HOM Couplers at DESY Jacek Sekutowicz** 2000 Hamburg 52, West-Germany

Size: px
Start display at page:

Download "HOM Couplers at DESY Jacek Sekutowicz** 2000 Hamburg 52, West-Germany"

Transcription

1 ntroduction HOM Couplers at DESY Jacek Sekutowicz** DESY, MHF, NotkestraBe Hamburg 52, West-Germany UiMEL computation and beadpull measurements showed that a 4-cell, 500 MHz HERA cavity has five parasitic mode families with high R/Q which must be damped by HOM couplers. To reduce induced power in cavity,qext of these resonances should be low due to the fact that maximum design current of the HEM electron ring is b = 58 ma. During the last two years couplers based on two inductive stubs were developed and tested in SC version. The two stubs construction of HUM couplers was chosen as a relatively simple cryogenic solution for the cooling of all inner components of the coupler. n November 1987 a test of the complete accelerating modul consisting of two 4- cell cavities, two fundamental mode couplers and six HOM couplers will be carried out. Each 4-cell cavity is equipped with a set of three HOM couplers: one mainly for reducing Q of TMoii family (coupler TM) and two for loading the most dangerous dipole modes and TMoi2 family (couplers ''Ej. Table 1 presents a list of higher order modes with high R/Q and &xt as measured for copper model of 3 HOM couplers attached to a 4-cell cavity: TMo i i TMi l i jtm * For dipole modes R/Q is computed and measured 5 cm out of beam axis. ** on leave of absence from NS, Otwock-Swierk, Poland

2 More detailed information about the measured data of the copper model is presented in (2). Two Stub HOM Couulers t can be seen from Table 1 that most dangerous modes have resonant frequencies below 1.5 GHz. That is why a coaxiel line technique was chosen as more useful compared to waveguide technique for coupler design. nteraction between cavity and electric antenna coupler can be analyzed with the help of the lumped element circuit of fig. 1 (1,s). 1 ) ;cc ; CCz C' Transforming par+ cavity a b- load. antenna Fig. 1 Lumped elements representation of the interaction between cavity and electric antenna coupler. Here the elements b, Lo, CO represent a resonator. The coupling condenser Cc corresponds to the part of the electric field lines terminated at the antenna tip. CS is the stray capacitor of the coaxial line in the region of the antenna tip. Both Cc and CS represent the electric antenna. The transforming part of the coupler is a microwave circuit, the function of which will be discussed below. The elements Ro, Lo, CO, Cc in general are different for different modes. To reduce Q one ought to shunt the parallel resonator RoLoCo with a low resistor in the plane a-a. This is required for all resonance modes except for the fundamental-for each HOM resonance, low resistance in the plane a-a can be obtained by proper transformation of the load resistor 3 towards the cavity in a way that the imaginary part of the impedance in the plane b-b compensates reactance of both capacitors, equal:-j/w((+c ). The coupling condenser Cc << CS, then as the first order 5 c approximation we assume that the imaginary part Zitb of the impedance in the plane b-b should be j/oc S instead of j/w(~,+~c).

3 For the fixed geometry of the antenna tip an "ideal" transforming part ought to realize compensation in the whole range of HOM frequencies, as shown in fig. 2 by solid line: Fig. 2 " " reactance ----" reactance realized by two stub coupler type TE ' -X-X" reactance realized by two stub coupler type TM Since Z ibb is positive, it has character of an inductance, the reactance of which is proportional t03/~. This is just opposite to the normal behaviour of an inductor (impedance ).Two stub transforming part of couplers TE and TM are designed to approximate the curve of Fig. 2 in the region TEiii, TMoii and TMoiz families by the coupler TE and in the region of TMoii passband by the coupler TM. Fig. 3 a, b show the transforming part of the HOM coupler based on two inductive stubs and its microwave replacement circuit. inductive stubs inner <outer conductor Fig. 3 a) Two stub transforming part b) Replacement circuit of two stub transforming part

4 The microwave function of both inductances which are separated uy a piece of coaxial line, is as showri on the Smith chart below: Fig. 4 1 ) ''ransiormatic~n for i~ 2) Transformaticln Tor f2 For two frequencies fi < f2 one can choose a vaiue of the irlductance L2 and distance d so that the impedance ZA, belng the result of the transformation (1) 1 L2 to the plane of L1, is high ana (6 ~ ~ + 4 ' ~ ) w,lq ' & For higher krequency fz transformation gives small impedance Zs (as shown in fig. 4 and then(d/u2~,+.?~b)-~~e<u)+~4 The complete replacement circuit, including fundamental mode filter and output system is shown in Big. 5.

5 CL L1 CL L2 CL FMF CL OS CL Fig. 5 Lumped element representation of HOM coupler CL - coaxial line FMF - fundamental mode filter CS,CS ' - stray capacitors OS - output system The frequency broadband characteristic behaviour of the couplers was computed with help of the computer program written especially for synthesis of coupler components. Computed transfer curves were checked for each succeeding coupler version by two types of broadband characteristic measurement: with the coupler mounted onto a piece of beam tube with damping material inside and with the couplers mounted onto 50 Ohm coaxial line. The second measurements were used as a calibration of the transfer curves obtained with the first measurements to get a relation between dissipated power in coupler load R and electric field at the antenna tip for each HOM frequency. The electric field in a cavity can be computed with a code like URMEL. Having an electric field at the coupler position one can rescale the power dissipated in the load and then find Qext. This method was used for monopole modes and several initial couplers before the copper model of 1- and 4-cell cavity was done. Qext values differed by less than an order of magnitude from the values measured directly afterwards on 1- and 4-cell cavities. Picture 1 shows the coaxial line employed for these measurements and the set of subelements used for construction of coupler models. An example of computed and measured transfer curves of the coupler TE is performed in Fig. 6.

