LEP Couplers..a Troubled Story of a Success. HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 1

Size: px
Start display at page:

Download "LEP Couplers..a Troubled Story of a Success. HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 1"

Transcription

1 LEP Couplers..a Troubled Story of a Success HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 1 1

2 Overview & development: specifications, problems, solutions Operation: field equalization, trip statistics. Conclusions & Acknowledgements HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 2

3 First attempt: 500 MHz coupler directly in the cell, magnetic coupling (loop), Problems: multipacting, field emission, (test of a cavity in PETRA, Desy). Performance: up to 70 kw, (3.4 MV/m in the cavity) HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 3

4 HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 4

5 HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 5

6 Initial specifications: Qext= : matched for 6 MV/m, 3.4 mamp/beam, Φs=-32.8º Power: ~60 kwatts CW HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 6

7 Starting point: Warm LEP cavity power coupler: 103 mm diameter cylindrical window, nominal power 120 kw; No harmful multipacting up to the nominal power of 120 kwatts. Conditioning on room temperature cavities up to 180 kw without special problems and no degradation of performance during operation HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 7

8 First design at 350 MHz open-ended coaxial coupler Characteristic impedance: 50 Ω; fixed coupling; Outer/inner conductor diameter: 103/44.8 mm Outer conductor "extended", to bring the ceramic outside the cryostat Extension cooled with Ghe; HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 8

9 FOTO COUPLER FISSO 50 OHM HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 9

10 FOTO COUPLER FISSO 50 OHM HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 10

11 FOTO COUPLER FISSO 50 OHM HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 11

12 Meanwhile, specifications changed, and a new variable coupler was designed to cope with: Qext= : matched for 6 MV/m, 7 mamp/beam, Φs=-32.8º Power: ~125 kwatts CW HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 12

13 Advantages of a variable coupler: Possibility to work easily under very different conditions (Qext = ) : perfect match to all the beams, possibility to measure the Q(Eacc) characteristic of the cavity at any time, Possibility to compensate random errors in the distribution of Qext seen with fixed couplers. (equalization of fields for the 8 cavities per klystron). HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 13

14 CHARACTERISTICS OF THE VARIABLE COUPLER: 50 Ω, λ/4 choke as an internally folded 25 Ω stub, due to limited space in the tunnel, All the other dimensions unchanged HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 14

15 HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 15

16 HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 16

17 HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 17

18 HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 18

19 HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 19

20 Kovar ring 10 kω Ti layer 10 MΩ Ti layer HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 20

21 Results (in few words): During a test on a cavity at 4.5K, an important leak on cavity vacuum appeared; Inspection revealed a hole on the extension with evidence of burnings. HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 21

22 Investigations on causes: Main suspect: gas discharge from cold surfaces Measurements of multipacting levels where refined adding pickup for electron current measurements and flange for vacuum gauge; HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 22

23 HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 23

24 Investigations on causes: Main suspect: gas discharge from cold surfaces Measurements of multipacting levels where refined adding pickup for electron current measurements and flange for vacuum gauge; Multipacting simulations confirmed levels measured on cavities; Harmful levels coming from one point multipacting on outer conductor. On variable coupler, also 2-point multipacting in the 25Ω choke. HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 24

25 Actions to reduce multipacting: review of procedures: Pre-conditioning on warm cavity; HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 25

26 HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 26

27 Actions to reduce multipacting: review of procedures: Pre-conditioning on warm cavity; assembly in clean room; HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 27

28 Actions to reduce multipacting: review of procedures: Pre-conditioning on warm cavity; assembly in clean room; Conditioning on cold cavity; HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 28

29 HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 29

30 Actions to reduce multipacting: review of procedures: Pre-conditioning on warm cavity; assembly in clean room; Conditioning on cold cavity; Result: De-conditioning: reappearance of levels already conditioned when going back to lower power. Complete de-conditioning after switching off RF for several hours HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 30

31 Stronger actions to reduce multipacting were needed: 1 st idea: Multipacting levels depend on voltage seen by electrons; for the same incident power, the voltage (electric field) at the outer conductor is reduced by increasing the characteristic impedance. 1 st action: go to 75Ω antenna (diameters 103/30 mm) HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 31

32 HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 32 LEP Couplers...a Troubled story of a success TEM r1 r2 = = ) ( 0 60ln ; ln 1 r r Z r r E e r E E kz j ωt

33 Stronger actions to reduce multipacting were needed (cont'd): 2 nd idea: remove low impedance choke: 25Ω line introduced new multipacting levels below 40 kwatts; 2 nd action: return to a fixed coupler, even if this meant loss of flexibility. HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 33

34 HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 34

35 Stronger actions to reduce multipacting were needed (cont'd): 3 rd idea: Multipacting is originating from gases adsorbed on the outer conductor wall; conditioning only displaces these gases, that are re-adsorbed on the cold surfaces: conditioning could be never-ending; 3 rd action: find and suppress main sources of adsorption HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 35

36 Stronger actions to reduce multipacting were needed (cont'd): 3 rd action: find and suppress main sources of adsorption 1 st source: Ceramic bake-out "in-situ"; 2 nd source: copper-plated extension: refinement of the surface (suppress weldings forging: smoother surface); copper plating (10µm) by sputtering instead of galvanic deposition (titanium layer in between, 0.5µm). (NEG on extension?) HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 36

37 Stronger actions to reduce multipacting were needed (cont'd): 4 th idea: DC Bias: According to simulations both positive and negative DC bias are effective. For LEP, -2.5 kv were applied to inner conductor, with a nearly "magic" result. HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 37

38 HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 38

39 HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 39

40 Operation Operation conditions: Initial Eacc: 6 MV/m (10 MV voltage), year 2000, up to 9 MV/m Current: 3 to 8 mamps Ultimate power: >100 kwatts CW Cavities equipped: 288 HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 40

41 Operation Operation was complicated by: 8 cavities/klystron Fixed couplers, with Qext spread of ±20% around nominal value; Spread in field for cavities on the same klystron HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 41

