requires a greater level of precision in controlling when the gate is enabled and disabled, it becomes important to consider the rate at which the instrument responds to both the enable and disable states of the gating signal. The instrument will be able to respond to a trigger 100 ns after the gate is enabled (low to high transition). When the gating signal makes the high to low transition, eventually the oscilloscope will not accept and respond to trigger signals. In the sampling process, the oscilloscope is triggered and a sample is taken at a time equal to the delay setting (this is a minimum of 24 nanoseconds and is identical to the time position on the display where the sample will be located). Once a sample is taken, the oscilloscope must rearm. This takes approximately 27 microseconds. In the process of rearming, the status of the trigger gate port is checked. Thus if the gate goes from a high to a low just after the status is checked, over 27 microseconds will lapse before the instrument will no longer accept triggers. (In this worst case scenario, only one sample will be taken before the gate is enabled again). The maximum time that can elapse from the time a trigger is accepted, the gating signal drops from a high to a low state, and a data sample is taken is defined by t DISABLE.

5 t DISABLE = 27 us + trigger period + maximum time position on the instrument screen Signal under test Valid data Section of signal actually sampled Gating signal 100 ns < t DISABLE > t DISABLE It is important to make sure that these timing issues are considered to guarantee that data is not acquired outside of the valid data region. It is also important to note that the gating signal has no affect at all on the timing relationship between when the scope is triggered and when the data is sampled. Trigger gating only controls when the oscilloscope will accept a trigger signal. A gating feature exists in the Agilent option 100 oscilloscope mainframe. Some significant differences exist in how this feature has been implemented in the Agilent Trigger gating is a standard feature for all mainframes. In the implementation of trigger gating, the instrument was susceptible to false triggering at the gating transients. These were manifested as vertical streaks across the displayed waveform. This problem has been eliminated in the Agilent 86100A. Note: Carl Davidson of Tyco Submarine performed definition and verification of the experiment example shown above

Measuring Stray Voltage. Steady state

Measuring Stray Voltage. Steady state Measuring Stray Voltage What to measure: >Steady state >Motor starting transients >Impulses September 2000 cforster@forstereng.com 1 Steady state Where to measure: >All known cow contact points >Stanchions

More information

Picking the Optimal Oscilloscope for Serial Data Signal Integrity Validation and Debug

Picking the Optimal Oscilloscope for Serial Data Signal Integrity Validation and Debug Picking the Optimal Oscilloscope for Serial Data Signal Integrity Validation and Debug Application Note 1556 Introduction In the past, it was easy to decide whether to use a real-time oscilloscope or an

More information

EMC Pulse Measurements

EMC Pulse Measurements EMC Pulse Measurements and Custom Thresholding Presented to the Long Island/NY IEEE Electromagnetic Compatibility and Instrumentation & Measurement Societies - May 13, 2008 Surge ESD EFT Contents EMC measurement

More information

MAKING TRANSIENT ANTENNA MEASUREMENTS

MAKING TRANSIENT ANTENNA MEASUREMENTS MAKING TRANSIENT ANTENNA MEASUREMENTS Roger Dygert, Steven R. Nichols MI Technologies, 1125 Satellite Boulevard, Suite 100 Suwanee, GA 30024-4629 ABSTRACT In addition to steady state performance, antennas

More information

Model 310H Fast 800V Pulse Generator

Model 310H Fast 800V Pulse Generator KEY FEATURES Temperature Stability +/-5ppm 100 V to 800 V into 50 Ω

More information

In this lecture, we will first examine practical digital signals. Then we will discuss the timing constraints in digital systems.

In this lecture, we will first examine practical digital signals. Then we will discuss the timing constraints in digital systems. 1 In this lecture, we will first examine practical digital signals. Then we will discuss the timing constraints in digital systems. The important concepts are related to setup and hold times of registers

More information

DM74ALS169B Synchronous Four-Bit Up/Down Counters

DM74ALS169B Synchronous Four-Bit Up/Down Counters Synchronous Four-Bit Up/Down Counters General Description These synchronous presettable counters feature an internal carry look ahead for cascading in high speed counting applications. The DM74ALS169B

More information

Agilent N5411A Serial ATA Electrical Performance Validation and Compliance Software Release Notes

Agilent N5411A Serial ATA Electrical Performance Validation and Compliance Software Release Notes Agilent N5411A Serial ATA Electrical Performance Validation and Compliance Software Release Notes Agilent N5411A Software Version 2.60 Released Date: 7 Nov 2008 Minimum Infiniium Oscilloscope Baseline

More information

MIL-STD-883E METHOD 3024 SIMULTANEOUS SWITCHING NOISE MEASUREMENTS FOR DIGITAL MICROELECTRONIC DEVICES

MIL-STD-883E METHOD 3024 SIMULTANEOUS SWITCHING NOISE MEASUREMENTS FOR DIGITAL MICROELECTRONIC DEVICES SIMULTANEOUS SWITCHING NOISE MEASUREMENTS FOR DIGITAL MICROELECTRONIC DEVICES 1. Purpose. This method establishes the procedure for measuring the ground bounce (and V CC bounce) noise in digital microelectronic

