TECHNIQUE AND INSTRUMENTATION FOR BUNCH SHAPE MEASUREMENTS

Size: px
Start display at page:

Download "TECHNIQUE AND INSTRUMENTATION FOR BUNCH SHAPE MEASUREMENTS"

Transcription

1 TECHNIQUE AND INSTRUMENTATION FOR BUNCH SHAPE MEASUREMENTS A.Feschenko Institute For Nuclear Research (INR), Moscow 3, Russia

2 ),,, ( ),,, ( t z y x t y x ρ ϕ ρ Z,ϕ Y X ),,, ( t y x ϕ ρ dxd y t y x t J = ),,, ( ), ( ϕ ρ ϕ Bunch shape or or ydt dxd y x J = ),, ( ) ( ϕ ρ ϕ

3 The main requirement for Bunch Shape Measurements is sufficient Phase Resolution For typical Bunch Phase Durations ~ phase resolution must be about For f= MHz phase resolution of is equivalent to time resolution of ps. The equivalent bandwidth: Δ F = GHz. 3

4 R γ Δt R cβγ R cβ For W= МeV and R= сm ΔF=.5 GHz. Configuration of electric field of point charge moving in a metal pipe. The way out is localization of space region where the information transfer occurs.

5 There are different possibilities to shrink the area of information transfer:. Cherenkov radiation;. Detached electrons in case of H- (including photodetachment); 3. δ-electrons;. Transition radiation; 5. X-rays;. Electrons obtained due to residual gas ionization;. Low energy secondary electrons;. etc. 5

6 The main characteristics of Low Energy Secondary Electrons influencing BSM parameters Energy distribution Angular distribution Time dispersion (delay of emission) These characteristics almost do not depend on type or on energy of primary particles Time dispersion is principal reason of limitation of BSM phase resolution. Theoretical value of time dispersion for metals is s 5 s. Experiment gives the upper limit of time dispersion. Depending on the accuracy the upper limit was found to be from ( ±) ps to several hundred ps.

7 (Witkover R.L. A Non-destructive Bunch Length Monitor For a Proton Linear Accelerator // Nucl. Instr. And Meth. 9, V. 3, No., - pp. 3) Analyzed beam Secondary Electrons B Foil HV+RF Target Signal Analyzed beam Longitudinal Modulation

8 I.A.Prudnikov et all. A Device to Measure Bunch Phase Length of an Accelerated Beam. USSR invention license. H5h/, No., 93 (in Russian). Analyzed Beam RF Scan Beam Image e e HV Target Focusing Screen Transverse Circular Modulation

9 Configuration of INR Bunch Shape Monitor I(φ) Analyzed beam U м φ U V m foc + sin( nωt + ϕ) + ΔV st Secondary electrons I(Z) Сигнал 3 Z 5 U V m foc sin( nωt + ϕ) ΔV st - target, - input collimator, 3 - rf deflector combined with electrostatic lens, - output collimator, 5 collector of electrons 9

10 Evaluation of phase resolution Displacement of electrons at output collimator Z L = Z max sinϕ Phase resolution Δϕ = ΔZ L Z max where ΔZ L - full width at a half maximum of electron beam size for a δ-function bunch, Z max amplitude of electron displacement at output collimator. In practice we use: Δϕ = (σ ) Z + ( ΔZ max ) where ΔZ focused beam size observed experimentally for rf deflection off, σ rms size of the focused electron beam for a δ-function bunch

11 Example of electron trajectories Trajectories for optimum focusing and rf deflection off Z, мм Trajectories electrons efor two groups of electrons entering rf deflector at different phases (phase difference equals 5 at f=3 MHz) Z, мм

12 Dependence of Phase Resolution on Amplitude of Deflecting Voltage for different Input Collimators (f=35. MHz) Phase resolution, deg Ud, V.5 mm. mm.5 mm

13 Influence of analyzed beam space charge Increasing of the focused beam size Changing of the average position of the focused electron beam at the output collimator φ φ φ Δφ φ+δφ φ φ Aggravation of Phase Resolution Arising of Phase Reading Error δφ 3