42 Operation Field distribution in waveguides different for different beams: Decision to reduce the effect on worst cases with fixed λ/4 stubs in waveguides; Fine tune of waveguide length (less than 3º of RF wavelength of difference from nominal length); HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 42

43 Operation Protection of Main Coupler (interlocks): MC vacuum Arc Detector Electron current monitor Monitor of cooling air flow Temperatures on window and extension HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 43

44 Operation Trip statistics: Only MC vacuum significative: all the others often coming from electronic noise: In average, MC vacuum was responsible of 4% of downtime of the total downtime due to RF (~25% of total for machine). Any outburst was a big risk, but finally there was not even one window breakdown. HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 44

45 Conclusions At the end, Couplers for LEP were a success, but they could have led the whole project to disaster. Solutions to problems were found resorting to experts from different disciplines (RF, Vacuum, metallurgy, thin films etc ). At the end the couplers could easily withstand the nominal power (120 kw), and several were tested up to 4 times this power. Main problem during operation: field spread in cavities due to distribution in values of Qext HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 45

46 Acknowledgents Ernst Haebel, Joachim Tuckmantel,Sergio Calatroni and Olivier Brunner told me the story. A lot of people worked on LEP couplers ( Mircea Stirbet, HP Kindermann, Daniel Boussard, Gunther Geshonke, Jean-Pierre Boiteux, Pete Brown) from RF groups, but also from several other groups (in particular from the actual LHC/VAC and EST/SM group). There is a huge quantity of written material, thanks to those who wrote everything about their work. HPC2002, Jefferson Lab, October 30 th, 2002 R. Losito, CERN 46

RF power tests of LEP2 main couplers on a single cell superconducting cavity

RF power tests of LEP2 main couplers on a single cell superconducting cavity RF power tests of LEP2 main couplers on a single cell superconducting cavity H.P. Kindermann, M. Stirbet* CERN, CH-1211 Geneva 23, Switzerland Abstract To determine the power capability of the input couplers

More information

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES S. Belomestnykh HPC workshop JLAB, 30 October 2002 Introduction Many aspects of the high-power coupler design, fabrication, preparation, conditioning, integration

More information

TESLA RF POWER COUPLERS DEVELOPMENT AT DESY.

TESLA RF POWER COUPLERS DEVELOPMENT AT DESY. TESLA RF POWER COUPLERS DEVELOPMENT AT DESY. Dwersteg B., Kostin D., Lalayan M., Martens C., Möller W.-D., DESY, D-22603 Hamburg, Germany. Abstract Different RF power couplers for the TESLA Test Facility

More information

Mircea Stirbet. RF Conditioning: Systems and Procedures. Jefferson Laboratory

Mircea Stirbet. RF Conditioning: Systems and Procedures. Jefferson Laboratory Mircea Stirbet RF Conditioning: Systems and Procedures Jefferson Laboratory General requirements for input couplers - Sustain RF power required for operation of accelerator with beam - Do not compromise

More information

HIGH POWER COUPLER FOR THE TESLA TEST FACILITY

HIGH POWER COUPLER FOR THE TESLA TEST FACILITY Abstract HIGH POWER COUPLER FOR THE TESLA TEST FACILITY W.-D. Moeller * for the TESLA Collaboration, Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany The TeV Energy Superconducting Linear

More information

Coupler Electromagnetic Design

Coupler Electromagnetic Design Coupler Electromagnetic Design HPC Workshop, TJNAF October 30 November 1, 2002 Yoon Kang Spallation Neutron Source Oak Ridge National Laboratory Contents Fundamental Power Coupler Design Consideration

More information

High Power Couplers for TTF - FEL

High Power Couplers for TTF - FEL High Power Couplers for TTF - FEL 1. Requirements for High Power Couplers on superconducting Cavities 2. Characteristics of pulsed couplers 3. Standing wave pattern in the coaxial coupler line 4. Advantages

More information

Couplers for Project X. S. Kazakov, T. Khabiboulline

Couplers for Project X. S. Kazakov, T. Khabiboulline Couplers for Project X S. Kazakov, T. Khabiboulline TTC meeting on CW-SRF, 2013 Requirements to Project X couplers Cavity SSR1 (325MHz): Cavity SSR2 (325MHz): Max. energy gain - 2.1 MV, Max. power, 1 ma

More information

HIGH POWER INPUT COUPLERS FOR THE STF BASELINE CAVITY SYSTEM AT KEK

HIGH POWER INPUT COUPLERS FOR THE STF BASELINE CAVITY SYSTEM AT KEK HIGH POWER INPUT COUPLERS FOR THE STF BASELINE CAVITY SYSTEM AT KEK E. Kako #, H. Hayano, S. Noguchi, T. Shishido, K. Watanabe and Y. Yamamoto KEK, Tsukuba, Ibaraki, 305-0801, Japan Abstract An input coupler,

More information

THE PROTOTYPE FUNDAMENTAL POWER COUPLER FOR THE SPALLATION NEUTRON SOURCE SUPERCONDUCTING CAVITIES: DESIGN AND INITIAL TEST RESULTS*

THE PROTOTYPE FUNDAMENTAL POWER COUPLER FOR THE SPALLATION NEUTRON SOURCE SUPERCONDUCTING CAVITIES: DESIGN AND INITIAL TEST RESULTS* THE PROTOTYPE FUNDAMENTAL POWER COUPLER FOR THE SPALLATION NEUTRON SOURCE SUPERCONDUCTING CAVITIES: DESIGN AND INITIAL TEST RESULTS* K. M. Wilson,I.E.Campisi,E.F.Daly,G.K.Davis,M.Drury,J.E.Henry,P.Kneisel,G.