More information

Model 305 Synchronous Countdown System

Model 305 Synchronous Countdown System Model 305 Synchronous Countdown System Introduction: The Model 305 pre-settable countdown electronics is a high-speed synchronous divider that generates an electronic trigger pulse, locked in time with

More information

Measuring PCB, Cable and Interconnect Impedance, Dielectric Constants, Velocity Factor, and Lengths

Measuring PCB, Cable and Interconnect Impedance, Dielectric Constants, Velocity Factor, and Lengths Measuring PCB, Cable and Interconnect Impedance, Dielectric Constants, Velocity Factor, and Lengths Controlled impedance printed circuit boards (PCBs) often include a measurement coupon, which typically

More information

Photline ModBox. ModBox-PP-NIR Near Infra-Red Pulse Picker Modulation Unit FEATURES. Performance Highlights OPTIONS. Optical Pulse Diagrams

Photline ModBox. ModBox-PP-NIR Near Infra-Red Pulse Picker Modulation Unit FEATURES. Performance Highlights OPTIONS. Optical Pulse Diagrams The ModBox Pulse Picker allows to pick and pulse shape any pulse or pulse sequence in an incoming pulse train. It acts as a fast gate with low insertion loss and high extinction, and is available in a

More information

DM74AS169A Synchronous 4-Bit Binary Up/Down Counter

DM74AS169A Synchronous 4-Bit Binary Up/Down Counter Synchronous 4-Bit Binary Up/Down Counter General Description These synchronous presettable counters feature an internal carry look ahead for cascading in high speed counting applications. The DM74AS169

More information

ArbStudio Triggers. Using Both Input & Output Trigger With ArbStudio APPLICATION BRIEF LAB912

ArbStudio Triggers. Using Both Input & Output Trigger With ArbStudio APPLICATION BRIEF LAB912 ArbStudio Triggers Using Both Input & Output Trigger With ArbStudio APPLICATION BRIEF LAB912 January 26, 2012 Summary ArbStudio has provision for outputting triggers synchronous with the output waveforms

More information

Agilent 81180A Arbitrary Waveform Generator

Agilent 81180A Arbitrary Waveform Generator Agilent 81180A Arbitrary Waveform Generator Specification 1.0 When waveform resolution matters test with confidence 4.2 GSa/s Arbitrary Waveform Generator with 12 bit vertical resolution 1 81180A at a

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 3-2 Frequency-Modulated CW Radar EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with FM ranging using frequency-modulated continuous-wave (FM-CW) radar. DISCUSSION

More information

What the LSA1000 Does and How

What the LSA1000 Does and How 2 About the LSA1000 What the LSA1000 Does and How The LSA1000 is an ideal instrument for capturing, digitizing and analyzing high-speed electronic signals. Moreover, it has been optimized for system-integration

More information

Jitter Analysis Techniques Using an Agilent Infiniium Oscilloscope

Jitter Analysis Techniques Using an Agilent Infiniium Oscilloscope Jitter Analysis Techniques Using an Agilent Infiniium Oscilloscope Product Note Table of Contents Introduction........................ 1 Jitter Fundamentals................. 1 Jitter Measurement Techniques......

More information

Getting Started. MSO/DPO Series Oscilloscopes. Basic Concepts

Getting Started. MSO/DPO Series Oscilloscopes. Basic Concepts Getting Started MSO/DPO Series Oscilloscopes Basic Concepts 001-1523-00 Getting Started 1.1 Getting Started What is an oscilloscope? An oscilloscope is a device that draws a graph of an electrical signal.

More information

How to configure trigger output signals

How to configure trigger output signals How to configure trigger output signals This material shows how to configure the instrument to output the trigger signals at the specified timing using Agilent B2961A/B2962A Power Source, through an example

More information

Technical Information Manual

Technical Information Manual Technical Information Manual Revision n. 0 21 April 1999 MOD. N 145 QUAD SCALER AND PRESET COUNTER/TIMER User's Manual (MUT) Mod. N145 Quad Scaler and Preset Counter/Timer Quad Scaler 20/04/1999 0 and

More information

ModBox - Spectral Broadening Unit

ModBox - Spectral Broadening Unit ModBox - Spectral Broadening Unit The ModBox Family The ModBox systems are a family of turnkey optical transmitters and external modulation benchtop units for digital and analog transmission, pulsed and

More information

Rigol DG5 4 Channel Arb Synchronization

Rigol DG5 4 Channel Arb Synchronization FAQ Instrument Solution FAQ Solution Title Rigol DG5 4 Channel Arb Synchronization Date:12/21/2012 Solution: This document outlines the setup to synchronize the outputs of (2) Rigol DG5xx2 series of arbitrary