14 Influence of analyzed beam space charge Phase Resolution, deg Phase, deg ma ma 5 ma 5 ma ma Phase Error, deg Phase, deg ma 5 ma 5 ma ma Resolution and phase reading error for W=3 MeV H-minus, σy=. mm, σz=. mm, σφ=3º, Zo= mm, f=3 MHz (Model #) Phase Resolution, deg ma.5 ma ma. 5 ma 5 ma.5 5 ma. 5 ma ma.5 ma Phase, deg Phase, deg Resolution and phase reading error for W= MeV, H-minus, σy=. mm, σz=. mm, σφ=.º, Zo= mm, f=3 MHz (Model #) Phase Error, deg

15 Results of experimental test of space charge influence in INR linac at MeV beam I I Without slit ma 3 With slit ма φ 3 φ 5

16 Detector Modifications. Bunch Shape Monitor (BSM) for H-minus. Bunch Length and Velocity Detector (BLVD) 3. Detector of Thee-Dimensional Distribution of Particles in Bunches (3D- BSM)

17 Bunch Shape Monitor (BSM) for H-minus H-minus H-minus H-minus W= MeV (5. kev) Relative unuts 5. kev.3 kev 3. kev 5. kev. kev 3 kev 5 kev W / Wmax Energy distribution of electrons passed through input BSM collimator

18 Bunch Shape Monitor (BSM) for H-minus I(φ) Analyzed beam U targ Secondary electrons I(z) 3 5 B Z X Y X - target, - input collimator, 3 - rf deflector combined with electrostatic lens, - output collimator, 5 bending magnet, collimator, Secondary Electron Multiplier Signal

19 Bunch Length and Velocity Detector (BLVD) BLVD is a BSM, which can be mechanically translated along the beam line. A time of flight method of energy measurements is implemented. The translation results in a shift in phase of the observed distribution. Measuring the value of the translation and the value of the shift one can find an average velocity of the beam. The accuracy of velocity measurements: Systematic ±.% Total ±(.3.)%. 9

20 Three Dimensional Bunch Shape Monitor (3D-BSM) 5 3 Vertical Motion y x Electron beam Signal Horizontal Motion Analyzed beam U V + m t+ V foc sin( ω ϕ) Δ z x 3 channels U V m t+ + V foc sin( ω ϕ) Δ

21 BSMs developed and built in INR Тип детектора Лаборатория Анализируемый пучок Год запуска Кол. детекторов BSM ИЯИ РАН H+ ( МэВ, МэВ) 9 BSM SSC H- (,5 МэВ) 993 BLVD CERN Linac-3 Pb + (,5МэВ/н,,МэВ/н) 99 BSM SSC H- (,5 МэВ) BSM SSC H- ( МэВ) BSM SSC H- ( МэВ) 3D-BSM CERN Linac- H+ (5МэВ) 99 BLVD KEK H- ( 3 МэВ) 99 BSM DESY H- ( МэВ,3 МэВ) 99 BLVD DESY H- (5МэВ) 99 BLVD ИЯИ РАН H+ (МэВ) 99 BSM CERN Linac- H+ ( МэВ, 3 МэВ) 999, BSM SNS ORNL H- (,5 MэВ, 9 МэВ) 3- BSM SNS ORNL H- ( МэВ) BSM SNS ORNL H- ( ГэВ) 3 BSM CERN Linac- H- (3 МэВ) (3) BSM J-PARC H- ( МэВ) 3 BSM LANSCE H+,H- (,5; МэВ)

22 The first INR Bunch Shape Monitor 5 e 3б 3а Analyzed beam - kv ( target, input collimator, 3а electrostatic lens, 3б rf deflector, output collimator, 5 collector of electrons)

23 BSMs for DESY Linac-3 and CERN Linac- 3 Рез. () Рез. (3) 3

24 General View of SNS test BSM

25 BSM installed in D-plate (August 3) BSM installed in intersegments, 9 and of CCL Module # (July ) 5

26 BSM for new CERN Linac- (November )

27 5 3 9 BLVD for DESY Linac-3 ( detector body, target actuator, 3 rf deflector, registration unit, 5 corrector magnet, longitudinal motion guide rail, longitudinal motion actuator,,9 bellows, support)