More information

Third Harmonic Superconducting passive cavities in ELETTRA and SLS

Third Harmonic Superconducting passive cavities in ELETTRA and SLS RF superconductivity application to synchrotron radiation light sources Third Harmonic Superconducting passive cavities in ELETTRA and SLS 2 cryomodules (one per machine) with 2 Nb/Cu cavities at 1.5 GHz

More information

Advance on High Power Couplers for SC Accelerators

Advance on High Power Couplers for SC Accelerators Advance on High Power Couplers for SC Accelerators Eiji Kako (KEK, Japan) IAS conference at Hong Kong for High Energy Physics, 2017, January 23th Eiji KAKO (KEK, Japan) IAS at Hong Kong, 2017 Jan. 23 1

More information

HOM Couplers at DESY Jacek Sekutowicz** 2000 Hamburg 52, West-Germany

HOM Couplers at DESY Jacek Sekutowicz** 2000 Hamburg 52, West-Germany ntroduction HOM Couplers at DESY Jacek Sekutowicz** DESY, MHF, NotkestraBe 85 2000 Hamburg 52, West-Germany UiMEL computation and beadpull measurements showed that a 4-cell, 500 MHz HERA cavity has five

More information

Superconducting RF cavities activities for the MAX project

Superconducting RF cavities activities for the MAX project 1 Superconducting RF cavities activities for the MAX project OECD-NEA TCADS-2 Workshop Nantes, 22 May 2013 Marouan El Yakoubi, CNRS / IPNO 2 Contents 352 MHz spoke Cryomodule design 700 MHz test area 700

More information

COUPLER DEVELOPMENTS AT CERN

COUPLER DEVELOPMENTS AT CERN COUPLER DEVELOPMENTS AT CERN G. Cavallari. E. Chiaveri, E. Haebel. Ph. ~egendre(*) and W. Weingarten CERN, Geneva, Switzerland 1. SOME RECENT HISTORY Since the second workshop on RF superconductivity three

More information

3.9 GHz work at Fermilab

3.9 GHz work at Fermilab 3.9 GHz work at Fermilab + CKM 13-cell cavity Engineering and designing W.-D. Moeller Desy, MHF-sl Protocol of the meeting about 3 rd harmonic cavities during the TESLA collaboration meeting at DESY on

More information

OVERVIEW OF INPUT POWER COUPLER DEVELOPMENTS, PULSED AND CW*

OVERVIEW OF INPUT POWER COUPLER DEVELOPMENTS, PULSED AND CW* Presented at the 13th International Workshop on RF Superconductivity, Beijing, China, 2007 SRF 071120-04 OVERVIEW OF INPUT POWER COUPLER DEVELOPMENTS, PULSED AND CW* S. Belomestnykh #, CLASSE, Cornell

More information

DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT

DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT G. Olry, J-L. Biarrotte, S. Blivet, S. Bousson, C. Commeaux, C. Joly, T. Junquera, J. Lesrel, E. Roy,

More information

RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS

RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS J. Teichert, A. Büchner, H. Büttig, F. Gabriel, P. Michel, K. Möller, U. Lehnert, Ch. Schneider, J. Stephan, A.

More information

The transition for the Elettra Input Power Coupler to the standard WR1800

The transition for the Elettra Input Power Coupler to the standard WR1800 The transition for the Elettra Input Power Coupler to the standard WR1800 Cristina Pasotti, Mauro Bocciai, Luca Bortolossi, Alessandro Fabris, Marco Ottobretti, Mauro Rinaldi Alessio Turchet Sincrotrone

More information

Cavity development for TESLA

Cavity development for TESLA Cavity development for TESLA Lutz.Lilje@desy.de DESY -FDET- Cavity basics History: Limitations and solutions»material inclusions»weld defects»field emission»increased surface resistance at high field Performance

More information

THE MULTIPACTING STUDY OF NIOBIUM SPUTTERED HIGH-BETA QUARTER-WAVE RESONATORS FOR HIE-ISOLDE

THE MULTIPACTING STUDY OF NIOBIUM SPUTTERED HIGH-BETA QUARTER-WAVE RESONATORS FOR HIE-ISOLDE THE MULTIPACTING STUDY OF NIOBIUM SPUTTERED HIGH-BETA QUARTER-WAVE RESONATORS FOR HIE-ISOLDE P. Zhang and W. Venturini Delsolaro CERN, Geneva, Switzerland Abstract Superconducting Quarter-Wave Resonators

More information

Liquid Helium Heat Load Within the Cornell Mark II Cryostat

Liquid Helium Heat Load Within the Cornell Mark II Cryostat SRF 990615-07 Liquid Helium Heat Load Within the Cornell Mark II Cryostat E. Chojnacki, S. Belomestnykh, and J. Sears Floyd R. Newman Laboratory of Nuclear Studies Cornell University, Ithaca, New York

More information

2008 JINST 3 S The RF systems and beam feedback. Chapter Introduction

2008 JINST 3 S The RF systems and beam feedback. Chapter Introduction Chapter 4 The RF systems and beam feedback 4.1 Introduction The injected beam will be captured, accelerated and stored using a 400 MHz superconducting cavity system, and the longitudinal injection errors

More information

Frequency Tuning and RF Systems for the ATLAS Energy Upgrade. Gary P. Zinkann

Frequency Tuning and RF Systems for the ATLAS Energy Upgrade. Gary P. Zinkann Frequency Tuning and RF Systems for the ATLAS Energy Upgrade Outline Overview of the ATLAS Energy Upgrade Description of cavity Tuning method used during cavity construction Description and test results

More information

R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations.