6 Pic. 1 Coaxial line employed for broadband characteristic measurements and subelements used for coupler models. Fig. 6 Transfer curve of coupler TE a - measured curve b - computed curve

7 Cold Test Results The SC version of both kinds of couplers is shown in Pic. 2. Pit. 2: Coupler TE (left), coupler TM (right) The construction of HOM couplers allows correction of machining errors after couplers are welded to the cavity. Damping of HOM is optimized with output coupling condenser C2 apd end stray condenser CS' (Fig. 5). The power of the fundamental mode dissipated in the load of a coupler is minimized by tuning of condenser C1 which is part of the fundamental mode filter. Eight HOM couplers ( 3 TM and 5 TE) were tested in SC version, two with l-cell cavity and six with 4-cell cavities (6,7). Damping of all HOM was as for the copper models (Table 1). Qext of fundamental mode was in the worst case 1.2 X t means that with Eacc = 5 MV/m fundamental mode dissipated power was 6.7 W.

8 Acknowlednements want to thank my colegues E. Haebel from CERN, B. Dwersteg and D. Proch from DESY for the fruitful collaboration during studying and developing this type of HOM couplers. References ) R.N. GHOSE, Microwave Circuit Theory and Analysis 2j E. HAEBEL, J. SEKUTOWCZ, Higher Order Mode Coupler Studies At DESY, DESY M ) D. PROCH, private communications 4 ) H. UWERSTEG, private comrnunications 5) E. HAEBEL, P. MARCHAND, B. TUECKMANTEL, Proc. of Second Workshop on RF Superconductivity, Geneva ) Lab. note, DESY/MHF-SL-1/87 '7) Lab. note, besy/mhf-sl, to be published

COUPLER DEVELOPMENTS AT CERN

COUPLER DEVELOPMENTS AT CERN COUPLER DEVELOPMENTS AT CERN G. Cavallari. E. Chiaveri, E. Haebel. Ph. ~egendre(*) and W. Weingarten CERN, Geneva, Switzerland 1. SOME RECENT HISTORY Since the second workshop on RF superconductivity three

More information

TESLA RF POWER COUPLERS DEVELOPMENT AT DESY.

TESLA RF POWER COUPLERS DEVELOPMENT AT DESY. TESLA RF POWER COUPLERS DEVELOPMENT AT DESY. Dwersteg B., Kostin D., Lalayan M., Martens C., Möller W.-D., DESY, D-22603 Hamburg, Germany. Abstract Different RF power couplers for the TESLA Test Facility

More information

HOM/LOM Coupler Study for the ILC Crab Cavity*

HOM/LOM Coupler Study for the ILC Crab Cavity* SLAC-PUB-1249 April 27 HOM/LOM Coupler Study for the ILC Crab Cavity* L. Xiao, Z. Li, K. Ko, SLAC, Menlo Park, CA9425, U.S.A Abstract The FNAL 9-cell 3.9GHz deflecting mode cavity designed for the CKM

More information

COUPLER DESIGN CONSIDERATIONS FOR THE ILC CRAB CAVITY

COUPLER DESIGN CONSIDERATIONS FOR THE ILC CRAB CAVITY COUPLER DESIGN CONSIDERATIONS FOR THE ILC CRAB CAVITY C. Beard 1), G. Burt 2), A. C. Dexter 2), P. Goudket 1), P. A. McIntosh 1), E. Wooldridge 1) 1) ASTeC, Daresbury laboratory, Warrington, Cheshire,

More information

BEM TUBE COUPLERS FOR THE SUPERCONDUCTING LEP CAVITY. E. Haebel CEW, Geneva, Switzerland

BEM TUBE COUPLERS FOR THE SUPERCONDUCTING LEP CAVITY. E. Haebel CEW, Geneva, Switzerland Proceedings of SRF Workshop 1984, Geneva, Switzerland SRF84-19 BEM TUBE COUPLERS FOR THE SUPERCONDUCTING LEP CAVITY E. Haebel CEW, Geneva, Switzerland 1. INTRODUCTION The discussions of this session focus

More information

3.9 GHz work at Fermilab

3.9 GHz work at Fermilab 3.9 GHz work at Fermilab + CKM 13-cell cavity Engineering and designing W.-D. Moeller Desy, MHF-sl Protocol of the meeting about 3 rd harmonic cavities during the TESLA collaboration meeting at DESY on

More information

Experience with 3.9 GHz cavity HOM couplers

Experience with 3.9 GHz cavity HOM couplers Cornell University, October 11-13, 2010 Experience with 3.9 GHz cavity HOM couplers T. Khabiboulline, N. Solyak, FNAL. 3.9 GHz cavity general parameters Third harmonic cavity (3.9GHz) was proposed to compensate

More information

Proceedings of the Fifth Workshop on RF Superconductivity, DESY, Hamburg, Germany. E. Haebel. A. Mosnier. Centre dbtudes de Saclay, France

Proceedings of the Fifth Workshop on RF Superconductivity, DESY, Hamburg, Germany. E. Haebel. A. Mosnier. Centre dbtudes de Saclay, France Large or Small Iris Aperture in SC multicell cavities? E. Haebel CERN, Geneva, Switzerland A. Mosnier Centre dbtudes de Saclay, France 1. Introduction As the cost of the superconducting linear accelerator,

More information

LEP Couplers..a Troubled Story of a Success. HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 1

LEP Couplers..a Troubled Story of a Success. HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 1 LEP Couplers..a Troubled Story of a Success HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 1 1 Overview & development: specifications, problems, solutions Operation: field equalization, trip

More information

HIGH POWER COUPLER FOR THE TESLA TEST FACILITY

HIGH POWER COUPLER FOR THE TESLA TEST FACILITY Abstract HIGH POWER COUPLER FOR THE TESLA TEST FACILITY W.-D. Moeller * for the TESLA Collaboration, Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany The TeV Energy Superconducting Linear