28 BSMs for J-PARC Linac (August-September )

29 3D-BSM view 9

30 Examples of rf deflectors for BSMs. λ/ λ/ λ/ λ/ λ/ λ/ λ/ А Б В 3

31 Some Measurement Results Time, us Phase, deg 5 MHz 5 3 Phase, deg 5 MHz 3 3 Time, us.e+.e.e- Relative units.e-3.e-.e.e-.e- 3 3 Phase, deg 5 MHz 3

32 Setting of accelerating field amplitude in DTL Tank of INR Linac ( MeV). Simulations., Δβ/β Δβ/β Δβ/β,3 -,3 -, -π/ I π/ -π/ π/ -π/ π/ I I -π/ π/ -π/ π/ -π/ π/ E=E E=,E E=,E Beam portraits in longitudinal phase space at the exit of Tank for different amplitudes 3

33 Setting of accelerating field amplitude in DTL Tank of INR Linac ( MeV). Experimental results..9eo.9eo.eo.eo 5 3,E',3E',E',99E',99E' Фаза, град (9. МГц) Bunch shapes for different amplitudes. 3 5 Фаза, град (9. МГц) Bunch shapes in the vicinity of extremum of functions I m (E) и Ф(E). Ф,град Im, отн.ед. Im Ф Ф,град Im, отн.ед. Im Ф E/E' Functions I m (E) and Ф(E) in the vicinity of extremum for nominal injection energy E/E' Functions Im(E) and Ф(E) in the vicinity of extremum for injection energy less than nominal value by %. 33

34 Longitudinal emittance in CCL of SNS Linac.... Energy deviation, MeV Bunch boundaries transformed to the entrance of CCL# and an equivalent phase ellipse Phase, rad.3. Energy deviation, MeV Energy deviation, MeV Phase, rad 5 MHz Equivalent phase space ellipses for different threshold levels. RMS bunch size definition is used Phase, rad 5 MHz Equivalent phase space ellipses for different threshold levels. Full width at the base bunch size definition is used 3

35 Фаза, град (,5 МГц) Integral projection of bunch on longitudinal vertical plane (phase-y). Some results of 3D-measurements at CERN Linac Integral beam cross section Фаза, град (,5 МГц) Integral projection of bunch on longitudinal horizontal plane (phase-x). 35

36 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

37 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

38 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

39 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

40 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

41 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

42 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

43 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

44 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

45 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

46 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

47 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

48 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

49 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

50 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

51 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

52 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

53 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

54 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

55 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

56 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

57 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

58 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

59 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

60 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

61 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

62 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

63 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

64 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

65 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

66 Behavior of 3-D distribution projection on longitudinal vertical and horizontal planes within the beam pulse Фаза, град (,5 МГц) Фаза, град (,5 МГц)

67 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #

68 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #

69 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch # 9

70 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #

71 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #

72 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #

73 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #

74 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #

75 Фаза, град (,5 МГц) Интенсивность, отн. ед Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch # 5

76 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #

77 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #

78 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #

79 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch # 9

80 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #

81 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #

82 Фаза, град (,5 МГц) Интенсивность, отн. ед Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #

83 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #3 3

84 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #3

85 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #3 5

86 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #3

87 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #3

88 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #3

89 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #3 9

90 Фаза, град (,5 МГц) Интенсивность, отн. ед Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #3 9

91 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch # 9

92 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch # 9

93 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch # 93

94 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch # 9

95 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch # 95

96 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch # 9

97 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch # 9

98 Фаза, град (,5 МГц) Интенсивность, отн. ед Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch # 9

99 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #5 99

100 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #5

101 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #5

102 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #5

103 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #5 3

104 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #5

105 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #5 5

106 Интенсивность, отн. ед Фаза, град (,5 МГц) Transverse cross section of a bunch in different phases and at different moments of time within the beam pulse Bunch #5

107 Summary Bunch shape monitors with RF scanning of low energy secondary electrons developed and bult in INR are used for longitudinal parameters measurements of beams of different particles (protons, H-minus ions, heavy ions) within the energy range from several MeV to GeV in several accelerators. The accuracy of measurements is about º at several hundred MHz.