R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations. Question Bank DEPARTMENT OF ELECTRONICS AND COMMUNICATION SUBJECT- MICROWAVE ENGINEERING(EEC-603) Unit-III 1. What are the high frequency limitations of conventional tubes? Explain clearly. 2. Explain

More information

A few results [2,3] obtained with the individual cavities inside their horizontal cryostats are summarized in Table I and a typical Q o

A few results [2,3] obtained with the individual cavities inside their horizontal cryostats are summarized in Table I and a typical Q o Particle Accelerators, 1990, Vol. 29, pp. 47-52 Reprints available directly from the publisher Photocopying permitted by license only 1990 Gordon and Breach, Science Publishers, Inc. Printed in the United

More information

Design and technology of high-power couplers, with a special view on superconducting RF

Design and technology of high-power couplers, with a special view on superconducting RF Design and technology of high-power couplers, with a special view on superconducting RF W.-D. Möller Deutsches Elektronen-Synchrotron, Hamburg, Germany Abstract The high-power RF coupler is the connecting

More information

Detailed Design Report

Detailed Design Report Detailed Design Report Chapter 2 MAX IV 3 GeV Storage Ring 2.6. The Radio Frequency System MAX IV Facility CHAPTER 2.6. THE RADIO FREQUENCY SYSTEM 1(15) 2.6. The Radio Frequency System 2.6. The Radio Frequency

More information

SUPPRESSING ELECTRON MULTIPACTING IN TTF III COLD WINDOW BY DC BIAS

SUPPRESSING ELECTRON MULTIPACTING IN TTF III COLD WINDOW BY DC BIAS SUPPRESSING ELECTRON MULTIPACTING IN TTF III COLD WINDOW BY DC BIAS PASI YLÄ-OIJALA and MARKO UKKOLA Rolf Nevanlinna Institute, University of Helsinki, PO Box 4, (Yliopistonkatu 5) FIN 4 Helsinki, Finland

More information

Current Industrial SRF Capabilities and Future Plans

Current Industrial SRF Capabilities and Future Plans and Future Plans Capabilities in view of Design Engineering Manufacturing Preparation Testing Assembly Taking into operation Future Plans Participate in and contribute to development issues, provide prototypes

More information

KEK ERL CRYOMODULE DEVELOPMENT

KEK ERL CRYOMODULE DEVELOPMENT KEK ERL CRYOMODULE DEVELOPMENT H. Sakai*, T. Furuya, E. Kako, S. Noguchi, M. Sato, S. Sakanaka, T. Shishido, T. Takahashi, K. Umemori, K. Watanabe and Y. Yamamoto KEK, 1-1, Oho, Tsukuba, Ibaraki, 305-0801,

More information

THE HIGH LUMINOSITY PERFORMANCE OF CESR WITH THE NEW GENERATION SUPERCONDUCTING CAVITY

THE HIGH LUMINOSITY PERFORMANCE OF CESR WITH THE NEW GENERATION SUPERCONDUCTING CAVITY Presented at the 1999 Particle Accelerator Conference, New York City, NY, USA, March 29 April 2 CLNS 99/1614 / SRF 990407-03 THE HIGH LUMINOSITY PERFORMANCE OF CESR WITH THE NEW GENERATION SUPERCONDUCTING

More information

DEVELOPMENTS OF HORIZONTAL HIGH PRESSURE RINSING FOR SUPERKEKB SRF CAVITIES

DEVELOPMENTS OF HORIZONTAL HIGH PRESSURE RINSING FOR SUPERKEKB SRF CAVITIES DEVELOPMENTS OF HORIZONTAL HIGH PRESSURE RINSING FOR SUPERKEKB SRF CAVITIES Y. Morita #, K. Akai, T. Furuya, A. Kabe, S. Mitsunobu, and M. Nishiwaki Accelerator Laboratory, KEK, Tsukuba, Ibaraki 305-0801,

More information

Superconducting RF System. Heung-Sik Kang

Superconducting RF System. Heung-Sik Kang Design of PLS-II Superconducting RF System Heung-Sik Kang On behalf of PLS-II RF group Pohang Accelerator Laboratory Content 1. Introduction 2. Physics design 3. Cryomodules 4. Cryogenic system 5. High

More information

Normal-conducting high-gradient rf systems

Normal-conducting high-gradient rf systems Normal-conducting high-gradient rf systems Introduction Motivation for high gradient Order of 100 GeV/km Operational and state-of-the-art SwissFEL C-band linac: Just under 30 MV/m CLIC prototypes: Over

More information

QUARTER WAVE COAXIAL LINE CAVITY FOR NEW DELHI LINAC BOOSTER*

QUARTER WAVE COAXIAL LINE CAVITY FOR NEW DELHI LINAC BOOSTER* QUARTER WAVE COAXIAL LINE CAVITY FOR NEW DELHI LINAC BOOSTER* P.N. Prakash and A.Roy Nuclear Science Centre, P.O.Box 10502, New Delhi 110 067, INDIA and K.W.Shepard Physics Division, Argonne National Laboratory,

More information

Progresses on China ADS Superconducting Cavities

Progresses on China ADS Superconducting Cavities Progresses on China ADS Superconducting Cavities Peng Sha IHEP, CAS 2013/06/12 1 Outline 1. Introduction 2. Spoke012 cavity 3. Spoke021 cavity 4. Spoke040 cavity 5. 650MHz β=0.82 5-cell cavity 6. High

More information

Processing and Testing of PKU 3-1/2 Cell Cavity at JLab

Processing and Testing of PKU 3-1/2 Cell Cavity at JLab Processing and Testing of PKU 3-1/2 Cell Cavity at JLab Rongli Geng, Byron Golden August 7, 2009 Introduction The SRF group at Peking University has successfully built a 3-1/2 cell superconducting niobium

More information

Yongming Li Institute of modern physics 31/07/2017

Yongming Li Institute of modern physics 31/07/2017 Yongming Li Institute of modern physics 31/07/2017 2 Outline Motivation Coupler Design Operation Feedback Summary Project HIAF (2017-2024) SRing SRing: Spectrometer ring Circumference:290m Rigidity: 13Tm

More information

1997 Particle Accelerator Conference, Vancouver, B.C., Canada, May 12-16, 1997 BNL

1997 Particle Accelerator Conference, Vancouver, B.C., Canada, May 12-16, 1997 BNL t J 1997 Particle Accelerator Conference, Vancouver, B.C., Canada, May 12-16, 1997 BNL-6 4 3 5 5 Modifying CERN SPS Cavities and Amplifiers for Use in RHIC R. Connolly, J. Aspenleiter, S. Kwiatkowski Brookhaven

More information

BEM TUBE COUPLERS FOR THE SUPERCONDUCTING LEP CAVITY. E. Haebel CEW, Geneva, Switzerland