More information

Models 296 and 295 combine sophisticated

Models 296 and 295 combine sophisticated Established 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) Models 296 and 295 50 MS/s Synthesized Multichannel Arbitrary Waveform Generators Up to 4 Independent Channels 10 Standard

More information

Line Impedance Analyzer TDR 3000

Line Impedance Analyzer TDR 3000 Line Impedance Analyzer TDR 3000 Line Impedance Analyzer TDR 3000 Key Features ˆ Compact Instrument for TDR Measurement ˆ Simple Measurement of Line Impedances and Reections even on Internal Layers of

More information

Advanced Signal Integrity Measurements of High- Speed Differential Channels

Advanced Signal Integrity Measurements of High- Speed Differential Channels Advanced Signal Integrity Measurements of High- Speed Differential Channels September 2004 presented by: Mike Resso Greg LeCheminant Copyright 2004 Agilent Technologies, Inc. What We Will Discuss Today

More information

TrigBox SQTB01 07.MAR.2018 PRODUCT DATA SHEET. IKALOGIC S.A.S. 19 Rue Columbia Limoges FRANCE

TrigBox SQTB01 07.MAR.2018 PRODUCT DATA SHEET. IKALOGIC S.A.S. 19 Rue Columbia Limoges FRANCE TrigBox SQTB01 Adds Trigger IN and Trigger OUT capability for ScanaQuad logic analyzers series Product status: Active. 07.MAR.2018 PRODUCT DATA SHEET (PRELIMINARY DATA) IKALOGIC S.A.S. 19 Rue Columbia

More information

Module 4: Combinational Logic Glitches and Hazards

Module 4: Combinational Logic Glitches and Hazards Module 4: Combinational Logic Glitches and Hazards Wakerly: Chapter 4 (part 3) : ECEN 3233 r. Keith. Teague Spring 23 23 TIME RESPONSE in Combinational Networks emphasis on timing behavior of circuits

More information

Improving TDR/TDT Measurements Using Normalization Application Note

Improving TDR/TDT Measurements Using Normalization Application Note Improving TDR/TDT Measurements Using Normalization Application Note 1304-5 2 TDR/TDT and Normalization Normalization, an error-correction process, helps ensure that time domain reflectometer (TDR) and

More information

Agilent 81133A/81134A

Agilent 81133A/81134A Agilent 81133A/81134A Performance Verification Rev. 2.3, Dec. 2009 Agilent Technologies Introduction Use these tests if you want to check that the Agilent 81133A / 81134A Pulse / Pattern Generator is

More information

Agilent AN 1310 Mobile Communications Device Testing

Agilent AN 1310 Mobile Communications Device Testing Agilent AN 1310 Mobile Communications Device Testing Application Note Considerations when selecting a System Power Supply for Mobile Communications Device Testing Abstract Pulsed battery drain currents,

More information

2520 Pulsed Laser Diode Test System

2520 Pulsed Laser Diode Test System Complete pulse test of laser diode bars and chips with dual photocurrent measurement channels 0 Pulsed Laser Diode Test System Simplifies laser diode L-I-V testing prior to packaging or active temperature

More information

INSTRUCTIONS MODEL AVC MONOCYCLE GENERATOR MODULE SERIAL NUMBER:

INSTRUCTIONS MODEL AVC MONOCYCLE GENERATOR MODULE SERIAL NUMBER: A V T E C H E L E C T R O S Y S T E M S L T D. N A N O S E C O N D W A V E F O R M E L E C T R O N I C S S I N C E 1 9 7 5 P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265 TEL: 888-670-8729 (USA & Canada)

More information

ModBox Pulse Shaper Arbitrary Optical Waveform Generator

ModBox Pulse Shaper Arbitrary Optical Waveform Generator Delivering Modulation Solutions ModBox The Photline Modbox-Pulse-Shaper is an Optical Modulation Unit to generate short shaped pulses with high extinction ratio at 1030 nm, 1053 nm or 1064 nm. It allows

More information

ModBox-FE-NIR Near-Infra Red Front-End Laser Source

ModBox-FE-NIR Near-Infra Red Front-End Laser Source FEATURES Optical waveform flexibility Low jitter Low rise & fall times Very high extinction ratio and stability Proven solution APPLICATIONS Inertial confinement fusion Interaction of intense light with

More information

IX Feb Operation Guide. Sequence Creation and Control Software SD011-PCR-LE. Wavy for PCR-LE. Ver. 5.5x

IX Feb Operation Guide. Sequence Creation and Control Software SD011-PCR-LE. Wavy for PCR-LE. Ver. 5.5x IX000693 Feb. 015 Operation Guide Sequence Creation and Control Software SD011-PCR-LE Wavy for PCR-LE Ver. 5.5x About This Guide This PDF version of the operation guide is provided so that you can print

