An Efficient Implementation of a high performance Multiplier using MT-CMOS Technique

Size: px
Start display at page:

Download "An Efficient Implementation of a high performance Multiplier using MT-CMOS Technique"

Transcription

1 An Efficient Implementation of a high performance Multiplier using MT-CMOS Technique 1 Vuddagiri V Uma Durga Sindhusha, 2 Suneela Mudugu 1 PG Student (M.Tech), Dept. Of ECE, Nova College of Engineering & Technology, Vijayawada 2 Assistant Professor, Dept. Of ECE Nova College of Engineering & Technology, Vijayawada Abstract A variety of multipliers have been reported in the literature but power dissipation and area used by these multiplier circuits are relatively large. This paper proposed a high performance and power efficient 8x8 multiplier design based on Vedic mathematics using CMOS logic style.. In this paper, XNOR gates with MTCMOS and without MTCMOS technique are compared taking power consumption as parameter by varying voltage, frequency and temperature. The designs are tested in 45nmtechnology. The XNOR gate design with MTCMOS technique gives least power consumption. This paper proposed a various multipliers implemented using CMOS logic style and their comparative analysis on the basis of power and Power delay product. Keywords Multi-Threshold Voltage CMOS (MTCMOS), Vedic multiplier, XNOR Gate, Power analysis. I. INTRODUCTION The advances in battery technology are not commensurate with the advances in electronic devices. So the designers are faced with more constraint; high speed, high throughput and at the same time, consumption of power as minimal as possible. The levels, such as the architectural, circuit, layout, and the process technology level. At the circuit design level, the possibility for power savings exists by means of proper choice of a logic style for implementing combinational circuits. In the absence of low-power design techniques such applications generally suffer from very short battery life, while packaging and cooling them would be very difficult and this is leading to an unavoidable increase in the cost of the product. Historically, VLSI designers have used speed as the performance metric. High gains, in terms of performance and silicon area, have been made for Digital circuits. In general, small area and high performance are two conflicting constraints. The power consumption for any given function in CMOS circuit must be reduced for either of the two different reasons: The most important reason is to reduce heat dissipation in order to allow a large density of functions to be incorporated on an IC chip. Any amount of power consumption is worthwhile as long as it doesn t degrade overall circuit performance [4]. The other reason is to save energy in battery operated instruments same as electronic watches where average power is in microwatts Power dissipation can be reduced by scaling the supply voltage. The scaling of supply voltage linearly with feature size was started from half-micron technology. But the power supply scaling affects the speed of the circuit the need of the time is to put efforts in designing low-power and high speed circuits. MTCMOS technology has emerged as a promising alternative to build logic gates operating at a high speed with relatively small power dissipation as compared to traditional CMOS. MTCMOS is an effective circuitlevel technique that provides a high performance and low-power design by utilizing both low and highthreshold voltage transistors. This technology is used for reducing sub threshold currents in standby mode while maintaining circuit performance. Vedic mathematics is a part of four Vedas (books of wisdom). It is part of Sthapatya- Veda, which is an upaveda (supplement) of Atharva Veda. It encompasses the explanation of numerous modern mathematical terms that includes arithmetic, geometry, trigonometry, quadratic equations, factorization and even calculus. The word Vedic was coined from the word Veda which means the repertoire of all knowledge. Vedic mathematics is commonly based on 16 Sutras (or aphorisms) dealing with different types of mathematics like arithmetic, algebra, geometry etc. The essence of Vedic mathematics is the fact that it reduces the otherwise ponderous calculations in conventional mathematics that slows down the calculation process considerably. This is because the Vedic formulas are predicated on the principles which are generally used my humans. This is a very enticing field and presents some efficient algorithms which can be applied to numerous branches of engineering such as computing, image processing and digital signal processing. When the physical design of the MTCMOS circuits is done, it is vital to consider the large current flowing through the current stopping transistors in active mode and the electro-migration in the wires should be taken into account. The channel width is also very important due to the large current. There is a trade-off between the local and global sleep devices. The bottleneck with local 52

2 sleep devices is that there will be a large area overhead due to the fact that there will be a lot of extra transistors. MTCMOS The MTCMOS approach is easy on combinatorial circuits, but it can be tricky on sequential circuits. Should the power supply be turned off, all data stored in the circuit will be irreversibly lost. This is the main problem with MTCMOS circuits. To deal with this problem complex timing scheme must be used or extra circuits have to be added. Because of these added items the performance of the circuit would be degraded. This will also require a larger die area and impose higher power losses. MTCMOS (multithreshold CMOS) reduces leakage current during standby mode and attains high speed in active mode. In this technique high threshold voltage transistor are used to isolate the low threshold voltage transistor from supply and ground during standby mode. However by including extra transistor, MTCMOS circuit faces performance penalty compared to CMOS circuits, if the transistor are not sized properly. The high threshold voltage transistor are turned off during standby (sleep mode), this result very low sub threshold passes from Vcc to ground. MTCMOS includes high Vt transistor to gate power and ground of a low Vt logic blocks as shown in figure 1.when the high Vt transistor are off resulting in a very low sub threshold leakage current. When the high Vt transistor are turned on, low Vt are connected to virtual ground and Vdd. Figure 1 Power gating structure Figure 2 Schematic diagram of Existing XNOR Gate However there are three drawbacks in MTCMOS sequential circuits that is need to be eliminated: first is sequential circuit will lose data when sleep transistor are turned off, second is timing is critical for sleep signal and third is sizing of sleep transistor is very difficult task. The existing design of XNOR gate is shown in Fig.2. It consists of 3 transistors as one pmos and two nmos. When ab=00, nmos (both) are OFF and pmos is ON due to high gate voltage than threshold. As pmos is strong 1 device it will pass complete logic high signal at the output. When ab=01, one nmos is OFF and other nmos is ON. As nmos is strong 0 device it will pass complete logic low signal at the output. When ab =10, nmos (second) and pmos are ON. As mobility of nmos is nearly three times greater than pmos, hence it will drive the output ignoring the effect of ON pmos transistors which results into zero output. When ab=11, both the nmos transistors are ON and only nmos will be responsible for driving the output. II. VEDIC MATHEMATICS The proposed Vedic multiplier is based on the Vedic multiplication formulae (Sutras). These Sutras have been traditionally used for the multiplication of two numbers in the decimal number system. In this work, we apply the same ideas to the binary 6number system to make the proposed algorithm compatible with the digital hardware. The multiplier is based on an algorithm Urdhva Tiryakbhyam (Vertical & Crosswise) of ancient Indian Vedic Mathematics. Urdhva Tiryakbhyam Sutra is a general multiplication formula applicable to all cases of multiplication. It literally means Vertically and crosswise. It is based on a novel concept through which the generation of all partial products can be done with the concurrent addition of these partial products. The parallelism in generation of partial products and their summation is obtained using Urdhava Triyakbhyam explained in fig.3. The algorithm can be generalized for n x n bit number. Since the partial products and their sums are calculated in parallel, the multiplier is independent of the clock frequency of the processor. Thus the multiplier will require the same amount of time to calculate the product and hence is independent of the clock frequency. The net advantage is that it reduces the need of microprocessors to operate at increasingly high clock frequencies. While a higher clock frequency generally results in increased processing power, its disadvantage is that it also increases power dissipation which results in higher device operating temperatures. By adopting the Vedic multiplier, microprocessors designers can easily circumvent these problems to avoid catastrophic device failures. The processing power of multiplier can easily be increased by increasing the input and output data bus widths since it has a quite a regular structure. Due to its regular structure, it can be easily layout in a silicon chip. The Multiplier has the advantage that as the number of bits increases, gate delay and area increases very slowly as compared to other multipliers. Therefore it is time, space and power efficient. It is demonstrated that this 53