BEM TUBE COUPLERS FOR THE SUPERCONDUCTING LEP CAVITY. E. Haebel CEW, Geneva, Switzerland Proceedings of SRF Workshop 1984, Geneva, Switzerland SRF84-19 BEM TUBE COUPLERS FOR THE SUPERCONDUCTING LEP CAVITY E. Haebel CEW, Geneva, Switzerland 1. INTRODUCTION The discussions of this session focus

More information

Reliability Issues and Design Strategies for High Power SRF Couplers

Reliability Issues and Design Strategies for High Power SRF Couplers Reliability Issues and Design Strategies for High Power SRF Couplers Workshop on High Power Couplers for Superconducting Accelerators October 29 November 1, 2002 Jefferson Lab Brian Rusnak Lawrence Livermore

More information

INSTALLATION AND FIRST COMMISSIONING OF THE LLRF SYSTEM

INSTALLATION AND FIRST COMMISSIONING OF THE LLRF SYSTEM INSTALLATION AND FIRST COMMISSIONING OF THE LLRF SYSTEM FOR THE EUROPEAN XFEL Julien Branlard, for the LLRF team TALK OVERVIEW 2 Introduction Brief reminder about the XFEL LLRF system Commissioning goals

More information

Status and Plans for the 805 MHz Box Cavity MuCool RF Workshop III 07/07/09 Al Moretti

Status and Plans for the 805 MHz Box Cavity MuCool RF Workshop III 07/07/09 Al Moretti Status and Plans for the 805 MHz Box Cavity MuCool RF Workshop III 07/07/09 Al Moretti 7/6/2009 1 Outline : Description of the Box cavity Concept. Box Cavity Summary Plans. HFSS Models of orthogonal and

More information

The BESSY Higher Order Mode Damped Cavity - Further Improvements -

The BESSY Higher Order Mode Damped Cavity - Further Improvements - The BESSY Higher Order Mode Damped Cavity - Further Improvements - Ernst Weihreter Reminder of Technical Problems Solutions Conclusions BESSY HOM Damped Cavity Project collaboration: (EC funded) - BESSY

More information

HIGH POWER PULSED TESTS OF A BETA=0.5 5-CELL 704 MHZ SUPERCONDUCTING CAVITY

HIGH POWER PULSED TESTS OF A BETA=0.5 5-CELL 704 MHZ SUPERCONDUCTING CAVITY HIGH POWER PULSED TESTS OF A BETA=0.5 5-CELL 704 MHZ SUPERCONDUCTING CAVITY G. Devanz, D. Braud, M. Desmons, Y. Gasser, E. Jacques, O. Piquet, J. Plouin, J.- P. Poupeau, D. Roudier, P. Sahuquet, CEA-Saclay,

More information

DEVELOPMENTS AND PROGRESS WITH ESS ELLIPTICAL CRYOMODULES AT CEA-SACLAY AND IPN-ORSAY -

DEVELOPMENTS AND PROGRESS WITH ESS ELLIPTICAL CRYOMODULES AT CEA-SACLAY AND IPN-ORSAY - DEVELOPMENTS AND PROGRESS WITH ESS ELLIPTICAL CRYOMODULES AT CEA-SACLAY AND IPN-ORSAY - F. Peauger, C. Arcambal, F. Ardellier, S. Berry, P. Bosland, A. Bouygues, E. Cenni, JP. Charrier, G. Devanz, F. Eozénou,

More information

MULTIPACTING IN THE CRAB CAVITY

MULTIPACTING IN THE CRAB CAVITY MULTIPACTING IN TH CRAB CAVITY Y. Morita, K. Hara, K. Hosoyama, A. Kabe, Y. Kojima, H. Nakai, KK, 1-1, Oho, Tsukuba, Ibaraki 3-81, JAPAN Md. M. Rahman, K. Nakanishi, Graduate University for Advanced Studies,

More information

R.Bachimanchi, IPAC, May 2015, Richmond, VA

R.Bachimanchi, IPAC, May 2015, Richmond, VA 1 new module C100 Cryomodule Seven cell Cavity, 0.7 m long (high Q L ) 8 Cavities per Cryomodule Fits the existing Cryomodule footprint Fundamental frequency f 0 Accelerating gradient E acc 1497 MHz >

More information

EXPERIENCE ON THE SUPERCONDUCTING RF SYSTEM IN TRISTAN

EXPERIENCE ON THE SUPERCONDUCTING RF SYSTEM IN TRISTAN Particle Accelerators, 1996, Vol. 54, pp. [325-336] /25-36 Reprints available directly from the publisher Photocopying permitted by license only 1996 OPA (Overseas Publishers Association) Amsterdam B.Y.

More information

BESSY VSR: SRF challenges and developments for a variable pulse-length next generation light source

BESSY VSR: SRF challenges and developments for a variable pulse-length next generation light source BESSY VSR: SRF challenges and developments for a variable pulse-length next generation light source Institut SRF - Wissenschaft und Technologie (FG-ISRF) Adolfo Vélez et al. SRF17 Lanzhou, 17-21/7/2017

More information

Coupler functions. G.devanz CEA-Saclay CAS Bilbao may

Coupler functions. G.devanz CEA-Saclay CAS Bilbao may Coupler and tuners Coupler functions Inject RF power generated by the RF source into the cavity and beam, Maximize power transmission at the nominal frequency f ( or eqv. minimizing reflection ), Form

More information

Main Injector Cavity Simulation and Optimization for Project X

Main Injector Cavity Simulation and Optimization for Project X Main Injector Cavity Simulation and Optimization for Project X Liling Xiao Advanced Computations Group Beam Physics Department Accelerator Research Division Status Meeting, April 7, 2011 Outline Background

More information

Resonator System for the BEST 70MeV Cyclotron

Resonator System for the BEST 70MeV Cyclotron Resonator System for the BEST 70MeV Cyclotron 20 nd International Conference on Cyclotrons and their Applications Vancouver, Canada, September 16-20, 2013 Vasile Sabaiduc, Dipl. Eng. Accelerator Technology

More information

C100 Cryomodule. Seven cell Cavity, 0.7 m long (high Q L ) 8 Cavities per Cryomodule Fits the existing Cryomodule footprint