More information

Main Injector Cavity Simulation and Optimization for Project X

Main Injector Cavity Simulation and Optimization for Project X Main Injector Cavity Simulation and Optimization for Project X Liling Xiao Advanced Computations Group Beam Physics Department Accelerator Research Division Status Meeting, April 7, 2011 Outline Background

More information

Superstructures; First Cold Test and Future Applications

Superstructures; First Cold Test and Future Applications Superstructures; First Cold Test and Future Applications DESY: C. Albrecht, V. Ayvazyan, R. Bandelmann, T. Büttner, P. Castro, S. Choroba, J. Eschke, B. Faatz, A. Gössel, K. Honkavaara, B. Horst, J. Iversen,

More information

Coupler Electromagnetic Design

Coupler Electromagnetic Design Coupler Electromagnetic Design HPC Workshop, TJNAF October 30 November 1, 2002 Yoon Kang Spallation Neutron Source Oak Ridge National Laboratory Contents Fundamental Power Coupler Design Consideration

More information

RF power tests of LEP2 main couplers on a single cell superconducting cavity

RF power tests of LEP2 main couplers on a single cell superconducting cavity RF power tests of LEP2 main couplers on a single cell superconducting cavity H.P. Kindermann, M. Stirbet* CERN, CH-1211 Geneva 23, Switzerland Abstract To determine the power capability of the input couplers

More information

The HOM measurement of a TESLA cavity (Z84) for HOM-BPM and cavity alignment

The HOM measurement of a TESLA cavity (Z84) for HOM-BPM and cavity alignment The HOM measurement of a TESLA cavity (Z84) for HOM-BPM and cavity alignment Ken.Watanabe:GUAS/AS (KEK) : presenter Hitoshi.Hayano, Shuichi.Noguchi, Eiji.Kako, Toshio.Shishido (KEK) Joint DESY and University

More information

Fundamental mode rejection in SOLEIL dipole HOM couplers

Fundamental mode rejection in SOLEIL dipole HOM couplers Fundamental mode rejection in SOLEIL dipole HOM couplers G. Devanz, DSM/DAPNIA/SACM, CEA/Saclay, 91191 Gif-sur-Yvette 14th June 2004 1 Introduction The SOLEIL superconducting accelerating cavity is a heavily

More information

DQW HOM Coupler for LHC

DQW HOM Coupler for LHC DQW HOM Coupler for LHC J. A. Mitchell 1, 2 1 Engineering Department Lancaster University 2 BE-RF-BR Section CERN 03/07/2017 J. A. Mitchell (PhD Student) HL LHC UK Jul 17 03/07/2017 1 / 27 Outline 1 LHC

More information

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH INVESTIGATION OF A RIDGE-LOADED WAVEGUIDE STRUCTURE FOR CLIC X-BAND CRAB CAVITY

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH INVESTIGATION OF A RIDGE-LOADED WAVEGUIDE STRUCTURE FOR CLIC X-BAND CRAB CAVITY CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CLIC Note 1003 INVESTIGATION OF A RIDGE-LOADED WAVEGUIDE STRUCTURE FOR CLIC X-BAND CRAB CAVITY V.F. Khan, R. Calaga and A. Grudiev CERN, Geneva, Switzerland.

More information

High Power Couplers for TTF - FEL

High Power Couplers for TTF - FEL High Power Couplers for TTF - FEL 1. Requirements for High Power Couplers on superconducting Cavities 2. Characteristics of pulsed couplers 3. Standing wave pattern in the coaxial coupler line 4. Advantages

More information

Third Harmonic Superconducting passive cavities in ELETTRA and SLS

Third Harmonic Superconducting passive cavities in ELETTRA and SLS RF superconductivity application to synchrotron radiation light sources Third Harmonic Superconducting passive cavities in ELETTRA and SLS 2 cryomodules (one per machine) with 2 Nb/Cu cavities at 1.5 GHz

More information

CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA

CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA 5.1 INTRODUCTION This chapter deals with the design of L-band printed dipole antenna (operating frequency of 1060 MHz). A study is carried out to obtain 40 % impedance

More information

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES S. Belomestnykh HPC workshop JLAB, 30 October 2002 Introduction Many aspects of the high-power coupler design, fabrication, preparation, conditioning, integration

More information

COAXIAL HIGHER-ORDER MODE DAMPER EMPLOYING A HIGH-PASS FILTER

COAXIAL HIGHER-ORDER MODE DAMPER EMPLOYING A HIGH-PASS FILTER .\ COAXAL HGHER-ORDER MODE DAMPER EMPLOYNG A HGH-PASS FLTER e Y. W. Kang and X. Jiang Advanced Photon Source, Argonne National Laboratory 9700 South Cass Avenue, Argonne, llinois 60439 USA A bstracr Two

More information

Detailed Design Report

Detailed Design Report Detailed Design Report Chapter 2 MAX IV 3 GeV Storage Ring 2.6. The Radio Frequency System MAX IV Facility CHAPTER 2.6. THE RADIO FREQUENCY SYSTEM 1(15) 2.6. The Radio Frequency System 2.6. The Radio Frequency

More information

Third Harmonic Cavity Status

Third Harmonic Cavity Status Third Harmonic Cavity Status General parameters Cavity design Main coupler calculation HOM analysis and HOM coupler design Lorentz Forces and Stress analysis Summary General parameters Third harmonic cavity

More information

Antenna? What s That? Chet Thayer WA3I

Antenna? What s That? Chet Thayer WA3I Antenna? What s That? Chet Thayer WA3I Space: The Final Frontier Empty Space (-Time) Four dimensional region that holds everything Is Permeable : It requires energy to set up a magnetic field within it.