3 architecture is quite efficient in terms of silicon area/speed. Multiplication of two decimal numbers- 325*738: To illustrate this multiplication scheme, let us consider the multiplication of two decimal numbers (325 * 738). Line diagram for the multiplication is shown in fig2.1. The digits on the both sides of the line are multiplied and added with the carry from the previous step. This generates one of the bits of the result and a carry. This carry is added in the next step and hence the process goes on. If more than one line are there in one step, all the results are added to the previous carry. In each step, least significant bit acts as the 7result bit and all other bits act as carry for the next step. Initially the carry is taken to be zero. To make the methodology more clear, an alternate illustration is given with the help of line diagrams in figure where the dots represent bit 0 or 1. Figure 3 Multiplication of two decimal numbers by Urdhva Tiryakbhyam Consider an example of a 4x4-bit Vedic multiplier unit as shown in Fig. 4 which multiplies two 4-bit numbers (A and B), each number can be expressed as (A0 A3, B0 B3); A3 and B3 being the most significant inputs. Figure 4 4x4 bit Vedic multiplication method Each square shape block in the above figure shows a 2x2 bit Vedic multiplier unit. First 2x2 bit Vedic multiplier has inputs as A1A0 and B1B0. The last block is also 2x2 bit Vedic multiplier with inputs A3 A2 and B3 B2. The blocks in the middle are 2x2 bit multipliers with inputs A3 A2 & B1B0 and A1A0 & B3 B2. So the final result of multiplication will be of 8 bit as S7S6S5S4S3S2S1S0. To understand the concept, the Block diagram of 4x4 bit Vedic multiplier is shown in Fig. 5. To get final product (s7 s6 s5 s4 s3 s2 s1 s0), four 2x2 bit Vedic multipliers and three 4-bit Ripple-Carry (RC) Adders are required. Figure 5 Block diagram of 4X4 bit Vedic multiplier Analysing 4X4 multiplications, inputs are a3-a0 and b3- b0 and the output is given by s7 s6 s5 s4 s3 s2 s1 s0.the inputs of 1st 2X2 multiplier are a1a0 and b1b0, 2nd 2X2 multiplier are a1a0 and b3b2, 3rd 2X2 multiplier are a3a2 and b1b0 and that of 4th 2X2 multiplier are a3a2 and b3b2. As compared to Array Multiplier, Proposed Vedic Multiplier is efficient in terms of delay and speed. The Proposed Vedic Multiplier can be used to reduce Delay. This 4X4 Multiplier Module is the Basic Building Block of 8X8 Vedic Multiplier. The module of 8X8 bit Vedic multiplier shown in Fig. 6 can be implemented by using four 4X4 bit Vedic multiplier modules [12]. Analyzing 8X8 multiplications, inputs are a7- a0 and b7-b0 and the multiplication s 16 bits output will be s15-s0.in this, four 4X4 bit Vedic multipliers and three 8 bit RC Adders(having 2 input of 8 bits) are required. Inputs are given to the 4x4 bit Vedic multipliers and the output of multiplier is of 8 bits. Now, the input of the 1st RC Adder is the output of the 2nd and 3rd 4x4 bit multipliers which gives output of 8 bits (7-0) + one carry. The 2nd RC Adder will add the output of 1st RC Adder (7-0) and 4 bits (7-4) output of 1 st 4x4 bit Vedic multiplier, other 4bit of are considered as 0.So output is of 8-bits(7-0) and one carry(carry is discarded). The 3rd RC Adder will add the output of 4th 4x4 bit multiplier (7-0) and 4 bits of output of 2nd RC Adder (7-4), other 4 bits are carrying of 1st RC Adder and 0. Now, the output of 8x8 multiplier is s(3-0) output of 1st 4x4 bit multiplier(3-0), s(7-4) is output of 2nd RC Adder (3-0) and s(15-8)=8 is output of 3rd RC Adder(7-0). 54

4 Figure 6 Block diagram of 8X8 bit Vedic multiplier III. VEDIC MULTIPLIER USING MTCMOS CMOS technology when scaled helps in the attainment of reduced supply and threshold voltages. When the threshold voltages are lowered the sub threshold current begins to wax precipitously. Leakage current plays a pivotal role in modern high performance integrated circuits (ICs) as more than 40% of the total active mode energy is associated with these currents. Integrating more transistors on-chip, causes the leakage current to dominate the high performance IC s total energy consumption. Additionally, it is the leakage current which is the prime source of energy consumption in an idle circuit. In various hand-held battery-operated gadgets like mobile phones, laptops etc. employs long standby periods thus reducing the leakage current is highly important to provide longevity to the battery. The highly recommended circuit technique for the leakage current reduction is the Multi- Threshold Voltage CMOS (MTCMOS). In MTCMOS technology, efficient power management is obtained by allowing the circuit to operate in two modes: 1) Active Mode 2) Sleep Mode. The conventional circuit works using a single threshold voltage (Vt) whereas the circuits employing the MTCMOS technique works on two different threshold voltage switches i.e. the Low Vt and High Vt. The circuit makes use of two different set of transistors one being the High Vt transistors known as the sleep transistors and other being the Low Vt transistors which forms the logical circuit. The sleep transistors helps in the reduction of leakage current thus providing the high performance and the Low Vt transistors are used to boost the circuit s speed performance. Figure 7 Power Gating Techniques using MTCMOS The Fig.7 shows the power gating technique used in MTCMOS. The above circuit comprises of two sleep transistors S1 and S2 which possess the higher Vt. The logical circuit between S1 and S2 comprises of the Low Vt transistors is not connected directly to the real supply, Vdd and ground, GND but is connected to virtual supply and ground lines Vddv and Gndv. The sleep transistors are provided with complementary inputs S and SBAR. The circuit works in the active mode when, S=0 and SBAR=1 thus making both the sleep transistors S1 and S2 to remain ON and the virtual supply and ground lines Vddv and Gndv works as real supply lines and the logic circuit performs its operations normally at higher speed. But when S=1 and SBAR=0, the circuit works in the sleep mode making S1 and S2 sleep transistors to go in OFF state which results in the floating of virtual power supply lines and sleep transistors S1 and S2 suppresses the large leakage current present in the circuit. This reduces the power consumption as the leakage current has been lowered. Fig.8 represents the implementation of XNOR using the MTCMOS technique. Here a high Vt transistor i.e. the sleep nmos transistor is incorporated at the bottom of the logical circuit design which during the sleep mode helps in the abatement of the leakage current present in the circuit thus reducing the overall power consumption. Figure 8 XNOR using MTCMOS Technique. 55