Accelerator Complex U70 of IHEP-Protvino: Status and Upgrade Plans

Accelerator Complex U70 of IHEP-Protvino: Status and Upgrade Plans INSTITUTE FOR HIGH ENERGY PHYSICS () Protvino, Moscow Region, 142281, Russia Accelerator Complex U70 of -Protvino: Status and Upgrade Plans (report 4.1-1) Sergey Ivanov, on behalf of the U70 staff September

More information

REVIEW OF FAST BEAM CHOPPING F. Caspers CERN AB-RF-FB

REVIEW OF FAST BEAM CHOPPING F. Caspers CERN AB-RF-FB F. Caspers CERN AB-RF-FB Introduction Review of several fast chopping systems ESS-RAL LANL-SNS JAERI CERN-SPL Discussion Conclusion 1 Introduction Beam choppers are typically used for β = v/c values between

More information

A HIGH EFFICIENCY 17GHz TW CHOPPERTRON

A HIGH EFFICIENCY 17GHz TW CHOPPERTRON 1 SLAC 07 A HIGH EFFICIENCY 17GHz TW CHOPPERTRON J. Haimson and B. Mecklenburg Work performed under the auspices of the U.S. Department of Energy SBIR Grant No.DE-FG02-06ER84468 2 SLAC 07 Figure 1. Centerline

More information

version 7.6 RF separator

version 7.6 RF separator version 7.6 RF separator www.nscl.msu.edu/lise dnr080.jinr.ru/lise East Lansing August-2006 Contents: 1. RF SEPARATOR...3 1.1. RF SEPARATION SYSTEM (RFSS) PROPOSAL AT NSCL... 3 1.2. CONSTRUCTION OF THE

More information

Non-invasive Beam Profile Measurements using an Electron-Beam Scanner

Non-invasive Beam Profile Measurements using an Electron-Beam Scanner Non-invasive Beam Profile Measurements using an Electron-Beam Scanner W. Blokland and S. Cousineau Willem Blokland for the Spallation Neutron Source Managed by UT-Battelle Overview SNS Accelerator Electron

More information

FAST RF KICKER DESIGN

FAST RF KICKER DESIGN FAST RF KICKER DESIGN David Alesini LNF-INFN, Frascati, Rome, Italy ICFA Mini-Workshop on Deflecting/Crabbing Cavity Applications in Accelerators, Shanghai, April 23-25, 2008 FAST STRIPLINE INJECTION KICKERS

More information

Nonintercepting Diagnostics for Transverse Beam Properties: from Rings to ERLs

Nonintercepting Diagnostics for Transverse Beam Properties: from Rings to ERLs Nonintercepting Diagnostics for Transverse Beam Properties: from Rings to ERLs Alex H. Lumpkin Accelerator Operations Division Advanced Photon Source Presented at Jefferson National Accelerator Laboratory

More information

Shintake Monitor Nanometer Beam Size Measurement and Beam Tuning

Shintake Monitor Nanometer Beam Size Measurement and Beam Tuning Shintake Monitor Nanometer Beam Size Measurement and Beam Tuning Technology and Instrumentation in Particle Physics 2011 Chicago, June 11 Jacqueline Yan, M.Oroku, Y. Yamaguchi T. Yamanaka, Y. Kamiya, T.