More information

2 Theory of electromagnetic waves in waveguides and of waveguide components

2 Theory of electromagnetic waves in waveguides and of waveguide components RF transport Stefan Choroba DESY, Hamburg, Germany Abstract This paper deals with the techniques of transport of high-power radiofrequency (RF) power from a RF power source to the cavities of an accelerator.

More information

Current Industrial SRF Capabilities and Future Plans

Current Industrial SRF Capabilities and Future Plans and Future Plans Capabilities in view of Design Engineering Manufacturing Preparation Testing Assembly Taking into operation Future Plans Participate in and contribute to development issues, provide prototypes

More information

Evaluation of HOM Coupler Probe Heating by HFSS Simulation

Evaluation of HOM Coupler Probe Heating by HFSS Simulation G. Wu, H. Wang, R. A. Rimmer, C. E. Reece Abstract: Three different tip geometries in a HOM coupler on a CEBAF Upgrade Low Loss cavity have been evaluated by HFSS simulation to understand the tip surface

More information

Microwave and RF Engineering

Microwave and RF Engineering Microwave and RF Engineering Volume 1 An Electronic Design Automation Approach Ali A. Behagi and Stephen D. Turner BT Microwave LLC State College, PA 16803 Copyrighted Material Microwave and RF Engineering

More information

Amateur Extra Manual Chapter 9.4 Transmission Lines

Amateur Extra Manual Chapter 9.4 Transmission Lines 9.4 TRANSMISSION LINES (page 9-31) WAVELENGTH IN A FEED LINE (page 9-31) VELOCITY OF PROPAGATION (page 9-32) Speed of Wave in a Transmission Line VF = Velocity Factor = Speed of Light in a Vacuum Question

More information

THE MULTIPACTING STUDY OF NIOBIUM SPUTTERED HIGH-BETA QUARTER-WAVE RESONATORS FOR HIE-ISOLDE

THE MULTIPACTING STUDY OF NIOBIUM SPUTTERED HIGH-BETA QUARTER-WAVE RESONATORS FOR HIE-ISOLDE THE MULTIPACTING STUDY OF NIOBIUM SPUTTERED HIGH-BETA QUARTER-WAVE RESONATORS FOR HIE-ISOLDE P. Zhang and W. Venturini Delsolaro CERN, Geneva, Switzerland Abstract Superconducting Quarter-Wave Resonators

More information

A few results [2,3] obtained with the individual cavities inside their horizontal cryostats are summarized in Table I and a typical Q o

A few results [2,3] obtained with the individual cavities inside their horizontal cryostats are summarized in Table I and a typical Q o Particle Accelerators, 1990, Vol. 29, pp. 47-52 Reprints available directly from the publisher Photocopying permitted by license only 1990 Gordon and Breach, Science Publishers, Inc. Printed in the United

More information

Preparation of RF Power Couplers For the Tesla Test Facility

Preparation of RF Power Couplers For the Tesla Test Facility Preparation of RF Power Couplers For the Tesla Test Facility Axel Matheisen 1 **Feng Zhu 2 *** for the TESLA collaboration* 1 ) Deutsches Elektronen-Synchrotron DESY Notkestraße 85, D 22607 Hamburg, Germany

More information

Test of two Nb superstructure prototypes

Test of two Nb superstructure prototypes SLAC-PUB-1413 Test of two Nb superstructure prototypes J. Sekutowicz, P. Castro, A. Gössel, G. Kreps, R. Lange, A. Matheisen, W.-D. Möller, H.-B. Peters, D. Proch, H. Schlarb, S. Schreiber, S. Simrock,

More information

O. Napoly LC02, SLAC, Feb. 5, Higher Order Modes Measurements

O. Napoly LC02, SLAC, Feb. 5, Higher Order Modes Measurements O. Napoly LC02, SLAC, Feb. 5, 2002 Higher Order Modes Measurements with Beam at the TTF Linac TTF Measurements A collective effort including most of Saclay, Orsay and DESY TTF physicists : S. Fartoukh,

More information

CST MWS simulation of the SARAF RFQ 1.5 MeV/nucleon proton/deuteron accelerator

CST MWS simulation of the SARAF RFQ 1.5 MeV/nucleon proton/deuteron accelerator CST MWS simulation of the SARAF RFQ 1.5 MeV/nucleon proton/deuteron accelerator Jacob Rodnizki SARAF Soreq NRC APril 19-21 th, 2010 Outline 1. SARAF accelerator 2. Presentation of the four rods RFQ 3.

More information

Lecture 4. Maximum Transfer of Power. The Purpose of Matching. Lecture 4 RF Amplifier Design. Johan Wernehag Electrical and Information Technology

Lecture 4. Maximum Transfer of Power. The Purpose of Matching. Lecture 4 RF Amplifier Design. Johan Wernehag Electrical and Information Technology Johan Wernehag, EIT Lecture 4 RF Amplifier Design Johan Wernehag Electrical and Information Technology Design of Matching Networks Various Purposes of Matching Voltage-, Current- and Power Matching Design

More information

Design and RF Measurements of an X-band Accelerating Structure for the Sparc Project

Design and RF Measurements of an X-band Accelerating Structure for the Sparc Project Design and RF Measurements of an X-band Accelerating Structure for the Sparc Project INFN-LNF ; UNIVERSITY OF ROME LA SAPIENZA ; INFN - MI Presented by BRUNO SPATARO Erice, Sicily, October 9-14; 2005 SALAF

More information

SUPERCONDUCTING RF CAVITY ON THE BASE OF NB/CU FOR THE ACCELERATOR SVAAP

SUPERCONDUCTING RF CAVITY ON THE BASE OF NB/CU FOR THE ACCELERATOR SVAAP SUPERCONDUCTING RF CAVITY ON THE BASE OF NB/CU FOR THE ACCELERATOR SVAAP D. Philipov, L.M.Sevryukova, I.A.Zvonarev, Federal Problem Lab for Technology and Study of the SC Cavities of the Ministry of Russian