5 IV. RESULTS AND CONCLUSIONS This paper introduces a novel and high performance design of an 8x8 multiplier using ancient Indian mathematics called Vedas. We have presented three different designs of the 8x8 Vedic multiplier using the CMOS technology, PTL and finally concoct the Vedic Multiplier using the Multi-Threshold Voltage CMOS (MTCMOS) and proved that the MTCMOS implementation of Vedic Multiplier is the best among all the implementations. The Below schematic represent the gate design of the proposed substractor.the schematic is drawn using DSCH software. The multi threshold CMOS technology has two main parts. First, active and sleep operational modes are associated with MTCMOS technology, for efficient power management. Second, two different threshold voltages are used for N channel and P channel MOSFET in a single chip. Figure 13 Layout Design Figure 9 Schematic of substractor Figure 10 Simulation of the substractor The above simulation shows the A,B,C input of the substractor.d is the difference calculated and the borrow is the carry left. A full subtractor subtracts 3input bits and gives the output in the form of difference and borrows. We design the transistor level full subtractor using cadence virtuoso tool in 45 nm technology and simulate it giving the inputs and get output. By applying the MTCMOS technique in 45nm technology reduction in current and power. Figure 11 MTCMOS paired with the proposed substractor Figure 12 Simulation of the MT CMOS substractor Figure 14 RTL Schematic of the TOP Module Figure 13 and 14 shows the Layout and RTL Schematic of the Proposed System. The multiplier and the adder-subtractor units used for the implementation of Vedic multiplier are adopted from ancient methodology of India mathematics called as Vedas. The use of Vedas not only abates the carry propagation taking place from lsb to msb but also produces the partial product and there sums in the same step. Vedic mathematics based multipliers thus causes least delay and consume least power than any other type of multipliers in the literature. The functionality of all the three designs and there PDP and total power consumptions at two different frequencies and three different voltages were calculated REFERENCES [1] Himanshu Thapliyal and M. B. Srinivas, An efficient method of elliptic curve encryption using Ancient Indian Vedic Mathematics, 48th IEEE International Midwest Symposium on Circuits and Systems, 2005, vol. 1, pp [2] M. Pradhan and R. Panda, Design and Implementation of Vedic Multiplier, A.M.S.E Journal, Computer Science and Statistics, France vol. 15, July 2010, pp [3] Sen-Maw Kuo and Woon-Seng Gan, Digital Signal Processor, architectures,implementations and applications, Pearson Prentice Hall, 2005, pp

6 [4] S. S. Kerur, Prakash Narchi, Jayashree C.N., Harish M.Kittur and GirishV.A. Implementation of Vedic Multiplier for Digital Signal Processing, International Journal of Computer Applications, 2011, vol. 16, pp [5] D. Zuras, On squaring and multiplying large integers, In Proceedings of International Symposium on Computer Arithmetic, IEEE Computer Society Press, pp , [6] Shripad Kulkarni, Discrete Fourier Transform (DFT) by using Vedic Mathematics Papers on implementation of DSP algorithms/vlsi structures using Vedic Mathematics, 2006, IC Design portal. [7] S.G. Dani, Vedic Maths : facts and myths, One India One People, Vol 4/6,January 2001, pp ; (available on dani). [8] M.C. Hanumantharaju, H. Jayalaxmi, R.K. Renuka, M. Ravishankar, "A High Speed Block Convolution Using Ancient Indian Vedic Mathematics," ICCIMA, vol. 2, pp , International Conference on Computational Intelligence and Multimedia Applications, [9] Himanshu Thapliyal, Vedic Mathematics for Faster Mental Calculations and High Speed VLSI Arithmetic, Invited talk at IEEE Computer Society Student Chapter, University of South Florida, Tampa, FL, Nov Authors Profiles: Vuddagiri V Uma Durga Sindhusha is pursuing her Master degree M.Tech in VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS in Nova College of Engineering & Technology, Vijayawada. Suneela Mudugu is working as Assistant Professor in Nova College of Engineering & Technology, Vijayawada. She completed her M.Tech in Computers and Communications 57

Pipelined Linear Convolution Based On Hierarchical Overlay UT Multiplier

Pipelined Linear Convolution Based On Hierarchical Overlay UT Multiplier Pipelined Linear Convolution Based On Hierarchical Overlay UT Multiplier Pranav K, Pramod P 1 PG scholar (M Tech VLSI Design and Signal Processing) L B S College of Engineering Kasargod, Kerala, India

More information

DESIGN AND ANALYSIS OF VEDIC MULTIPLIER USING MICROWIND

DESIGN AND ANALYSIS OF VEDIC MULTIPLIER USING MICROWIND DESIGN AND ANALYSIS OF VEDIC MULTIPLIER USING MICROWIND Amita 1, Nisha Yadav 2, Pardeep 3 1,2,3 Student, YMCA University of Science and Technology/Electronics Engineering, Faridabad, (India) ABSTRACT Multiplication

More information

Implementation and Analysis of Power, Area and Delay of Array, Urdhva, Nikhilam Vedic Multipliers

Implementation and Analysis of Power, Area and Delay of Array, Urdhva, Nikhilam Vedic Multipliers International Journal of Scientific and Research Publications, Volume 3, Issue 1, January 2013 1 Implementation and Analysis of, Area and of Array, Urdhva, Nikhilam Vedic Multipliers Ch. Harish Kumar International

More information

A Compact Design of 8X8 Bit Vedic Multiplier Using Reversible Logic Based Compressor

A Compact Design of 8X8 Bit Vedic Multiplier Using Reversible Logic Based Compressor A Compact Design of 8X8 Bit Vedic Multiplier Using Reversible Logic Based Compressor 1 Viswanath Gowthami, 2 B.Govardhana, 3 Madanna, 1 PG Scholar, Dept of VLSI System Design, Geethanajali college of engineering

More information

DESIGN OF A HIGH SPEED MULTIPLIER BY USING ANCIENT VEDIC MATHEMATICS APPROACH FOR DIGITAL ARITHMETIC

DESIGN OF A HIGH SPEED MULTIPLIER BY USING ANCIENT VEDIC MATHEMATICS APPROACH FOR DIGITAL ARITHMETIC DESIGN OF A HIGH SPEED MULTIPLIER BY USING ANCIENT VEDIC MATHEMATICS APPROACH FOR DIGITAL ARITHMETIC Anuj Kumar 1, Suraj Kamya 2 1,2 Department of ECE, IIMT College Of Engineering, Greater Noida, (India)

More information

Oswal S.M 1, Prof. Miss Yogita Hon 2

Oswal S.M 1, Prof. Miss Yogita Hon 2 International Journal of Modern Trends in Engineering and Research www.ijmter.com e-issn No.:2349-9745, Date: 28-30 April, 2016 IMPLEMENTATION OF MULTIPLICATION ALGORITHM USING VEDIC MULTIPLICATION: A

More information

High Speed Vedic Multiplier in FIR Filter on FPGA

High Speed Vedic Multiplier in FIR Filter on FPGA IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 3, Ver. II (May-Jun. 2014), PP 48-53 e-issn: 2319 4200, p-issn No. : 2319 4197 High Speed Vedic Multiplier in FIR Filter on FPGA Mrs.

More information

Modelling Of Adders Using CMOS GDI For Vedic Multipliers

Modelling Of Adders Using CMOS GDI For Vedic Multipliers Modelling Of Adders Using CMOS GDI For Vedic Multipliers 1 C.Anuradha, 2 B.Govardhana, 3 Madanna, 1 PG Scholar, Dept Of VLSI System Design, Geetanjali College Of Engineering And Technology, 2 Assistant

More information

Study, Implementation and Comparison of Different Multipliers based on Array, KCM and Vedic Mathematics Using EDA Tools

Study, Implementation and Comparison of Different Multipliers based on Array, KCM and Vedic Mathematics Using EDA Tools International Journal of Scientific and Research Publications, Volume 3, Issue 6, June 2013 1 Study, Implementation and Comparison of Different Multipliers based on Array, KCM and Vedic Mathematics Using

More information

Design and Implementation of Pipelined 4-Bit Binary Multiplier Using M.G.D.I. Technique

Design and Implementation of Pipelined 4-Bit Binary Multiplier Using M.G.D.I. Technique Volume 2 Issue 3 September 2014 ISSN: 2320-9984 (Online) International Journal of Modern Engineering & Management Research Website: www.ijmemr.org Design and Implementation of Pipelined 4-Bit Binary Multiplier