C100 Cryomodule. Seven cell Cavity, 0.7 m long (high Q L ) 8 Cavities per Cryomodule Fits the existing Cryomodule footprint 1 new module C100 Cryomodule Seven cell Cavity, 0.7 m long (high Q L ) 8 Cavities per Cryomodule Fits the existing Cryomodule footprint Fundamental frequency f 0 Accelerating gradient E acc 1497 MHz >

More information

Commissioning of the ALICE SRF Systems at Daresbury Laboratory Alan Wheelhouse, ASTeC, STFC Daresbury Laboratory ESLS RF 1 st 2 nd October 2008

Commissioning of the ALICE SRF Systems at Daresbury Laboratory Alan Wheelhouse, ASTeC, STFC Daresbury Laboratory ESLS RF 1 st 2 nd October 2008 Commissioning of the ALICE SRF Systems at Daresbury Laboratory Alan Wheelhouse, ASTeC, STFC Daresbury Laboratory ESLS RF 1 st 2 nd October 2008 Overview ALICE (Accelerators and Lasers In Combined Experiments)

More information

TESTS AND DESIGNS OF HIGH-POWER WAVEGUIDE VACUUM WINDOWS AT CORNELL

TESTS AND DESIGNS OF HIGH-POWER WAVEGUIDE VACUUM WINDOWS AT CORNELL TESTS AND DESIGNS OF HIGH-POWER WAVEGUIDE VACUUM WINDOWS AT CORNELL E. Chojnacki, P. Barnes, S. Belomestnykh, R. Kaplan, J. Kirchgessner, H. Padamsee, P. Quigley, J. Reilly, and J. Sears CORNELL UNIVERSITY,

More information

Report of working group 5

Report of working group 5 Report of working group 5 Materials Cavity design Cavity Fabrication Preparatioin & Testing Power coupler HOM coupler Beam line absorber Tuner Fundamental R&D items Most important R&D items 500 GeV parameters

More information

On behalf of: Sang-hoon Kim Zack Conway Mark Kedzie Tom Reid Ben Guilfoyle

On behalf of: Sang-hoon Kim Zack Conway Mark Kedzie Tom Reid Ben Guilfoyle On behalf of: Sang-hoon Kim Zack Conway Mark Kedzie Tom Reid Ben Guilfoyle $SSOLFDWLRQV IRU $1/ &RD[LDO &RXSOHUV $7/$6 0+] 0RGXOH )5,% 4:5V FRIB SRF production status: cavities, ancillaries SRF17, T.

More information

LOW BETA CAVITY DEVELOPMENT FOR AN ATLAS INTENSITY UPGRADE

LOW BETA CAVITY DEVELOPMENT FOR AN ATLAS INTENSITY UPGRADE LOW BETA CAVITY DEVELOPMENT FOR AN ATLAS INTENSITY UPGRADE M. P. Kelly, Z. A. Conway, S. M. Gerbick, M. Kedzie, T. C. Reid, R. C. Murphy, B. Mustapha, S.H. Kim, P. N. Ostroumov, Argonne National Laboratory,

More information

Experience with 3.9 GHz cavity HOM couplers

Experience with 3.9 GHz cavity HOM couplers Cornell University, October 11-13, 2010 Experience with 3.9 GHz cavity HOM couplers T. Khabiboulline, N. Solyak, FNAL. 3.9 GHz cavity general parameters Third harmonic cavity (3.9GHz) was proposed to compensate

More information

ESRF RF System Status Operation & Upgrade

ESRF RF System Status Operation & Upgrade 14 th ESLS RF Meeting 2010 ELETTRA, 29 th 30 th September ESRF RF System Status Operation & Upgrade Jörn Jacob, ESRF on behalf of the colleagues of the RF Group and many other ESRF Groups 14th ESLS RF,

More information

Status of the HOM Damped Cavity Project

Status of the HOM Damped Cavity Project Status of the HOM Damped Cavity Project E. Weihreter / BESSY for the HOM Damped Cavity Collaboration BESSY, Daresbury Lab, DELTA, MaxLab, NTHU Project funded by the EC under contract HPRI-CT-1999-50011

More information

RF test benches for electron cloud studies

RF test benches for electron cloud studies RF test benches for electron cloud studies Fritz Caspers 1, Ubaldo Iriso Ariz 2, Jean-Michel Laurent 2, Andrea Mostacci 1 1 PS/RF Group, 2 LHC/VAC Group 1. The Traveling Wave multiwire chamber 1.1. Introduction:

More information

The HPRF system for a new 6 GeV synchrotron light source in Beijing

The HPRF system for a new 6 GeV synchrotron light source in Beijing 中国科学院高能物理研究所 INSTITUTE OF HIGH ENERGY PHYSICS CHINESE ACADEMY OF SCIENCES The HPRF system for a new 6 GeV synchrotron light source in Beijing (RF group, IHEP) The HEPS HPRF team Power coupler & power source

More information

Low-Level RF. S. Simrock, DESY. MAC mtg, May 05 Stefan Simrock DESY

Low-Level RF. S. Simrock, DESY. MAC mtg, May 05 Stefan Simrock DESY Low-Level RF S. Simrock, DESY Outline Scope of LLRF System Work Breakdown for XFEL LLRF Design for the VUV-FEL Cost, Personpower and Schedule RF Systems for XFEL RF Gun Injector 3rd harmonic cavity Main

More information

Status and Future Perspective of the HIE-ISOLDE Project

Status and Future Perspective of the HIE-ISOLDE Project Status and Future Perspective of the HIE-ISOLDE Project International Particle Accelerator Conference, IPAC 12 New Orleans, Louisiana, USA, May 20-25, 2012 Yacine.Kadi@cern.ch OUTLINE Scope of HIE-ISOLDE

More information

International Technology Recommendation Panel. X-Band Linear Collider Path to the Future. RF System Overview. Chris Adolphsen

International Technology Recommendation Panel. X-Band Linear Collider Path to the Future. RF System Overview. Chris Adolphsen International Technology Recommendation Panel X-Band Linear Collider Path to the Future RF System Overview Chris Adolphsen Stanford Linear Accelerator Center April 26-27, 2004 Delivering the Beam Energy