More information

INF3430 Clock and Synchronization

INF3430 Clock and Synchronization INF3430 Clock and Synchronization P.P.Chu Using VHDL Chapter 16.1-6 INF 3430 - H12 : Chapter 16.1-6 1 Outline 1. Why synchronous? 2. Clock distribution network and skew 3. Multiple-clock system 4. Meta-stability

More information

Function Generator Guide Tektronix AFG3102

Function Generator Guide Tektronix AFG3102 Tektronix AFG3102 ersion 2008-Jan-1 Dept. of Electrical & Computer Engineering Portland State University Copyright 2008 Portland State University 1 Basic Information This guide provides basic instructions

More information

Physics Experiment N -17. Lifetime of Cosmic Ray Muons with On-Line Data Acquisition on a Computer

Physics Experiment N -17. Lifetime of Cosmic Ray Muons with On-Line Data Acquisition on a Computer Introduction Physics 410-510 Experiment N -17 Lifetime of Cosmic Ray Muons with On-Line Data Acquisition on a Computer The experiment is designed to teach the techniques of particle detection using scintillation

More information

CONVERTING 1524 SWITCHING POWER SUPPLY DESIGNS TO THE SG1524B

CONVERTING 1524 SWITCHING POWER SUPPLY DESIGNS TO THE SG1524B LINEAR INTEGRATED CIRCUITS PS-5 CONVERTING 1524 SWITCHING POWER SUPPLY DESIGNS TO THE SG1524B Stan Dendinger Manager, Advanced Product Development Silicon General, Inc. INTRODUCTION Many power control

More information

System description 4. SERVICES ONSITE INSTALLATION AND TRAINING SYSTEM ACCEPTANCE MAINTENANCE... 7

System description 4. SERVICES ONSITE INSTALLATION AND TRAINING SYSTEM ACCEPTANCE MAINTENANCE... 7 Ultra Wide Band test setup System description 1. UWB TEST SYSTEM DESCRIPTION... 2 2. SYSTEM MONITORING... 5 3. OTHER MEASUREMENT SYSTEMS & ACCESSORIES... 6 3.1 OSCILLOSCOPE & SHIELDED ENCLOSURE... 6 3.2

More information

Electronic Buzzer for Blind

Electronic Buzzer for Blind EE318 Electronic Design Lab Project Report, EE Dept, IIT Bombay, April 2009 Electronic Buzzer for Blind Group no. B08 Vaibhav Chaudhary (06007018) Anuj Jain (06007019)

More information

Digital Debug With Oscilloscopes Lab Experiment

Digital Debug With Oscilloscopes Lab Experiment Digital Debug With Oscilloscopes A collection of lab exercises to introduce you to digital debugging techniques with a digital oscilloscope. Revision 1.0 Page 1 of 23 Revision 1.0 Page 2 of 23 Copyright

More information

Agilent 6800 Series AC Power Source/Analyzer

Agilent 6800 Series AC Power Source/Analyzer Agilent 6800 Series AC Power Source/Analyzer Product Note Using the Agilent Technologies 6800 Series AC Power Source/Analyzers for Generation and Measurement Applications: Simulating AC Line Sub-Cycle

More information

Scopes for Stray Voltage. February

Scopes for Stray Voltage. February Scopes for Stray Voltage February 2002 cforster@mailbag.com 1 Why use an oscilloscope? Those guys from the PSCW said just measure steady state February 2002 cforster@mailbag.com 2 Well the world is changing

More information

PXIe Contents. Required Software CALIBRATION PROCEDURE

PXIe Contents. Required Software CALIBRATION PROCEDURE CALIBRATION PROCEDURE PXIe-5160 This document contains the verification and adjustment procedures for the PXIe-5160. Refer to ni.com/calibration for more information about calibration solutions. Contents

More information

3.003 Lab 3 Part A. Measurement of Speed of Light

3.003 Lab 3 Part A. Measurement of Speed of Light 3.003 Lab 3 Part A. Measurement of Speed of Light Objective: To measure the speed of light in free space Experimental Apparatus: Feb. 18, 2010 Due Mar. 2, 2010 Components: 1 Laser, 4 mirrors, 1 beam splitter

More information

Basic Logic Circuits

Basic Logic Circuits Basic Logic Circuits Required knowledge Measurement of static characteristics of nonlinear circuits. Measurement of current consumption. Measurement of dynamic properties of electrical circuits. Definitions

More information

Correct Measurement of Timing and Synchronisation Signals - A Comprehensive Guide

Correct Measurement of Timing and Synchronisation Signals - A Comprehensive Guide Correct Measurement of Timing and Synchronisation Signals - A Comprehensive Guide Introduction This document introduces the fundamental aspects of making valid timing and synchronisation measurements and

More information

Validation & Analysis of Complex Serial Bus Link Models

Validation & Analysis of Complex Serial Bus Link Models Validation & Analysis of Complex Serial Bus Link Models Version 1.0 John Pickerd, Tektronix, Inc John.J.Pickerd@Tek.com 503-627-5122 Kan Tan, Tektronix, Inc Kan.Tan@Tektronix.com 503-627-2049 Abstract