More information

A Survey on Design of Pipelined Single Precision Floating Point Multiplier Based On Vedic Mathematic Technique

A Survey on Design of Pipelined Single Precision Floating Point Multiplier Based On Vedic Mathematic Technique RESEARCH ARTICLE OPEN ACCESS A Survey on Design of Pipelined Single Precision Floating Point Multiplier Based On Vedic Mathematic Technique R.N.Rajurkar 1, P.R. Indurkar 2, S.R.Vaidya 3 1 Mtech III sem

More information

2. URDHAVA TIRYAKBHYAM METHOD

2. URDHAVA TIRYAKBHYAM METHOD ISSN (O): 2349-7084 International Journal of Computer Engineering In Research Trends Available online at: www.ijcert.org Area Efficient and High Speed Vedic Multiplier Using Different Compressors 1 RAJARAPU

More information

Optimized high performance multiplier using Vedic mathematics

Optimized high performance multiplier using Vedic mathematics IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 5, Ver. I (Sep-Oct. 2014), PP 06-11 e-issn: 2319 4200, p-issn No. : 2319 4197 Optimized high performance multiplier using Vedic mathematics

More information

A Time-Area-Power Efficient High Speed Vedic Mathematics Multiplier using Compressors

A Time-Area-Power Efficient High Speed Vedic Mathematics Multiplier using Compressors A Time-Area-Power Efficient High Speed Vedic Mathematics Multiplier using Compressors Kishan.P M.Tech Scohlar (VLSI) Dept. of ECE Ashoka Institute of Engineering & Technology G. Sai Kumar Assitant. Professor

More information

Design of 32 Bit Vedic Multiplier using Carry Look Ahead Adder

Design of 32 Bit Vedic Multiplier using Carry Look Ahead Adder GRD Journals Global Research and Development Journal for Engineering National Conference on Emerging Trends in Electrical, Electronics and Computer Engineering (ETEEC-2018) April 2018 e-issn: 2455-5703

More information

VLSI Design of High Performance Complex Multiplier

VLSI Design of High Performance Complex Multiplier International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 1, Issue 4 (December 2014), PP.68-75 VLSI Design of High Performance Complex Multiplier

More information

Comparative Analysis of 16 X 16 Bit Vedic and Booth Multipliers

Comparative Analysis of 16 X 16 Bit Vedic and Booth Multipliers World Journal of Technology, Engineering and Research, Volume 3, Issue 1 (2018) 305-313 Contents available at WJTER World Journal of Technology, Engineering and Research Journal Homepage: www.wjter.com

More information

OPTIMIZATION OF PERFORMANCE OF DIFFERENT VEDIC MULTIPLIER

OPTIMIZATION OF PERFORMANCE OF DIFFERENT VEDIC MULTIPLIER OPTIMIZATION OF PERFORMANCE OF DIFFERENT VEDIC MULTIPLIER 1 KRISHAN KUMAR SHARMA, 2 HIMANSHU JOSHI 1 M. Tech. Student, Jagannath University, Jaipur, India 2 Assistant Professor, Department of Electronics

More information

FPGA Implementation of an Intigrated Vedic Multiplier using Verilog

FPGA Implementation of an Intigrated Vedic Multiplier using Verilog IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 06, 2014 ISSN (online): 2321-0613 FPGA Implementation of an Intigrated Vedic using Verilog Kaveri hatti 1 Raju Yanamshetti

More information

A NOVEL APPROACH OF VEDIC MATHEMATICS USING REVERSIBLE LOGIC FOR HIGH SPEED ASIC DESIGN OF COMPLEX MULTIPLIER

A NOVEL APPROACH OF VEDIC MATHEMATICS USING REVERSIBLE LOGIC FOR HIGH SPEED ASIC DESIGN OF COMPLEX MULTIPLIER A NOVEL APPROACH OF VEDIC MATHEMATICS USING REVERSIBLE LOGIC FOR HIGH SPEED ASIC DESIGN OF COMPLEX MULTIPLIER SK. MASTAN VALI 1*, N.SATYANARAYAN 2* 1. II.M.Tech, Dept of ECE, AM Reddy Memorial College

More information

Design of Efficient 64 Bit Mac Unit Using Vedic Multiplier

Design of Efficient 64 Bit Mac Unit Using Vedic Multiplier Design of Efficient 64 Bit Mac Unit Using Vedic Multiplier 1 S. Raju & 2 J. Raja shekhar 1. M.Tech Chaitanya institute of technology and science, Warangal, T.S India 2.M.Tech Associate Professor, Chaitanya

More information

CO JOINING OF COMPRESSOR ADDER WITH 8x8 BIT VEDIC MULTIPLIER FOR HIGH SPEED

CO JOINING OF COMPRESSOR ADDER WITH 8x8 BIT VEDIC MULTIPLIER FOR HIGH SPEED CO JOINING OF COMPRESSOR ADDER WITH 8x8 BIT VEDIC MULTIPLIER FOR HIGH SPEED Neha Trehan 1, Er. Inderjit Singh 2 1 PG Research Scholar, 2 Assistant Professor, Department of Electronics and Communication

More information

COMPARISON BETWEEN ARRAY MULTIPLIER AND VEDIC MULTIPLIER

COMPARISON BETWEEN ARRAY MULTIPLIER AND VEDIC MULTIPLIER COMPARISON BETWEEN ARRAY MULTIPLIER AND VEDIC MULTIPLIER Hemraj Sharma #1, Gaurav K. Jindal *2, Abhilasha Choudhary #3 # VLSI DESIGN, JECRC University Plot No. IS-2036 to 2039, Ramchandrapura, Sitapura

More information

A Low Power Array Multiplier Design using Modified Gate Diffusion Input (GDI)

A Low Power Array Multiplier Design using Modified Gate Diffusion Input (GDI) A Low Power Array Multiplier Design using Modified Gate Diffusion Input (GDI) Mahendra Kumar Lariya 1, D. K. Mishra 2 1 M.Tech, Electronics and instrumentation Engineering, Shri G. S. Institute of Technology

More information

Comparative Analysis of Vedic and Array Multiplier

Comparative Analysis of Vedic and Array Multiplier Available onlinewww.ejaet.com European Journal of Advances in Engineering and Technology, 2017, 4(7): 524-531 Research Article ISSN: 2394-658X Comparative Analysis of Vedic and Array Multiplier Aniket

More information

Implementation and Performance Analysis of a Vedic Multiplier Using Tanner EDA Tool

Implementation and Performance Analysis of a Vedic Multiplier Using Tanner EDA Tool IJSRD - International Journal for Scientific Research & Development Vol. 1, Issue 5, 2013 ISSN (online): 2321-0613 Implementation and Performance Analysis of a Vedic Multiplier Using Tanner EDA Tool Dheeraj

More information

ASIC Implementation of High Speed Area Efficient Arithmetic Unit using GDI based Vedic Multiplier

ASIC Implementation of High Speed Area Efficient Arithmetic Unit using GDI based Vedic Multiplier INTERNATIONAL JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY ISSN 2519-5115 RESEARCH ARTICLE ASIC Implementation of High Speed Area Efficient Arithmetic Unit using GDI based Vedic Multiplier 1 M. Sangeetha

More information

Fast Fourier Transform utilizing Modified 4:2 & 7:2 Compressor

Fast Fourier Transform utilizing Modified 4:2 & 7:2 Compressor International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 11, Issue 05 (May 2015), PP.23-28 Fast Fourier Transform utilizing Modified 4:2