More information

Antenna Matching Within an Enclosure Part II: Practical Techniques and Guidelines

Antenna Matching Within an Enclosure Part II: Practical Techniques and Guidelines Antenna Matching Within an Enclosure Part II: Practical Techniques and Guidelines By Johnny Lienau, RF Engineer June 2012 Antenna selection and placement can be a difficult task, and the challenges of

More information

Advance on High Power Couplers for SC Accelerators

Advance on High Power Couplers for SC Accelerators Advance on High Power Couplers for SC Accelerators Eiji Kako (KEK, Japan) IAS conference at Hong Kong for High Energy Physics, 2017, January 23th Eiji KAKO (KEK, Japan) IAS at Hong Kong, 2017 Jan. 23 1

More information

Microwave Metrology -ECE 684 Spring Lab Exercise T: TRL Calibration and Probe-Based Measurement

Microwave Metrology -ECE 684 Spring Lab Exercise T: TRL Calibration and Probe-Based Measurement ab Exercise T: TR Calibration and Probe-Based Measurement In this project, you will measure the full phase and magnitude S parameters of several surface mounted components. You will then develop circuit

More information

Recent Progress in HOM Damping from Around The World

Recent Progress in HOM Damping from Around The World Recent Progress in HOM Damping from Around The World - News from the 2010 HOM Workshop at CORNELL - Matthias Liepe Cornell University Slide 1 Recent Progress in HOM Damping from Around The World Outline

More information

RF Design of Normal Conducting Deflecting Cavity

RF Design of Normal Conducting Deflecting Cavity RF Design of Normal Conducting Deflecting Cavity Valery Dolgashev (SLAC), Geoff Waldschmidt, Ali Nassiri (Argonne National Laboratory, Advanced Photon Source) 48th ICFA Advanced Beam Dynamics Workshop

More information

A WAVEGUIDE OVERLOADED CAVITY AS LONGITUDINAL KICKER FOR THE DAΦNE BUNCH-BY-BUNCH FEEDBACK SYSTEM

A WAVEGUIDE OVERLOADED CAVITY AS LONGITUDINAL KICKER FOR THE DAΦNE BUNCH-BY-BUNCH FEEDBACK SYSTEM International Workshop on Collective Effects and Impedance for B-Factories, Tsukuba, Japan, June 1995 A WAVEGUIDE OVERLOADED CAVITY AS LONGITUDINAL KICKER FOR THE DAΦNE BUNCH-BY-BUNCH FEEDBACK SYSTEM A.

More information

RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS

RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS J. Teichert, A. Büchner, H. Büttig, F. Gabriel, P. Michel, K. Möller, U. Lehnert, Ch. Schneider, J. Stephan, A.

More information

Proceedings of the Fourth Workshop on RF Superconductivity, KEK, Tsukuba, Japan

Proceedings of the Fourth Workshop on RF Superconductivity, KEK, Tsukuba, Japan ACTVTES ON RF SUPERCONDUCTVTY N FRASCAT, GENOVA, MLAN0 LABORATORES R. Boni, A. Cattoni, A. Gallo, U. Gambardella, D. Di Gioacchino, G. Modestino, C. Pagani*, R. Parodi**, L. Serafini*, B. Spataro, F. Tazzioli,

More information

Γ L = Γ S =

Γ L = Γ S = TOPIC: Microwave Circuits Q.1 Determine the S parameters of two port network consisting of a series resistance R terminated at its input and output ports by the characteristic impedance Zo. Q.2 Input matching

More information

STATUS OF THE ILC CRAB CAVITY DEVELOPMENT

STATUS OF THE ILC CRAB CAVITY DEVELOPMENT STATUS OF THE ILC CRAB CAVITY DEVELOPMENT SLAC-PUB-4645 G. Burt, A. Dexter, Cockcroft Institute, Lancaster University, LA 4YR, UK C. Beard, P. Goudket, P. McIntosh, ASTeC, STFC, Daresbury laboratories,

More information

SUPERCONDUCTING PROTOTYPE CAVITIES FOR THE SPALLATION NEUTRON SOURCE (SNS) PROJECT *

SUPERCONDUCTING PROTOTYPE CAVITIES FOR THE SPALLATION NEUTRON SOURCE (SNS) PROJECT * SUPERCONDUCTING PROTOTYPE CAVITIES FOR THE SPALLATION NEUTRON SOURCE (SNS) PROJECT * G. Ciovati, P. Kneisel, J. Brawley, R. Bundy, I. Campisi, K. Davis, K. Macha, D. Machie, J. Mammosser, S. Morgan, R.

More information

RF AND MICROWAVE ENGINEERING

RF AND MICROWAVE ENGINEERING RF AND MICROWAVE ENGINEERING FUNDAMENTALS OF WIRELESS COMMUNICATIONS Frank Gustrau Dortmund University of Applied Sciences and Arts, Germany WILEY A John Wiley & Sons, Ltd., Publication Preface List of

More information

FAST RF KICKER DESIGN

FAST RF KICKER DESIGN FAST RF KICKER DESIGN David Alesini LNF-INFN, Frascati, Rome, Italy ICFA Mini-Workshop on Deflecting/Crabbing Cavity Applications in Accelerators, Shanghai, April 23-25, 2008 FAST STRIPLINE INJECTION KICKERS

More information

EC6503 Transmission Lines and WaveguidesV Semester Question Bank

EC6503 Transmission Lines and WaveguidesV Semester Question Bank UNIT I TRANSMISSION LINE THEORY A line of cascaded T sections & Transmission lines General Solution, Physicasignificance of the equations 1. Derive the two useful forms of equations for voltage and current

More information

Physics Requirements Document Document Title: SCRF 1.3 GHz Cryomodule Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7