More information

Implementing Automated Oscilloscope Calibration Systems

Implementing Automated Oscilloscope Calibration Systems This paper was first presented at the National Conference of Standards Laboratories '97, Atlanta, Georgia, USA, on July 28, 1997. Implementing Automated Oscilloscope Calibration Systems Presenter: Richard

More information

RF and Microwave Power Sensors/Meters Tektronix PSM3000, PSM4000, and PSM5000 Series Data Sheet

RF and Microwave Power Sensors/Meters Tektronix PSM3000, PSM4000, and PSM5000 Series Data Sheet 99 Washington Street Melrose, MA 02176 Phone 781-665-1400 Toll Free 1-800-517-8431 Visit us at www.testequipmentdepot.com RF and Microwave Sensors/Meters Tektronix PSM3000, PSM4000, and PSM5000 Series

More information

DC to 3.5-GHz Amplified Photoreceivers Models 1591 & 1592

DC to 3.5-GHz Amplified Photoreceivers Models 1591 & 1592 USER S GUIDE DC to 3.5-GHz Amplified Photoreceivers Models 1591 & 1592 These photoreceivers are sensitive to electrostatic discharges and could be permanently damaged if subjected even to small discharges.

More information

ModBox-SB-NIR Near Infra Red Spectral Broadening Unit

ModBox-SB-NIR Near Infra Red Spectral Broadening Unit The Spectral Broadening ModBox achieves the broadening of an optical signal by modulating its phase via the mean of a very efficient LiNb0 3 phase modulator. A number of side bands are created over a spectral

More information

Fundamentals Of Commercial Doppler Systems

Fundamentals Of Commercial Doppler Systems Fundamentals Of Commercial Doppler Systems Speed, Motion and Distance Measurements I. Introduction MDT manufactures a large variety of microwave oscillators, transceivers, and other components for the

More information

ModBox-PG-795nm-30ps 795 nm 30 ps Optical Pulse Generator

ModBox-PG-795nm-30ps 795 nm 30 ps Optical Pulse Generator The Modbox-PG-795nm-30ps is a very high extinction ratio optical Pulse Generator operating in the 800nm-Band and firstly optimized at 795 nm. The -PG-795nm allows very high dynamic extinction ratio from

More information

B. Equipment. Advanced Lab

B. Equipment. Advanced Lab Advanced Lab Measuring Periodic Signals Using a Digital Oscilloscope A. Introduction and Background We will use a digital oscilloscope to characterize several different periodic voltage signals. We will

More information

DC to 12-GHz Amplified Photoreceivers Models 1544-B, 1554-B, & 1580-B

DC to 12-GHz Amplified Photoreceivers Models 1544-B, 1554-B, & 1580-B USER S GUIDE DC to 12-GHz Amplified Photoreceivers Models 1544-B, 1554-B, & 1580-B Including multimode -50 option These photoreceivers are sensitive to electrostatic discharges and could be permanently

More information

AC Current Probes CT1 CT2 CT6 Data Sheet

AC Current Probes CT1 CT2 CT6 Data Sheet View at www.testequipmentdepot.com AC Current Probes CT1 CT2 CT6 Data Sheet Features & Benefits High Bandwidth Ultra-low Inductance Very Small Form Factor Characterize Current Waveforms up to

More information

Frequency Agility and Barrage Noise Jamming

Frequency Agility and Barrage Noise Jamming Exercise 1-3 Frequency Agility and Barrage Noise Jamming EXERCISE OBJECTIVE To demonstrate frequency agility, a radar electronic protection is used against spot noise jamming. To justify the use of barrage

More information

Pulse Compression. Since each part of the pulse has unique frequency, the returns can be completely separated.

Pulse Compression. Since each part of the pulse has unique frequency, the returns can be completely separated. Pulse Compression Pulse compression is a generic term that is used to describe a waveshaping process that is produced as a propagating waveform is modified by the electrical network properties of the transmission

More information

Educator s Oscilloscope Training Kit for the InfiniiVision 2000 & 3000 X-Series

Educator s Oscilloscope Training Kit for the InfiniiVision 2000 & 3000 X-Series Educator s Oscilloscope Training Kit for the InfiniiVision 2000 & 3000 X-Series Data Sheet Oscilloscope training tools created specifically for electrical engineering and physics undergraduate students

More information

INSTRUCTIONS AVX-FILT SERIES OF RISE TIME FILTERS FOR USE WITH AVR-EBF6-B TFR TEST SYSTEMS SERIAL NUMBER:

INSTRUCTIONS AVX-FILT SERIES OF RISE TIME FILTERS FOR USE WITH AVR-EBF6-B TFR TEST SYSTEMS SERIAL NUMBER: A V T E C H E L E C T R O S Y S T E M S L T D. N A N O S E C O N D W A V E F O R M E L E C T R O N I C S S I N C E 1 9 7 5 P.O. BOX 265 OGDENSBURG NY U.S.A. 13669-0265 TEL: 888-670-8729 (USA & Canada)

More information

ENGINEERING TRIPOS PART II A ELECTRICAL AND INFORMATION ENGINEERING TEACHING LABORATORY EXPERIMENT 3B2-B DIGITAL INTEGRATED CIRCUITS

ENGINEERING TRIPOS PART II A ELECTRICAL AND INFORMATION ENGINEERING TEACHING LABORATORY EXPERIMENT 3B2-B DIGITAL INTEGRATED CIRCUITS ENGINEERING TRIPOS PART II A ELECTRICAL AND INFORMATION ENGINEERING TEACHING LABORATORY EXPERIMENT 3B2-B DIGITAL INTEGRATED CIRCUITS OBJECTIVES : 1. To interpret data sheets supplied by the manufacturers

More information

DSM303-V4 3.0 GHz Arbitrary Frequency Chirping Module

DSM303-V4 3.0 GHz Arbitrary Frequency Chirping Module DSM303-V4 3.0 GHz Arbitrary Frequency Chirping Module PRODUCT DESCRIPTION The DSM303-V4 module generates arbitrary frequency chirping CW with frequency update rates up to 312.5 updates/microsecond (1/8

More information

How to capture, save, and reproduce arbitrary load current waveforms

How to capture, save, and reproduce arbitrary load current waveforms How to capture, save, and reproduce arbitrary load current waveforms AN 1480 troduction Many products and circuits today draw a variety of current waveforms from their power source resulting from different

More information

Lab 9 RF Wireless Communications

Lab 9 RF Wireless Communications Lab 9 RF Wireless Communications Figure 9.0. Guglielmo Marconi Midday at Signal Hill near St. John s, Newfoundland, in Canada, Guglielmo Marconi pressed his ear to a telephone headset connected to an experimental

More information

FIBER105.TIF OUTLINE DIMENSIONS in inches (mm) .176 (4.47).165 (4.19) .500 MIN (12.7) FIBER203.DIM. Pinout 1. Capacitor 2. VÙÙ 3.

FIBER105.TIF OUTLINE DIMENSIONS in inches (mm) .176 (4.47).165 (4.19) .500 MIN (12.7) FIBER203.DIM. Pinout 1. Capacitor 2. VÙÙ 3. FEATURES Converts fiber optic input signals to TTL digital outputs Typical sensitivity 500 nw peak ( 33 dbm) Single 5 V supply requirement Edge detection circuitry gives 20 db minimum dynamic range, low

More information

Emerging Subsea Networks

Emerging Subsea Networks A NEW CABLE FAILURE QUICK ISOLATION TECHNIQUE OF OADM BRANCHING UNIT IN SUBMARINE NETWORKS Hongbo Sun, Likun Zhang, Xin Wang, Wendou Zhang, Liping Ma (Huawei Marine Networks Co., LTD) Email: sunhongbo@huaweimarine.com

More information

Synthesized Function Generators DS MHz function and arbitrary waveform generator

Synthesized Function Generators DS MHz function and arbitrary waveform generator Synthesized Function Generators DS345 30 MHz function and arbitrary waveform generator DS345 Function/Arb Generator 1 µhz to 30.2 MHz frequency range 1 µhz frequency resolution Sine, square, ramp, triangle

More information

Pulsed Measurement Capability of Copper Mountain Technologies VNAs

Pulsed Measurement Capability of Copper Mountain Technologies VNAs Introduction Pulsed S-parameter measurements are important when testing a DUT at a higher power than it can handle without damage in the steady state, or when the normal operating mode of the DUT involves

More information

Exercise 2: Distance Measurement

Exercise 2: Distance Measurement Transducer Fundamentals Ultrasonic Transducers Exercise 2: Distance Measurement EXERCISE OBJECTIVE At the completion of this exercise, you will be able to explain and demonstrate the operation of ultrasonic

More information

Programmable Voltage Clamp

Programmable Voltage Clamp Programmable Voltage Clamp UC198 FEATURES Shunt Regulator Keeps Power Supply Overvoltage to a Predetermined Level Programmable Input From 4.5V to 9V Internal 1.19V Floating Reference from VC Accurate to

More information

How to Measure Actual Coaxial Cable Delay Use Phase Measurements to Verify Cable Delay for Time Compensation (with VeEX TX300S)

How to Measure Actual Coaxial Cable Delay Use Phase Measurements to Verify Cable Delay for Time Compensation (with VeEX TX300S) APPLICATION NOTE How to Measure Actual Coaxial Cable Delay Use Phase Measurements to Verify Cable Delay for Time Compensation (with VeEX TX300S) August 2017 Rev. A00 P/N: D08-00-034 VeEX Inc. 2827 Lakeview