More information

A HIGH SPEED & LOW POWER 16T 1-BIT FULL ADDER CIRCUIT DESIGN BY USING MTCMOS TECHNIQUE IN 45nm TECHNOLOGY

A HIGH SPEED & LOW POWER 16T 1-BIT FULL ADDER CIRCUIT DESIGN BY USING MTCMOS TECHNIQUE IN 45nm TECHNOLOGY A HIGH SPEED & LOW POWER 16T 1-BIT FULL ADDER CIRCUIT DESIGN BY USING MTCMOS TECHNIQUE IN 45nm TECHNOLOGY Jasbir kaur 1, Neeraj Singla 2 1 Assistant Professor, 2 PG Scholar Electronics and Communication

More information

Design and Implementation of ALU Chip using D3L Logic and Ancient Mathematics

Design and Implementation of ALU Chip using D3L Logic and Ancient Mathematics Design and Implementation of ALU Chip using D3L and Ancient Mathematics Mohanarangan S PG Student (M.E-Applied Electronics) Department of Electronics and Communicaiton Engineering Sri Venkateswara College

More information

A Low Power High Speed Adders using MTCMOS Technique

A Low Power High Speed Adders using MTCMOS Technique International Journal of Computational Engineering & Management, Vol. 13, July 2011 www..org 65 A Low Power High Speed Adders using MTCMOS Technique Uma Nirmal 1, Geetanjali Sharma 2, Yogesh Misra 3 1,2,3

More information

Implementation of High Speed Signed Multiplier Using Compressor

Implementation of High Speed Signed Multiplier Using Compressor Implementation of High Speed Signed Multiplier Using Compressor D.Srinu 1, S.Rambabu 2, G.Leenendra Chowdary 3 M.Tech, Dept of ECE, SITE, Tadepalligudem, A.P, India 1 Asst. Professor, Dept of ECE, SITE,

More information

Design and FPGA Implementation of 4x4 Vedic Multiplier using Different Architectures

Design and FPGA Implementation of 4x4 Vedic Multiplier using Different Architectures Design and FPGA Implementation of 4x4 using Different Architectures Samiksha Dhole Tirupati Yadav Sayali Shembalkar Prof. Prasheel Thakre Asst. Professor, Dept. of ECE, Abstract: The need of high speed

More information

Design of 64 bit High Speed Vedic Multiplier

Design of 64 bit High Speed Vedic Multiplier Design of 64 bit High Speed Vedic Multiplier 1 2 Ila Chaudhary,Deepika Kularia Assistant Professor, Department of ECE, Manav Rachna International University, Faridabad, India 1 PG Student (VLSI), Department

More information

DESIGN OF PARALLEL MULTIPLIERS USING HIGH SPEED ADDER

DESIGN OF PARALLEL MULTIPLIERS USING HIGH SPEED ADDER DESIGN OF PARALLEL MULTIPLIERS USING HIGH SPEED ADDER Mr. M. Prakash Mr. S. Karthick Ms. C Suba PG Scholar, Department of ECE, BannariAmman Institute of Technology, Sathyamangalam, T.N, India 1, 3 Assistant

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 4, April -2017 e-issn (O): 2348-4470 p-issn (P): 2348-6406 High Speed

More information

I. INTRODUCTION II. RELATED WORK. Page 171

I. INTRODUCTION II. RELATED WORK. Page 171 Design and Analysis of 16-bit Carry Select Adder at 32nm Technology Sumanpreet Kaur, Neetika (Corresponding Author) Assistant Professor, Punjabi University Neighbourhood Campus, Rampura Phul (Bathinda)

More information

HIGH SPEED APPLICATION SPECIFIC INTEGRATED CIRCUIT (ASIC) DESIGN OF CONVOLUTION AND RELATED FUNCTIONS USING VEDIC MULTIPLIER

HIGH SPEED APPLICATION SPECIFIC INTEGRATED CIRCUIT (ASIC) DESIGN OF CONVOLUTION AND RELATED FUNCTIONS USING VEDIC MULTIPLIER HIGH SPEED APPLICATION SPECIFIC INTEGRATED CIRCUIT (ASIC) DESIGN OF CONVOLUTION AND RELATED FUNCTIONS USING VEDIC MULTIPLIER Sai Vignesh K. and Balamurugan S. and Marimuthu R. School of Electrical Engineering,

More information

Compressor Based Area-Efficient Low-Power 8x8 Vedic Multiplier

Compressor Based Area-Efficient Low-Power 8x8 Vedic Multiplier Compressor Based Area-Efficient Low-Power 8x8 Vedic Multiplier J.Sowjanya M.Tech Student, Department of ECE, GDMM College of Engineering and Technology. Abstrct: Multipliers are the integral components

More information

Hardware Implementation of 16*16 bit Multiplier and Square using Vedic Mathematics

Hardware Implementation of 16*16 bit Multiplier and Square using Vedic Mathematics Hardware Implementation of 16*16 bit Multiplier and Square using Vedic Mathematics Abhijeet Kumar Dilip Kumar Siddhi Lecturer, MMEC, Ambala Design Engineer, CDAC, Mohali Student, PEC Chandigarh abhi_459@yahoo.co.in

More information

High Speed Low Power Operations for FFT Using Reversible Vedic Multipliers

High Speed Low Power Operations for FFT Using Reversible Vedic Multipliers High Speed Low Power Operations for FFT Using Reversible Vedic Multipliers Malugu.Divya Student of M.Tech, ECE Department (VLSI), Geethanjali College of Engineering & Technology JNTUH, India. Mrs. B. Sreelatha

More information

DESIGN OF HIGH EFFICIENT AND LOW POWER MULTIPLIER

DESIGN OF HIGH EFFICIENT AND LOW POWER MULTIPLIER Int. J. Engg. Res. & Sci. & Tech. 2015 Balaje et al., 2015 Research Paper ISSN 2319-5991 www.ijerst.com Special Issue, Vol. 1, No. 3, May 2015 International Conference on Advance Research and Innovation

More information

Investigation on Performance of high speed CMOS Full adder Circuits

Investigation on Performance of high speed CMOS Full adder Circuits ISSN (O): 2349-7084 International Journal of Computer Engineering In Research Trends Available online at: www.ijcert.org Investigation on Performance of high speed CMOS Full adder Circuits 1 KATTUPALLI

More information

Review Paper on an Efficient Processing by Linear Convolution using Vedic Mathematics

Review Paper on an Efficient Processing by Linear Convolution using Vedic Mathematics Review Paper on an Efficient Processing by Linear Convolution using Vedic Mathematics Taruna Patil, Dr. Vineeta Saxena Nigam Electronics & Communication Dept. UIT, RGPV, Bhopal Abstract In this Technical

More information

Design of A Vedic Multiplier Using Area Efficient Bec Adder

Design of A Vedic Multiplier Using Area Efficient Bec Adder Design of A Vedic Multiplier Using Area Efficient Bec Adder Pulakandla Sushma & M.VS Prasad sushmareddy0558@gmail.com1 & prasadmadduri54@gmail.com2 1 2 pg Scholar, Dept Of Ece, Siddhartha Institute Of

More information

Design, Implementation and performance analysis of 8-bit Vedic Multiplier

Design, Implementation and performance analysis of 8-bit Vedic Multiplier Design, Implementation and performance analysis of 8-bit Vedic Multiplier Sudhir Dakey 1, Avinash Nandigama 2 1 Faculty,Department of E.C.E., MVSR Engineering College 2 Student, Department of E.C.E., MVSR