Physics Requirements Document Document Title: SCRF 1.3 GHz Cryomodule Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7 Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7 Document Approval: Originator: Tor Raubenheimer, Physics Support Lead Date Approved Approver: Marc Ross, Cryogenic System Manager Approver: Jose Chan,

More information

HIGH POWER PULSED TESTS OF A BETA=0.5 5-CELL 704 MHZ SUPERCONDUCTING CAVITY

HIGH POWER PULSED TESTS OF A BETA=0.5 5-CELL 704 MHZ SUPERCONDUCTING CAVITY HIGH POWER PULSED TESTS OF A BETA=0.5 5-CELL 704 MHZ SUPERCONDUCTING CAVITY G. Devanz, D. Braud, M. Desmons, Y. Gasser, E. Jacques, O. Piquet, J. Plouin, J.- P. Poupeau, D. Roudier, P. Sahuquet, CEA-Saclay,

More information

CAGE CAVITY: A LOW COST, HIGH PERFORMANCE SRF ACCELERATING STRUCTURE*

CAGE CAVITY: A LOW COST, HIGH PERFORMANCE SRF ACCELERATING STRUCTURE* CAGE CAVITY: A LOW COST, HIGH PERFORMANCE SRF ACCELERATING STRUCTURE* J. Noonan, T.L. Smith, M. Virgo, G.J. Waldsmidt, Argonne National Laboratory J.W. Lewellen, Los Alamos National Laboratory Abstract

More information

Exercises for the Antenna Matching Course

Exercises for the Antenna Matching Course Exercises for the Antenna Matching Course Lee Vishloff, PEng, IEEE WCP C-160302-1 RELEASE 1 Notifications 2016 Services, Inc. All rights reserved. The and Services Inc. stylized text belongs to tech-knows

More information

ECEN 5014, Spring 2009 Special Topics: Active Microwave Circuits Zoya Popovic, University of Colorado, Boulder

ECEN 5014, Spring 2009 Special Topics: Active Microwave Circuits Zoya Popovic, University of Colorado, Boulder ECEN 5014, Spring 2009 Special Topics: Active Microwave Circuits Zoya opovic, University of Colorado, Boulder LECTURE 3 MICROWAVE AMLIFIERS: INTRODUCTION L3.1. TRANSISTORS AS BILATERAL MULTIORTS Transistor

More information

A 3 GHz SRF reduced-β Cavity for the S-DALINAC

A 3 GHz SRF reduced-β Cavity for the S-DALINAC A 3 GHz SRF reduced-β Cavity for the S-DALINAC D. Bazyl*, W.F.O. Müller, H. De Gersem Gefördert durch die DFG im Rahmen des GRK 2128 20.11.2018 M.Sc. Dmitry Bazyl TU Darmstadt TEMF Upgrade of the Capture

More information

VELAMMAL ENGINEERING COLLEGE, CHENNAI-66 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

VELAMMAL ENGINEERING COLLEGE, CHENNAI-66 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING VELAMMAL ENGINEERING COLLEGE, CHENNAI-66 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING TUTORIAL SHEET- 1, 2, 3, 4 & 5 UNIT 1 TRANSMISSION LINE THEORY 1. A transmission line has a characteristic

More information

The shunt capacitor is the critical element

The shunt capacitor is the critical element Accurate Feedthrough Capacitor Measurements at High Frequencies Critical for Component Evaluation and High Current Design A shielded measurement chamber allows accurate assessment and modeling of low pass

More information

Grundlagen der Impedanzmessung

Grundlagen der Impedanzmessung Grundlagen der Impedanzmessung presented by Michael Benzinger Application Engineer - RF & MW Agenda Impedance Measurement Basics Impedance Basics Impedance Dependency Factors Impedance Measurement Methods

More information

Superconducting RF System. Heung-Sik Kang

Superconducting RF System. Heung-Sik Kang Design of PLS-II Superconducting RF System Heung-Sik Kang On behalf of PLS-II RF group Pohang Accelerator Laboratory Content 1. Introduction 2. Physics design 3. Cryomodules 4. Cryogenic system 5. High

More information

APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH

APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH STUART M. WENTWORTH Auburn University IICENTBN Nlfll 1807; WILEY 2 OO 7 ; Ttt^TlLtftiTTu CONTENTS CHAPTER1 Introduction 1 1.1 1.2 1.3 1.4 1.5

More information

Progresses on China ADS Superconducting Cavities

Progresses on China ADS Superconducting Cavities Progresses on China ADS Superconducting Cavities Peng Sha IHEP, CAS 2013/06/12 1 Outline 1. Introduction 2. Spoke012 cavity 3. Spoke021 cavity 4. Spoke040 cavity 5. 650MHz β=0.82 5-cell cavity 6. High

More information

CALCULATIONS FOR RF CAVITIES WITH DISSIPATIVE MATERIAL*

CALCULATIONS FOR RF CAVITIES WITH DISSIPATIVE MATERIAL* CALCULATIONS FOR RF CAVITIES WITH DISSIPATIVE MATERIAL* F. Marhauser # Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, U.S.A. Abstract For the design of RF devices like accelerating

More information

Superconducting Accelerating Cavity for KEK B-Factory

Superconducting Accelerating Cavity for KEK B-Factory Superconducting Accelerating Cavity for KEK B-Factory 1 ntroduction T.Furuya, K.Asano, Y.shi*, Y.Kijima*, S.Mitsunobu, T.Murai*, K.Sennyu**, T.Tajima and T.Takahashi KEK-B is an asymmetric collider of

More information

Application Note 5525

Application Note 5525 Using the Wafer Scale Packaged Detector in 2 to 6 GHz Applications Application Note 5525 Introduction The is a broadband directional coupler with integrated temperature compensated detector designed for

More information

R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations.