More information

Third Harmonic Cavity Status

Third Harmonic Cavity Status Third Harmonic Cavity Status General parameters Cavity design Main coupler calculation HOM analysis and HOM coupler design Lorentz Forces and Stress analysis Summary General parameters Third harmonic cavity

More information

Tuning systems for superconducting cavities at Saclay

Tuning systems for superconducting cavities at Saclay Tuning systems for superconducting cavities at Saclay 1 MACSE: 1990: tuner in LHe bath at 1.8K TTF: 1995 tuner at 1.8K in the insulating vacuum SOLEIL: 1999 tuner at 4 K in the insulating vacuum Super-3HC:

More information

IR HOM Issues. Collection of HOM effects. Sasha Novokhatski SLAC, Stanford University. Parallel Session: RF, HOM, Power June 15, 2006

IR HOM Issues. Collection of HOM effects. Sasha Novokhatski SLAC, Stanford University. Parallel Session: RF, HOM, Power June 15, 2006 IR HOM Issues Collection of HOM effects Sasha Novokhatski SLAC, Stanford University Parallel Session: RF, HOM, Power June 15, 2006 Luminosity and wake fields We need high current beams of short bunches

More information

ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory

ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory ERL 09 8 th 12 th June 2009 ALICE Accelerators and Lasers In Combined Experiments Brief Description ALICE Superconducting

More information

RF Transport. Stefan Choroba, DESY, Hamburg, Germany

RF Transport. Stefan Choroba, DESY, Hamburg, Germany RF Transport Stefan Choroba, DESY, Hamburg, Germany Overview Introduction Electromagnetic Waves in Waveguides TE 10 -Mode Waveguide Elements Waveguide Distributions Limitations, Problems and Countermeasures

More information

SPOKE CRYOMODULES CONCEPTUAL DESIGNS FOR ESS & MYRRHA

SPOKE CRYOMODULES CONCEPTUAL DESIGNS FOR ESS & MYRRHA SPOKE CRYOMODULES CONCEPTUAL DESIGNS FOR ESS & MYRRHA Hervé Saugnac- IPNO SLHIPP-2 - Catania- 3&4 May 2012 ESS 72 MeV Baseline of the Spoke linac: 10 cryomodules, each one containing 2 double Spoke β=0.5

More information

3.9 GHz System (AH1) XFEL WP46

3.9 GHz System (AH1) XFEL WP46 3.9 GHz System (AH1) XFEL WP46 14th European XFEL Machine Advisory Committee Meeting 02 May 2016 Paolo Pierini, INFN & DESY Elmar Vogel, DESY + INFN/DESY contributors PPT version 1 26/04/2016 Outline Status

More information

Status of superconducting module development suitable for cw operation: ELBE cryostats

Status of superconducting module development suitable for cw operation: ELBE cryostats Status of superconducting module development suitable for cw operation: ELBE cryostats, A. Büchner, H. Büttig, F. Gabriel, P. Michel, K. Möller, U. Lehnert, Ch. Schneider, J. Stephan, A. Winter Forschungszentrum

More information

1.5 GHz Cavity design for the Clic Damping Ring and as Active Third Harmonic cavity for ALBA.

1.5 GHz Cavity design for the Clic Damping Ring and as Active Third Harmonic cavity for ALBA. 1 1.5 GHz Cavity design for the Clic Damping Ring and as Active Third Harmonic cavity for ALBA. Beatriz Bravo Overview 2 1.Introduction 2.Active operation 3.Electromagnetic design 4.Mechanical design Introduction

More information

Maurizio Vretenar Linac4 Project Leader EuCARD-2 Coordinator

Maurizio Vretenar Linac4 Project Leader EuCARD-2 Coordinator Maurizio Vretenar Linac4 Project Leader EuCARD-2 Coordinator Every accelerator needs a linac as injector to pass the region where the velocity of the particles increases with energy. At high energies (relativity)

More information

CST MWS simulation of the SARAF RFQ 1.5 MeV/nucleon proton/deuteron accelerator

CST MWS simulation of the SARAF RFQ 1.5 MeV/nucleon proton/deuteron accelerator CST MWS simulation of the SARAF RFQ 1.5 MeV/nucleon proton/deuteron accelerator Jacob Rodnizki SARAF Soreq NRC APril 19-21 th, 2010 Outline 1. SARAF accelerator 2. Presentation of the four rods RFQ 3.

More information

Packaging of Cryogenic Components

Packaging of Cryogenic Components Packaging of Cryogenic Components William J. Schneider Senior Mechanical Engineer Emeritus November 19-23 2007 1 Packaging of Cryogenic Components Day one Introduction and Overview 2 What is important?

More information

RF Cavity Design. Erk Jensen CERN BE/RF. CERN Accelerator School Accelerator Physics (Intermediate level) Darmstadt 2009

RF Cavity Design. Erk Jensen CERN BE/RF. CERN Accelerator School Accelerator Physics (Intermediate level) Darmstadt 2009 RF Cavity Design Erk Jensen CERN BE/RF CERN Accelerator School Accelerator Physics (Intermediate level) Darmstadt 009 CAS Darmstadt '09 RF Cavity Design 1 Overview DC versus RF Basic equations: Lorentz

More information

Current Status of cerl Injector Cryomodule

Current Status of cerl Injector Cryomodule Current Status of cerl Injector Cryomodule E. Kako, Y. Kondo, S. Noguchi, T. Shishido, K. Watanabe, Y. Yamamoto (KEK, Japan) 1 Outline Overview of Injector Cryomodule 2-cell Cavities HOM RF Feedthroughs

More information

High average power fundamental input couplers for the Cornell University ERL: requirements, design challenges and first ideas

High average power fundamental input couplers for the Cornell University ERL: requirements, design challenges and first ideas High average power fundamental input couplers for the Cornell University ERL: requirements, design challenges and first ideas S. Belomestnykh, M. Liepe, H. Padamsee, V. Shemelin, and V. Veshcherevich Laboratory

More information

SNS CRYOMODULE PERFORMANCE*

SNS CRYOMODULE PERFORMANCE* SNS CRYOMODULE PERFORMANCE* J. Preble*, I. E. Campisi, E. Daly, G. K. Davis, J. R. Delayen, M. Drury, C. Grenoble, J. Hogan, L. King, P. Kneisel, J. Mammosser, T. Powers, M. Stirbet, H. Wang, T. Whitlatch,

More information

2 Theory of electromagnetic waves in waveguides and of waveguide components

2 Theory of electromagnetic waves in waveguides and of waveguide components RF transport Stefan Choroba DESY, Hamburg, Germany Abstract This paper deals with the techniques of transport of high-power radiofrequency (RF) power from a RF power source to the cavities of an accelerator.