More information

IMPLEMENTATION OF HIGH SPEED LOW POWER VEDIC MULTIPLIER USING REVERSIBLE LOGIC

IMPLEMENTATION OF HIGH SPEED LOW POWER VEDIC MULTIPLIER USING REVERSIBLE LOGIC IMPLEMENTATION OF HIGH SPEED LOW POWER VEDIC MULTIPLIER USING REVERSIBLE LOGIC Manoj Kumar.K 1, Dr Meghana Kulkarni 2 1 PG Scholar, 2 Associate Professor Dept of PG studies, VTU-Belagavi, Karnataka,(India)

More information

Efficient Vedic Multiplication Oriented Pipeline Architecture with Booth/Baugh Wooley Comparisons

Efficient Vedic Multiplication Oriented Pipeline Architecture with Booth/Baugh Wooley Comparisons Efficient Vedic Multiplication Oriented Pipeline Architecture with Booth/Baugh Wooley Comparisons R.Dhivya, S. Maheshwari PG Scholar, Department of Electronics and Communication, Mookambigai College of

More information

II. Previous Work. III. New 8T Adder Design

II. Previous Work. III. New 8T Adder Design ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: High Performance Circuit Level Design For Multiplier Arun Kumar

More information

PIPELINED VEDIC MULTIPLIER

PIPELINED VEDIC MULTIPLIER PIPELINED VEDIC MULTIPLIER Dr.M.Ramkumar Raja 1, A.Anujaya 2, B.Bairavi 3, B.Dhanalakshmi 4, R.Dharani 5 1 Associate Professor, 2,3,4,5 Students Department of Electronics and Communication Engineering

More information

PROMINENT SPEED ARITHMETIC UNIT ARCHITECTURE FOR PROFICIENT ALU

PROMINENT SPEED ARITHMETIC UNIT ARCHITECTURE FOR PROFICIENT ALU PROMINENT SPEED ARITHMETIC UNIT ARCHITECTURE FOR PROFICIENT ALU R. Rashvenee, D. Roshini Keerthana, T. Ravi and P. Umarani Department of Electronics and Communication Engineering, Sathyabama University,

More information

FPGA Implementation of Low Power and High Speed Vedic Multiplier using Vedic Mathematics.

FPGA Implementation of Low Power and High Speed Vedic Multiplier using Vedic Mathematics. IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 2, Issue 5 (May. Jun. 2013), PP 51-57 e-issn: 2319 4200, p-issn No. : 2319 4197 FPGA Implementation of Low Power and High Speed Vedic Multiplier

More information

Low Power 32-bit Improved Carry Select Adder based on MTCMOS Technique

Low Power 32-bit Improved Carry Select Adder based on MTCMOS Technique Low Power 32-bit Improved Carry Select Adder based on MTCMOS Technique Ch. Mohammad Arif 1, J. Syamuel John 2 M. Tech student, Department of Electronics Engineering, VR Siddhartha Engineering College,

More information

FPGA Implementation of Complex Multiplier Using Urdhva Tiryakbham Sutra of Vedic Mathematics

FPGA Implementation of Complex Multiplier Using Urdhva Tiryakbham Sutra of Vedic Mathematics RESEARCH ARTICLE OPEN ACCESS FPGA Implementation of Complex Multiplier Using Urdhva Tiryakbham Sutra of Vedic Mathematics Rupa A. Tomaskar*, Gopichand D. Khandale** *(Department of Electronics Engineering,

More information

Design and Implementation of 8x8 VEDIC Multiplier Using Submicron Technology

Design and Implementation of 8x8 VEDIC Multiplier Using Submicron Technology Design and Implementation of 8x8 VEDIC Multiplier Using Submicron Technology Ravi S Patel 1,B.H.Nagpara 2,K.M.Pattani 3 1 P.G.Student, 2,3 Asst. Professor 1,2,3 Department of E&C, C. U. Shah College of

More information

AN NOVEL VLSI ARCHITECTURE FOR URDHVA TIRYAKBHYAM VEDIC MULTIPLIER USING EFFICIENT CARRY SELECT ADDER

AN NOVEL VLSI ARCHITECTURE FOR URDHVA TIRYAKBHYAM VEDIC MULTIPLIER USING EFFICIENT CARRY SELECT ADDER AN NOVEL VLSI ARCHITECTURE FOR URDHVA TIRYAKBHYAM VEDIC MULTIPLIER USING EFFICIENT CARRY SELECT ADDER S. Srikanth 1, A. Santhosh Kumar 2, R. Lokeshwaran 3, A. Anandhan 4 1,2 Assistant Professor, Department

More information

Implementation of High Performance Carry Save Adder Using Domino Logic

Implementation of High Performance Carry Save Adder Using Domino Logic Page 136 Implementation of High Performance Carry Save Adder Using Domino Logic T.Jayasimha 1, Daka Lakshmi 2, M.Gokula Lakshmi 3, S.Kiruthiga 4 and K.Kaviya 5 1 Assistant Professor, Department of ECE,

More information

Delay Comparison of 4 by 4 Vedic Multiplier based on Different Adder Architectures using VHDL

Delay Comparison of 4 by 4 Vedic Multiplier based on Different Adder Architectures using VHDL 28 Delay Comparison of 4 by 4 Vedic Multiplier based on Different Adder Architectures using VHDL Gaurav Sharma, MTech Student, Jagannath University, Jaipur, India Arjun Singh Chauhan, Lecturer, Department

More information

Design and Analysis of Row Bypass Multiplier using various logic Full Adders

Design and Analysis of Row Bypass Multiplier using various logic Full Adders Design and Analysis of Row Bypass Multiplier using various logic Full Adders Dr.R.Naveen 1, S.A.Sivakumar 2, K.U.Abhinaya 3, N.Akilandeeswari 4, S.Anushya 5, M.A.Asuvanti 6 1 Associate Professor, 2 Assistant

More information

AN EFFICIENT VLSI ARCHITECTURE FOR 64-BIT VEDIC MULTIPLIER

AN EFFICIENT VLSI ARCHITECTURE FOR 64-BIT VEDIC MULTIPLIER AN EFFICIENT VLSI ARCHITECTURE FOR 64-BIT VEDIC MULTIPLIER S. Srikanth 1, S. Poovitha 2, R.Prasannavenkatesh 3, S.Naveen 4 1 Assistant professor of ECE, 2,3,4 III yr ECE Department, SNS College of technology,

More information

An Optimized Implementation of CSLA and CLLA for 32-bit Unsigned Multiplier Using Verilog

An Optimized Implementation of CSLA and CLLA for 32-bit Unsigned Multiplier Using Verilog An Optimized Implementation of CSLA and CLLA for 32-bit Unsigned Multiplier Using Verilog 1 P.Sanjeeva Krishna Reddy, PG Scholar in VLSI Design, 2 A.M.Guna Sekhar Assoc.Professor 1 appireddigarichaitanya@gmail.com,

More information

Volume 1, Issue V, June 2013

Volume 1, Issue V, June 2013 Design and Hardware Implementation Of 128-bit Vedic Multiplier Badal Sharma 1 1 Suresh Gyan Vihar University, Mahal Jagatpura, Jaipur-302019, India badal.2112@yahoo.com Abstract: In this paper multiplier

More information

Comparative Study of Different Low Power Design Techniques for Reduction of Leakage Power in CMOS VLSI Circuits

Comparative Study of Different Low Power Design Techniques for Reduction of Leakage Power in CMOS VLSI Circuits Comparative Study of Different Low Power Design Techniques for Reduction of Leakage Power in CMOS VLSI Circuits P. S. Aswale M. E. VLSI & Embedded Systems Department of E & TC Engineering SITRC, Nashik,

More information

ISSN Vol.02, Issue.08, October-2014, Pages:

ISSN Vol.02, Issue.08, October-2014, Pages: ISSN 2322-0929 Vol.02, Issue.08, October-2014, Pages:0624-0629 www.ijvdcs.org Design of High Speed Low Power 32-Bit Multiplier using Reversible Logic: A Vedic Mathematical Approach R.VASIM AKRAM 1, MOHAMMED

More information

Implementation of 4x4 Vedic Multiplier using Carry Save Adder in Quantum-Dot Cellular Automata

Implementation of 4x4 Vedic Multiplier using Carry Save Adder in Quantum-Dot Cellular Automata International Conference on Communication and Signal Processing, April 6-8, 2016, India Implementation of 4x4 Vedic Multiplier using Carry Save Adder in Quantum-Dot Cellular Automata Ashvin Chudasama,

More information

Minimization of 34T Full Subtractor Parameters Using MTCMOS Technique

Minimization of 34T Full Subtractor Parameters Using MTCMOS Technique Minimization of 34T Full Subtractor Parameters Using MTCMOS Technique Mohammad Mudassir 1, Vishwas Mishra 2 and Amit Kumar 3 1 Research Scholar, M.Tech RF and Microwave, SITE, SVSU, Meerut (UP) INDIA,

More information

Power Efficiency of Half Adder Design using MTCMOS Technique in 35 Nanometre Regime

Power Efficiency of Half Adder Design using MTCMOS Technique in 35 Nanometre Regime IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 12 May 2015 ISSN (online): 2349-6010 Power Efficiency of Half Adder Design using MTCMOS Technique in 35 Nanometre

More information

Fpga Implementation Of High Speed Vedic Multipliers

Fpga Implementation Of High Speed Vedic Multipliers Fpga Implementation Of High Speed Vedic Multipliers S.Karthik 1, Priyanka Udayabhanu 2 Department of Electronics and Communication Engineering, Sree Narayana Gurukulam College of Engineering, Kadayiruppu,

More information

High Speed 16- Bit Vedic Multiplier Using Modified Carry Select Adder

High Speed 16- Bit Vedic Multiplier Using Modified Carry Select Adder High Speed 16- Bit Vedic Multiplier Using Modified Carry Select Adder Jagjeet Sharma 1, CandyGoyal 2 1 Electronics and Communication Engg Section,Yadavindra College of Engineering, Talwandi Sabo, India

More information

IMPLEMENTATION OF AREA EFFICIENT MULTIPLIER AND ADDER ARCHITECTURE IN DIGITAL FIR FILTER

IMPLEMENTATION OF AREA EFFICIENT MULTIPLIER AND ADDER ARCHITECTURE IN DIGITAL FIR FILTER ISSN: 0976-3104 Srividya. ARTICLE OPEN ACCESS IMPLEMENTATION OF AREA EFFICIENT MULTIPLIER AND ADDER ARCHITECTURE IN DIGITAL FIR FILTER Srividya Sahyadri College of Engineering & Management, ECE Dept, Mangalore,

More information

An Efficient SQRT Architecture of Carry Select Adder Design by HA and Common Boolean Logic PinnikaVenkateswarlu 1, Ragutla Kalpana 2

An Efficient SQRT Architecture of Carry Select Adder Design by HA and Common Boolean Logic PinnikaVenkateswarlu 1, Ragutla Kalpana 2 An Efficient SQRT Architecture of Carry Select Adder Design by HA and Common Boolean Logic PinnikaVenkateswarlu 1, Ragutla Kalpana 2 1 M.Tech student, ECE, Sri Indu College of Engineering and Technology,

More information

FPGA Implementation of MAC Unit Design by Using Vedic Multiplier

FPGA Implementation of MAC Unit Design by Using Vedic Multiplier FPGA Implementation of MAC Unit Design by Using Vedic Multiplier Syed Nighat Deptt of Electronics & Communication Engg. Anjuman College Of Engg &Tech., Nagpur, India nighatsyed786@gmail.com Prof. M. Nasiruddin

More information

A Novel Approach for High Speed and Low Power 4-Bit Multiplier

A Novel Approach for High Speed and Low Power 4-Bit Multiplier IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) ISSN: 2319 4200, ISBN No. : 2319 4197 Volume 1, Issue 3 (Nov. - Dec. 2012), PP 13-26 A Novel Approach for High Speed and Low Power 4-Bit Multiplier

More information

Power Optimization for Ripple Carry Adder with Reduced Transistor Count

Power Optimization for Ripple Carry Adder with Reduced Transistor Count e-issn 2455 1392 Volume 2 Issue 5, May 2016 pp. 146-154 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com Power Optimization for Ripple Carry Adder with Reduced Transistor Count Swarnalika

More information

DESIGN OF 64-BIT ALU USING VEDIC MATHEMATICS FOR HIGH SPEED SIGNAL PROCESSING RELEVANCE S

DESIGN OF 64-BIT ALU USING VEDIC MATHEMATICS FOR HIGH SPEED SIGNAL PROCESSING RELEVANCE S DESIGN OF 64-BIT ALU USING VEDIC MATHEMATICS FOR HIGH SPEED SIGNAL PROCESSING RELEVANCE S Srikanth Yellampalli 1, V. J Koteswara Rao 2 1 Pursuing M.tech (VLSI), 2 Asst. Professor (ECE), Nalanda Institute

More information

Optimum Analysis of ALU Processor by using UT Technique

Optimum Analysis of ALU Processor by using UT Technique IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 10 April 2016 ISSN (online): 2349-784X Optimum Analysis of ALU Processor by using UT Technique Rahul Sharma Deepak Kumar

More information

UNIT-II LOW POWER VLSI DESIGN APPROACHES

UNIT-II LOW POWER VLSI DESIGN APPROACHES UNIT-II LOW POWER VLSI DESIGN APPROACHES Low power Design through Voltage Scaling: The switching power dissipation in CMOS digital integrated circuits is a strong function of the power supply voltage.

More information

PERFORMANCE ANALYSIS OF LOW POWER FULL ADDER CELLS USING 45NM CMOS TECHNOLOGY

PERFORMANCE ANALYSIS OF LOW POWER FULL ADDER CELLS USING 45NM CMOS TECHNOLOGY International Journal of Microelectronics Engineering (IJME), Vol. 1, No.1, 215 PERFORMANCE ANALYSIS OF LOW POWER FULL ADDER CELLS USING 45NM CMOS TECHNOLOGY K.Dhanunjaya 1, Dr.MN.Giri Prasad 2, Dr.K.Padmaraju

More information

Design and Implementation of an Efficient Vedic Multiplier for High Performance and Low Power Applications

Design and Implementation of an Efficient Vedic Multiplier for High Performance and Low Power Applications Design and Implementation of an Efficient Vedic Multiplier for High Performance and Low Power Applications Assistant Professor Electrical Engineering Department School of science and engineering Navrachana

More information

Design and Analysis of CMOS Based DADDA Multiplier

Design and Analysis of CMOS Based DADDA Multiplier www..org Design and Analysis of CMOS Based DADDA Multiplier 12 P. Samundiswary 1, K. Anitha 2 1 Department of Electronics Engineering, Pondicherry University, Puducherry, India 2 Department of Electronics

More information

PERFORMANCE COMPARISION OF CONVENTIONAL MULTIPLIER WITH VEDIC MULTIPLIER USING ISE SIMULATOR

PERFORMANCE COMPARISION OF CONVENTIONAL MULTIPLIER WITH VEDIC MULTIPLIER USING ISE SIMULATOR International Journal of Engineering and Manufacturing Science. ISSN 2249-3115 Volume 8, Number 1 (2018) pp. 95-103 Research India Publications http://www.ripublication.com PERFORMANCE COMPARISION OF CONVENTIONAL

More information

Design of Low Power High Speed Adders in McCMOS Technique

Design of Low Power High Speed Adders in McCMOS Technique Design of Low High Speed Adders in McCMOS Technique Shikha Sharma 1, Rajesh Bathija 2, RS. Meena 3, Akanksha Goswami 4 P.G. Student, Department of EC Engineering, Geetanjali Institute of Technical Studies,

More information

Keywords Multiplier, Vedic multiplier, Vedic Mathematics, Urdhava Triyagbhyam.