R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations. Question Bank DEPARTMENT OF ELECTRONICS AND COMMUNICATION SUBJECT- MICROWAVE ENGINEERING(EEC-603) Unit-III 1. What are the high frequency limitations of conventional tubes? Explain clearly. 2. Explain

More information

Range Considerations for RF Networks

Range Considerations for RF Networks TI Technology Days 2010 Range Considerations for RF Networks Richard Wallace Abstract The antenna can be one of the most daunting components of wireless designs. Most information available relates to large

More information

Cray Valley Radio Society. Real Life Wire Antennas

Cray Valley Radio Society. Real Life Wire Antennas Cray Valley Radio Society Real Life Wire Antennas 1 The basic dipole The size of an antenna is determined by the wavelength of operation In free space: ~3x10 8 m/s Frequency x Wavelength = Speed of Light,

More information

Status and Plans for the 805 MHz Box Cavity MuCool RF Workshop III 07/07/09 Al Moretti

Status and Plans for the 805 MHz Box Cavity MuCool RF Workshop III 07/07/09 Al Moretti Status and Plans for the 805 MHz Box Cavity MuCool RF Workshop III 07/07/09 Al Moretti 7/6/2009 1 Outline : Description of the Box cavity Concept. Box Cavity Summary Plans. HFSS Models of orthogonal and

More information

Microwave Devices and Circuit Design

Microwave Devices and Circuit Design Microwave Devices and Circuit Design Ganesh Prasad Srivastava Vijay Laxmi Gupta MICROWAVE DEVICES and CIRCUIT DESIGN GANESH PRASAD SRIVASTAVA Professor (Retired) Department of Electronic Science University

More information

Calibrating the Cavity Voltage. Presentation of an idea

Calibrating the Cavity Voltage. Presentation of an idea Calibrating the Cavity Voltage. Presentation of an idea Stefan Wilke, DESY MHF-e 21st ESLS rf meeting Kraków, 15th/16th nov 2017 Accelerators at DESY. linear and circular Page 2 Accelerators at DESY. linear

More information

SRF in Storage Rings. Michael Pekeler ACCEL Instruments GmbH Bergisch Gladbach Germany

SRF in Storage Rings. Michael Pekeler ACCEL Instruments GmbH Bergisch Gladbach Germany SRF in Storage Rings Michael Pekeler ACCEL Instruments GmbH 51429 Bergisch Gladbach Germany SRF in Storage Rings Michael Pekeler ACCEL Instruments GmbH 51429 Bergisch Gladbach Germany TESLA type cavity:

More information

DEVELOPMENT AND PRODUCTION OF HYBRID CIRCUITS FOR MICROWAVE RADIO LINKS

DEVELOPMENT AND PRODUCTION OF HYBRID CIRCUITS FOR MICROWAVE RADIO LINKS Electrocomponent Science and Technology 1977, Vol. 4, pp. 79-83 (C)Gordon and Breach Science Publishers Ltd., 1977 Printed in Great Britain DEVELOPMENT AND PRODUCTION OF HYBRID CIRCUITS FOR MICROWAVE RADIO

More information

QUARTER WAVE COAXIAL LINE CAVITY FOR NEW DELHI LINAC BOOSTER*

QUARTER WAVE COAXIAL LINE CAVITY FOR NEW DELHI LINAC BOOSTER* QUARTER WAVE COAXIAL LINE CAVITY FOR NEW DELHI LINAC BOOSTER* P.N. Prakash and A.Roy Nuclear Science Centre, P.O.Box 10502, New Delhi 110 067, INDIA and K.W.Shepard Physics Division, Argonne National Laboratory,

More information

Introduction to RF Measurement and Nonideal Components The Vector Network Analyzer UCSB - ECE145A/ECE218A Winter 2007

Introduction to RF Measurement and Nonideal Components The Vector Network Analyzer UCSB - ECE145A/ECE218A Winter 2007 Goals: Introduction to RF Measurement and Nonideal Components The Vector Network Analyzer UCSB - ECE145A/ECE218A Winter 2007 (a) Introduction to the vector network analyzer and measurement of S-parameters.

More information

A Design of a 3rd Harmonic Cavity for the TTF 2 Photoinjector

A Design of a 3rd Harmonic Cavity for the TTF 2 Photoinjector TESLA-FEL 2002-05 A Design of a 3rd Harmonic Cavity for the TTF 2 Photoinjector J. Sekutowicz, R. Wanzenberg DESY, Notkestr. 85, 22603 Hamburg, Germany W.F.O. Müller, T. Weiland TEMF, TU Darmstadt, Schloßgartenstr.

More information

Resonant Excitation of High Order Modes in the 3.9 GHz Cavity of LCLS-II Linac

Resonant Excitation of High Order Modes in the 3.9 GHz Cavity of LCLS-II Linac Resonant Excitation of High Order Modes in the 3.9 GHz Cavity of LCLS-II Linac LCLS-II TN-16-05 9/12/2016 A. Lunin, T. Khabiboulline, N. Solyak, A. Sukhanov, V. Yakovlev April 10, 2017 LCLSII-TN-16-06

More information

THE CRYOGENIC SYSTEM OF TESLA

THE CRYOGENIC SYSTEM OF TESLA THE CRYOGENIC SYSTEM OF TESLA S. Wolff, DESY, Notkestr. 85, 22607 Hamburg, Germany for the TESLA collaboration Abstract TESLA, a 33 km long 500 GeV centre-of-mass energy superconducting linear collider

More information

MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM CHAMBER

MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM CHAMBER Frascati Physics Series Vol. X (1998), pp. 371-378 14 th Advanced ICFA Beam Dynamics Workshop, Frascati, Oct. 20-25, 1997 MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM

More information

DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT

DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT G. Olry, J-L. Biarrotte, S. Blivet, S. Bousson, C. Commeaux, C. Joly, T. Junquera, J. Lesrel, E. Roy,