More information

DesignCon Noise Injection for Design Analysis and Debugging

DesignCon Noise Injection for Design Analysis and Debugging DesignCon 2009 Noise Injection for Design Analysis and Debugging Douglas C. Smith, D. C. Smith Consultants [Email: doug@dsmith.org, Tel: 408-356-4186] Copyright! 2009 Abstract Troubleshooting PCB and system

More information

Analog Arts SF900 SF650 SF610 Product Specifications

Analog Arts SF900 SF650 SF610 Product Specifications www.analogarts.com Analog Arts SF900 SF650 SF610 Product Specifications Analog Arts reserves the right to change, modify, add or delete portions of any one of its specifications at any time, without prior

More information

Parameters in Scope mode

Parameters in Scope mode NARDA BROADBAND FIELD METER SRM-3006 Technical Note 08 Parameters in Scope mode In Scope mode, the Selective Radiation Meter can display the time characteristic in real time of a signal captured using

More information

Combinational logic: Breadboard adders

Combinational logic: Breadboard adders ! ENEE 245: Digital Circuits & Systems Lab Lab 1 Combinational logic: Breadboard adders ENEE 245: Digital Circuits and Systems Laboratory Lab 1 Objectives The objectives of this laboratory are the following:

More information

The newer Fluke 199C recording scope meters are GREAT instruments if used properly.

The newer Fluke 199C recording scope meters are GREAT instruments if used properly. CowContacttm Volume 2004 Issue I March 2004 www.phasorlabs.com If you use FLUKE ScopeMeters and FlukeView logging software..see CowContact Volume 2G. If you use the Fluke 199C read this FLUKE ScopeMeters

More information

SRVODRV REV7 INSTALLATION NOTES

SRVODRV REV7 INSTALLATION NOTES SRVODRV-8020 -REV7 INSTALLATION NOTES Thank you for purchasing the SRVODRV -8020 drive. The SRVODRV -8020 DC servo drive is warranted to be free of manufacturing defects for 1 year from the date of purchase.

More information

Pulsed VNA Measurements:

Pulsed VNA Measurements: Pulsed VNA Measurements: The Need to Null! January 21, 2004 presented by: Loren Betts Copyright 2004 Agilent Technologies, Inc. Agenda Pulsed RF Devices Pulsed Signal Domains VNA Spectral Nulling Measurement

More information

Measurement and Analysis for Switchmode Power Design

Measurement and Analysis for Switchmode Power Design Measurement and Analysis for Switchmode Power Design Switched Mode Power Supply Measurements AC Input Power measurements Safe operating area Harmonics and compliance Efficiency Switching Transistor Losses

More information

INSTRUCTION MANUAL. March 11, 2003, Revision 3

INSTRUCTION MANUAL. March 11, 2003, Revision 3 INSTRUCTION MANUAL Model 701A Stimulator March 11, 2003, Revision 3 Copyright 2003 Aurora Scientific Inc. Aurora Scientific Inc. 360 Industrial Parkway S., Unit 4 Aurora, Ontario, Canada L4G 3V7 Tel: 1-905-727-5161

More information

RIGOL Data Sheet. DG3000 Series Function/Arbitrary Waveform Generator DG3121A, DG3101A, DG3061A. Product Overview. Easy to Use Design.

RIGOL Data Sheet. DG3000 Series Function/Arbitrary Waveform Generator DG3121A, DG3101A, DG3061A. Product Overview. Easy to Use Design. RIGOL Data Sheet DG3000 Series Function/Arbitrary Waveform Generator DG3121A, DG3101A, DG3061A Product Overview DG3000 Series Function/Arbitrary Waveform Generators adopt DDS technology, which enables

More information

WaveStation Function/Arbitrary Waveform Generators

WaveStation Function/Arbitrary Waveform Generators WaveStation Function/Arbitrary Waveform Generators Key Features High performance with 14-bit, 125 MS/s and 16 kpts 2 channels on all models Large 3.5 color display for easy waveform preview Over 40 built-in

More information

WaveStation Function/Arbitrary Waveform Generators

WaveStation Function/Arbitrary Waveform Generators WaveStation Function/Arbitrary Waveform Generators Key Features High performance with 14-bit, 125 MS/s and 16 kpts 2 channels on all models Large 3.5 color display for easy waveform preview Over 40 built-in

More information

Application Note, V 1.0, Feb AP C16xx. Timing, Reading the AC Characteristics. Microcontrollers. Never stop thinking.