Keywords Multiplier, Vedic multiplier, Vedic Mathematics, Urdhava Triyagbhyam. Volume 4, Issue 11, November 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Design and

More information

Design of Arithmetic Unit for High Speed Performance Using Vedic Mathematics Rahul Nimje, Sharda Mungale

Design of Arithmetic Unit for High Speed Performance Using Vedic Mathematics Rahul Nimje, Sharda Mungale RESEARCH ARTICLE OPEN ACCESS Design of Arithmetic Unit for High Speed Performance Using Vedic Mathematics Rahul Nimje, Sharda Mungale Department of Electronics Engineering Priyadarshini College of Engineering

More information

Performance Comparison of Multipliers for Power-Speed Trade-off in VLSI Design

Performance Comparison of Multipliers for Power-Speed Trade-off in VLSI Design Performance Comparison of Multipliers for Power-Speed Trade-off in VLSI Design Sumit R. Vaidya Department of Electronic and Telecommunication Engineering OM College of Engineering Wardha, Maharashtra,

More information

Low Power Design for Systems on a Chip. Tutorial Outline

Low Power Design for Systems on a Chip. Tutorial Outline Low Power Design for Systems on a Chip Mary Jane Irwin Dept of CSE Penn State University (www.cse.psu.edu/~mji) Low Power Design for SoCs ASIC Tutorial Intro.1 Tutorial Outline Introduction and motivation

More information

Figure.1. Schematic of 4-bit CLA JCHPS Special Issue 9: June Page 101

Figure.1. Schematic of 4-bit CLA JCHPS Special Issue 9: June Page 101 Delay Depreciation and Power efficient Carry Look Ahead Adder using CMOS T. Archana*, K. Arunkumar, A. Hema Malini Department of Electronics and Communication Engineering, Saveetha Engineering College,

More information

FPGA Implementation of Wallace Tree Multiplier using CSLA / CLA

FPGA Implementation of Wallace Tree Multiplier using CSLA / CLA FPGA Implementation of Wallace Tree Multiplier using CSLA / CLA Shruti Dixit 1, Praveen Kumar Pandey 2 1 Suresh Gyan Vihar University, Mahaljagtapura, Jaipur, Rajasthan, India 2 Suresh Gyan Vihar University,

More information

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Research Journal of Pharmaceutical, Biological and Chemical Sciences Research Journal of Pharmaceutical, Biological and Chemical Sciences Optimizing Area of Vedic Multiplier using Brent-Kung Adder. V Anand, and V Vijayakumar*. Department of Electronics and Communication

More information

Study and Analysis of CMOS Carry Look Ahead Adder with Leakage Power Reduction Approaches

Study and Analysis of CMOS Carry Look Ahead Adder with Leakage Power Reduction Approaches Indian Journal of Science and Technology, Vol 9(17), DOI: 10.17485/ijst/2016/v9i17/93111, May 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Study and Analysis of CMOS Carry Look Ahead Adder with

More information

Novel Low-Overhead Operand Isolation Techniques for Low-Power Datapath Synthesis

Novel Low-Overhead Operand Isolation Techniques for Low-Power Datapath Synthesis Novel Low-Overhead Operand Isolation Techniques for Low-Power Datapath Synthesis N. Banerjee, A. Raychowdhury, S. Bhunia, H. Mahmoodi, and K. Roy School of Electrical and Computer Engineering, Purdue University,

More information

Pardeep Kumar, Susmita Mishra, Amrita Singh

Pardeep Kumar, Susmita Mishra, Amrita Singh Study of Existing Full Adders and To Design a LPFA (Low Power Full Adder) Pardeep Kumar, Susmita Mishra, Amrita Singh 1 Department of ECE, B.M.S.E.C, Muktsar, 2,3 Asstt. Professor, B.M.S.E.C, Muktsar Abstract

More information

Energy Efficient Full-adder using GDI Technique

Energy Efficient Full-adder using GDI Technique Energy Efficient Full-adder using GDI Technique Balakrishna.Batta¹, Manohar.Choragudi², Mahesh Varma.D³ ¹P.G Student, Kakinada Institute of Engineering and technology, korangi, JNTUK, A.P, INDIA ²Assistant

More information

EXPLORATION ON POWER DELAY PRODUCT OF VARIOUS VLSI MULTIPLIER ARCHITECTURES

EXPLORATION ON POWER DELAY PRODUCT OF VARIOUS VLSI MULTIPLIER ARCHITECTURES International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 1, January 2018, pp. 53 59, Article ID: IJMET_09_01_006 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=1

More information

Area and Power Efficient Pass Transistor Based (PTL) Full Adder Design

Area and Power Efficient Pass Transistor Based (PTL) Full Adder Design This work by IJARBEST is licensed under Creative Commons Attribution 4.0 International License. Available at https://www.ijarbest.com Area and Power Efficient Pass Transistor Based (PTL) Full Adder Design

More information

Implementation of dual stack technique for reducing leakage and dynamic power

Implementation of dual stack technique for reducing leakage and dynamic power Implementation of dual stack technique for reducing leakage and dynamic power Citation: Swarna, KSV, Raju Y, David Solomon and S, Prasanna 2014, Implementation of dual stack technique for reducing leakage

More information

PERFORMANCE ANALYSIS ON VARIOUS LOW POWER CMOS DIGITAL DESIGN TECHNIQUES

PERFORMANCE ANALYSIS ON VARIOUS LOW POWER CMOS DIGITAL DESIGN TECHNIQUES PERFORMANCE ANALYSIS ON VARIOUS LOW POWER CMOS DIGITAL DESIGN TECHNIQUES R. C Ismail, S. A. Z Murad and M. N. M Isa School of Microelectronic Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia

More information

RCA - CSA Adder Based Vedic Multiplier

RCA - CSA Adder Based Vedic Multiplier RCA - CSA Adder Based Vedic Multiplier D Khalandar Basha 1 *, P Prakash 1 **, D M K Chaitanya 2 and K Aruna Manjusha 3 Department of Electronics and Communication Engineering, 1 Institute of Aeronautical

More information

A Survey of the Low Power Design Techniques at the Circuit Level

A Survey of the Low Power Design Techniques at the Circuit Level A Survey of the Low Power Design Techniques at the Circuit Level Hari Krishna B Assistant Professor, Department of Electronics and Communication Engineering, Vagdevi Engineering College, Warangal, India

More information

IMPLEMENTATION OF POWER GATING TECHNIQUE IN CMOS FULL ADDER CELL TO REDUCE LEAKAGE POWER AND GROUND BOUNCE NOISE FOR MOBILE APPLICATION

IMPLEMENTATION OF POWER GATING TECHNIQUE IN CMOS FULL ADDER CELL TO REDUCE LEAKAGE POWER AND GROUND BOUNCE NOISE FOR MOBILE APPLICATION International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN 2249-684X Vol.2, Issue 3 Sep 2012 97-108 TJPRC Pvt. Ltd., IMPLEMENTATION OF POWER

More information