More information

UHV ARC DEPOSITION FOR RF SUPERCONDUCTING CAVITY

UHV ARC DEPOSITION FOR RF SUPERCONDUCTING CAVITY UHV ARC DEPOSITION FOR RF SUPERCONDUCTING CAVITY S. Tazzari, A. Cianchi, R. Russo, University of Rome Tor Vergata and INFN-Roma2, Rome, Italy L. Catani, INFN-Roma2, Rome, Italy F. Tazzioli, Laboratori

More information

MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM CHAMBER

MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM CHAMBER Frascati Physics Series Vol. X (1998), pp. 371-378 14 th Advanced ICFA Beam Dynamics Workshop, Frascati, Oct. 20-25, 1997 MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM

More information

On the RF system of the ILC

On the RF system of the ILC On the RF system of the ILC Sami G. Tantawi Chris Nantista Valery Dolgashev Jiquan Guo SLAC Outline This talk is a collection of thoughts about the rf system based on our experience with X-band system!

More information

CEBAF waveguide absorbers. R. Rimmer for JLab SRF Institute

CEBAF waveguide absorbers. R. Rimmer for JLab SRF Institute CEBAF waveguide absorbers R. Rimmer for JLab SRF Institute Outline Original CEBAF HOM absorbers Modified CEBAF loads for FEL New materials for replacement loads High power loads for next generation FELs

More information

Breakdown in Waveguides and Components

Breakdown in Waveguides and Components Breakdown in Waveguides and Components Alfred Moretti Fermilab ILC Snowmass Workshop August 16, 2005 08/16/2005 Alfred Moretti 1 Outline of Talk 1) Description of the RF high Power System 2) Breakdown

More information

To produce more powerful and high-efficiency particle accelerator, efforts have

To produce more powerful and high-efficiency particle accelerator, efforts have Measuring Unloaded Quality Factor of Superconducting RF Cryomodule Jian Cong Zeng Department of Physics and Astronomy, State University of New York at Geneseo, Geneseo, NY 14454 Elvin Harms, Jr. Accelerator

More information

RF Design of Normal Conducting Deflecting Cavity

RF Design of Normal Conducting Deflecting Cavity RF Design of Normal Conducting Deflecting Cavity Valery Dolgashev (SLAC), Geoff Waldschmidt, Ali Nassiri (Argonne National Laboratory, Advanced Photon Source) 48th ICFA Advanced Beam Dynamics Workshop

More information

The Coaxial Multipactor Experiment (CMX): A facility for investigating multipactor discharges

The Coaxial Multipactor Experiment (CMX): A facility for investigating multipactor discharges PSFC/JA-05-28 The Coaxial Multipactor Experiment (CMX): A facility for investigating multipactor discharges T. P. Graves, B. LaBombard, S. J. Wukitch, and I.H. Hutchinson 31 October 2005 Plasma Science

More information

High acceleration gradient. Critical applications: Linear colliders e.g. ILC X-ray FELs e.g. DESY XFEL

High acceleration gradient. Critical applications: Linear colliders e.g. ILC X-ray FELs e.g. DESY XFEL High acceleration gradient Critical applications: Linear colliders e.g. ILC X-ray FELs e.g. DESY XFEL Critical points The physical limitation of a SC resonator is given by the requirement that the RF magnetic

More information

Design, Development and Testing of RF Window for C band 250 kw CW Power Klystron

Design, Development and Testing of RF Window for C band 250 kw CW Power Klystron Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2016, 3(6): 26-30 Research Article ISSN: 2394-658X Design, Development and Testing of RF Window for C band 250

More information

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit.

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit. I.E.S-(Conv.)-1995 ELECTRONICS AND TELECOMMUNICATION ENGINEERING PAPER - I Some useful data: Electron charge: 1.6 10 19 Coulomb Free space permeability: 4 10 7 H/m Free space permittivity: 8.85 pf/m Velocity

More information

Harald Klingbeil GSI Helmholtzzentrum für Schwerionenforschung GmbH. Contents

Harald Klingbeil GSI Helmholtzzentrum für Schwerionenforschung GmbH. Contents CERN Accelerator School Ferrite Cavities Harald Klingbeil GSI Helmholtzzentrum für Schwerionenforschung GmbH Contents Usage of Ferrite Cavities Magnetic properties, hysteresis Simplified ferrite cavity

More information

DESIGN OPTIONS FOR CEBAF ENERGY UPGRADE

DESIGN OPTIONS FOR CEBAF ENERGY UPGRADE b JLAB-ACT-97-09 DESGN OPTONS FOR CEBAF ENERGY UPGRADE L. Phillips, J. Mammosser, and V. Nguyen;Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 USA Abstract

More information

APAC 2007, Raja Ramanna Centre for Advanced Technology(RRCAT), Indore, India LHC STATUS. Lyndon Evans, CERN, Geneva, Switzerland

APAC 2007, Raja Ramanna Centre for Advanced Technology(RRCAT), Indore, India LHC STATUS. Lyndon Evans, CERN, Geneva, Switzerland LHC STATUS Lyndon Evans, CERN, Geneva, Switzerland Abstract The installation of the Large Hadron Collider at CERN is now approaching completion. Almost 1100 of the 1232 main bending magnets are installed

More information