Application Note, V 1.0, Feb AP C16xx. Timing, Reading the AC Characteristics. Microcontrollers. Never stop thinking. Application Note, V 1.0, Feb. 2004 AP16004 C16xx Timing, Reading the AC Characteristics. Microcontrollers Never stop thinking. C16xx Revision History: 2004-02 V 1.0 Previous Version: - Page Subjects (major

More information

Analog Arts SF990 SF880 SF830 Product Specifications

Analog Arts SF990 SF880 SF830 Product Specifications 1 www.analogarts.com Analog Arts SF990 SF880 SF830 Product Specifications Analog Arts reserves the right to change, modify, add or delete portions of any one of its specifications at any time, without

More information

2 : AC signals, the signal generator and the Oscilloscope

2 : AC signals, the signal generator and the Oscilloscope 2 : AC signals, the signal generator and the Oscilloscope Expected outcomes After conducting this practical, the student should be able to do the following Set up a signal generator to provide a specific

More information

Impulse Noise Measurement Test Setup

Impulse Noise Measurement Test Setup Impulse Noise Measurement Test Setup 1/27/2015 Ramin Shirani Larry Cohen Impulse Noise Problem Overview Problem: Impulse noise events in the enterprise environment may degrade the operational BER of otherwise

More information

TDECQ versus real receiver slope.

TDECQ versus real receiver slope. TDECQ versus real receiver slope. Authors: Marco Mazzini Cisco Matt Traverso Cisco Jonathan King Finisar Marlin Viss - Keysight TDECQ versus real receiver slope 1 Background Transmitter and dispersion

More information

Data Sheet AFBR-2418MZ. DC-50MBd Miniature Link Fiber Optic Receiver. Description. Features. Applications. AFBR-24x8xZ Available Part Numbers

Data Sheet AFBR-2418MZ. DC-50MBd Miniature Link Fiber Optic Receiver. Description. Features. Applications. AFBR-24x8xZ Available Part Numbers AFBR-2xxZ DC-0MBd Miniature Link Fiber Optic Receiver Data Sheet Description The component is designed to provide cost effective, high performance fiber optic communication links for information systems

More information

Retuning of FMIT #3 from 70.0 MHZ to 78.0 MHZ Charley Schwartz 10/28/02 DRAFT

Retuning of FMIT #3 from 70.0 MHZ to 78.0 MHZ Charley Schwartz 10/28/02 DRAFT Retuning of FMIT #3 from 70.0 MHZ to 78.0 MHZ Charley Schwartz 10/28/02 DRAFT This document serves two purposes, an entry into the engineering records of the process and data accumulated during the tuning

More information

AVTECH TECHNICAL BRIEF 15 (TB15) A COMPARISON OF REVERSE RECOVERY MEASUREMENT SYSTEMS

AVTECH TECHNICAL BRIEF 15 (TB15) A COMPARISON OF REVERSE RECOVERY MEASUREMENT SYSTEMS A V T E C H E L E C T R O S Y S T E M S L T D. N A N O S E C O N D W A V E F O R M E L E C T R O N I C S S I N C E 1 9 7 5 P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265 TEL: 888-670-8729 (USA & Canada)

More information

Data Sheet. DG1000 series Dual-Channel Function/Arbitrary Waveform Generators. Product Overview. Main Features. Applications. Easy to Use Design

Data Sheet. DG1000 series Dual-Channel Function/Arbitrary Waveform Generators. Product Overview. Main Features. Applications. Easy to Use Design Data Sheet DG1000 Series Dual-Channel Function/Arbitrary Waveform Generator Product Overview DG1000 series Dual-Channel Function/Arbitrary Waveform Generators adopt Direct Digital Synthesis (DDS) technology,

More information

Evaluating Electrical Events on the Dairy Farm

Evaluating Electrical Events on the Dairy Farm Evaluating Electrical Events on the Dairy Farm What if we had a way to evaluate all the different measurements people make on a dairy farm and we could put this information into a form that the average

More information

MODELS 5251/ MS/s PXIBus / PCIBus Arbitrary Waveform / Function Generators

MODELS 5251/ MS/s PXIBus / PCIBus Arbitrary Waveform / Function Generators 250MS/s PXIBus / PCIBus Arbitrary 5251: Single Channel PXIBus waveform generator 5351: Single Channel PCIBus waveform generator Sine waves to 100MHz and Square to 62.5MHz 16 Bit amplitude resolution 2M

More information

Chapter 13: Comparators

Chapter 13: Comparators Chapter 13: Comparators So far, we have used op amps in their normal, linear mode, where they follow the op amp Golden Rules (no input current to either input, no voltage difference between the inputs).

More information

Techniques to reduce electromagnetic noise produced by wired electronic devices

Techniques to reduce electromagnetic noise produced by wired electronic devices Rok / Year: Svazek / Volume: Číslo / Number: Jazyk / Language 2016 18 5 EN Techniques to reduce electromagnetic noise produced by wired electronic devices - Tomáš Chvátal xchvat02@stud.feec.vutbr.cz Faculty

More information

Module -18 Flip flops

Module -18 Flip flops 1 Module -18 Flip flops 1. Introduction 2. Comparison of latches and flip flops. 3. Clock the trigger signal 4. Flip flops 4.1. Level triggered flip flops SR, D and JK flip flops 4.2. Edge triggered flip

More information