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur-603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6503 TRANSMISSION LINES AND WAVEGUIDES YEAR / SEMESTER: III / V ACADEMIC YEAR:

More information

RF simulations with COMSOL

RF simulations with COMSOL RF simulations with COMSOL ICPS 217 Politecnico di Torino Aug. 1 th, 217 Gabriele Rosati gabriele.rosati@comsol.com 3 37.93.8 Copyright 217 COMSOL. Any of the images, text, and equations here may be copied

More information

Waveguides. Metal Waveguides. Dielectric Waveguides

Waveguides. Metal Waveguides. Dielectric Waveguides Waveguides Waveguides, like transmission lines, are structures used to guide electromagnetic waves from point to point. However, the fundamental characteristics of waveguide and transmission line waves

More information

The Basics of Patch Antennas, Updated

The Basics of Patch Antennas, Updated The Basics of Patch Antennas, Updated By D. Orban and G.J.K. Moernaut, Orban Microwave Products www.orbanmicrowave.com Introduction This article introduces the basic concepts of patch antennas. We use

More information

RF/Microwave Circuits I. Introduction Fall 2003

RF/Microwave Circuits I. Introduction Fall 2003 Introduction Fall 03 Outline Trends for Microwave Designers The Role of Passive Circuits in RF/Microwave Design Examples of Some Passive Circuits Software Laboratory Assignments Grading Trends for Microwave

More information

Numerical Simulation of &hepep-i1 Beam Position Monitor*

Numerical Simulation of &hepep-i1 Beam Position Monitor* SLACPUB957006 September 1995 Numerical Simulation of &hepepi1 Beam Position Monitor* N. Kurita D. Martin C.K. Ng S. Smith Stanford Linear Accelerator Center Stanford University Stanford CA 94309USA and

More information

SUPERCONDUCTING RF IN STORAGE-RING-BASED LIGHT SOURCES

SUPERCONDUCTING RF IN STORAGE-RING-BASED LIGHT SOURCES Presented at the 13th International Workshop on RF Superconductivity, Beijing, China, 2007 SRF 071120-03 SUPERCONDUCTING RF IN STORAGE-RING-BASED LIGHT SOURCES * S. Belomestnykh #, CLASSE, Cornell University,

More information

HIGH POWER INPUT COUPLERS FOR THE STF BASELINE CAVITY SYSTEM AT KEK

HIGH POWER INPUT COUPLERS FOR THE STF BASELINE CAVITY SYSTEM AT KEK HIGH POWER INPUT COUPLERS FOR THE STF BASELINE CAVITY SYSTEM AT KEK E. Kako #, H. Hayano, S. Noguchi, T. Shishido, K. Watanabe and Y. Yamamoto KEK, Tsukuba, Ibaraki, 305-0801, Japan Abstract An input coupler,

More information

ACE3P and Applications to HOM Power Calculation in Cornell ERL

ACE3P and Applications to HOM Power Calculation in Cornell ERL ACE3P and Applications to HOM Power Calculation in Cornell ERL Liling Xiao Advanced Computations Group SLAC National Accelerator Laboratory HOM10 Workshop, Cornell, October 11-13, 2010 Work supported by

More information

MULTIPACTING IN THE CRAB CAVITY

MULTIPACTING IN THE CRAB CAVITY MULTIPACTING IN TH CRAB CAVITY Y. Morita, K. Hara, K. Hosoyama, A. Kabe, Y. Kojima, H. Nakai, KK, 1-1, Oho, Tsukuba, Ibaraki 3-81, JAPAN Md. M. Rahman, K. Nakanishi, Graduate University for Advanced Studies,

More information

UNIVERSITI MALAYSIA PERLIS

UNIVERSITI MALAYSIA PERLIS UNIVERSITI MALAYSIA PERLIS SCHOOL OF COMPUTER & COMMUNICATIONS ENGINEERING EKT 341 LABORATORY MODULE LAB 2 Antenna Characteristic 1 Measurement of Radiation Pattern, Gain, VSWR, input impedance and reflection

More information

What is a matching network?

What is a matching network? Impedance Matching and Tuning Matching networks are used to match the impedance of one system to another Match is important for several reasons: Provides for maximum power transfer (e.g. carrying power

More information

The transition for the Elettra Input Power Coupler to the standard WR1800

The transition for the Elettra Input Power Coupler to the standard WR1800 The transition for the Elettra Input Power Coupler to the standard WR1800 Cristina Pasotti, Mauro Bocciai, Luca Bortolossi, Alessandro Fabris, Marco Ottobretti, Mauro Rinaldi Alessio Turchet Sincrotrone

More information

HOM COUPLER ALTERATIONS FOR THE LHC DQW CRAB CAVITY

HOM COUPLER ALTERATIONS FOR THE LHC DQW CRAB CAVITY HOM COUPLER ALTERATIONS FOR THE LHC DQW CRAB CAVITY J. A. Mitchell 1, 2, G. Burt 2, N. Shipman 1, 2, Lancaster University, Lancaster, UK B. Xiao, S.Verdú-Andrés, Q. Wu, BNL, Upton, NY 11973, USA R. Calaga,

More information

Couplers for Project X. S. Kazakov, T. Khabiboulline

Couplers for Project X. S. Kazakov, T. Khabiboulline Couplers for Project X S. Kazakov, T. Khabiboulline TTC meeting on CW-SRF, 2013 Requirements to Project X couplers Cavity SSR1 (325MHz): Cavity SSR2 (325MHz): Max. energy gain - 2.1 MV, Max. power, 1 ma

More information

Series and Parallel Resonant Circuits

Series and Parallel Resonant Circuits Series and Parallel Resonant Circuits Aim: To obtain the characteristics of series and parallel resonant circuits. Apparatus required: Decade resistance box, Decade inductance box, Decade capacitance box

More information