More information

Status of the Electron Beam Transverse Diagnostics with Optical Diffraction Radiation at FLASH

Status of the Electron Beam Transverse Diagnostics with Optical Diffraction Radiation at FLASH Status of the Electron Beam Transverse Diagnostics with Optical Diffraction Radiation at FLASH M. Castellano, E. Chiadroni, A. Cianchi, K. Honkavaara, G. Kube DESY FLASH Seminar Hamburg, 05/09/2006 Work

More information

Accelerator Complex U70 of IHEP: Status and Upgrades

Accelerator Complex U70 of IHEP: Status and Upgrades INSTITUTE FOR HIGH ENERGY PHYSICS () Protvino, Moscow Region, 142281, Russia Accelerator Complex U70 of : Status and Upgrades (invited oral WEYCH01) Sergey Ivanov XXIII Russian Particle Accelerator Conference

More information

THz Pump Beam for LCLS. Henrik Loos. LCLS Hard X-Ray Upgrade Workshop July 29-31, 2009

THz Pump Beam for LCLS. Henrik Loos. LCLS Hard X-Ray Upgrade Workshop July 29-31, 2009 Beam for LCLS Henrik Loos Workshop July 29-31, 29 1 1 Henrik Loos Overview Coherent Radiation Sources Timing THz Source Performance 2 2 Henrik Loos LCLS Layout 6 MeV 135 MeV 25 MeV 4.3 GeV 13.6 GeV σ z.83

More information

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser P. Castro for the TTF-FEL team 100 nm 1 Å FEL radiation TESLA Test Facility at DESY

More information

RF Time Measuring Technique With Picosecond Resolution and Its Possible Applications at JLab. A. Margaryan

RF Time Measuring Technique With Picosecond Resolution and Its Possible Applications at JLab. A. Margaryan RF Time Measuring Technique With Picosecond Resolution and Its Possible Applications at JLab A. Margaryan 1 Contents Introduction RF time measuring technique: Principles and experimental results of recent

More information

Short-Pulse X-ray at the Advanced Photon Source Overview

Short-Pulse X-ray at the Advanced Photon Source Overview Short-Pulse X-ray at the Advanced Photon Source Overview Vadim Sajaev and Louis Emery Accelerator Operations and Physics Group Accelerator Systems Division Mini-workshop on Methods of Data Analysis in

More information

200 MHz 350 MHz 750 MHz Linac2 RFQ2 202 MHz 0.5 MeV /m Weight : 1000 kg/m Ext. diameter : 45 cm

200 MHz 350 MHz 750 MHz Linac2 RFQ2 202 MHz 0.5 MeV /m Weight : 1000 kg/m Ext. diameter : 45 cm M. Vretenar, CERN for the HF-RFQ Working Group (V.A. Dimov, M. Garlasché, A. Grudiev, B. Koubek, A.M. Lombardi, S. Mathot, D. Mazur, E. Montesinos, M. Timmins, M. Vretenar) 1 1988-92 Linac2 RFQ2 202 MHz

More information

Development of a high-power coherent THz sources and THz-TDS system on the basis of a compact electron linac

Development of a high-power coherent THz sources and THz-TDS system on the basis of a compact electron linac Development of a high-power coherent THz sources and THz-TDS system on the basis of a compact electron linac Masafumi Kumaki A) Ryunosuke Kuroda B), Hiroyuki Toyokawa B), Yoshitaka Taira B), Kawakatsu

More information

Acceleration of High-Intensity Protons in the J-PARC Synchrotrons. KEK/J-PARC M. Yoshii

Acceleration of High-Intensity Protons in the J-PARC Synchrotrons. KEK/J-PARC M. Yoshii Acceleration of High-Intensity Protons in the J-PARC Synchrotrons KEK/J-PARC M. Yoshii Introduction 1. J-PARC consists of 400 MeV Linac, 3 GeV Rapid Cycling Synchrotron (RCS) and 50 GeV Main synchrotron

More information

FLASH at DESY. FLASH. Free-Electron Laser in Hamburg. The first soft X-ray FEL operating two undulator beamlines simultaneously

FLASH at DESY. FLASH. Free-Electron Laser in Hamburg. The first soft X-ray FEL operating two undulator beamlines simultaneously FLASH at DESY The first soft X-ray FEL operating two undulator beamlines simultaneously Katja Honkavaara, DESY for the FLASH team FEL Conference 2014, Basel 25-29 August, 2014 First Lasing FLASH2 > First

More information

Progress in High Gradient Accelerator Research at MIT

Progress in High Gradient Accelerator Research at MIT Progress in High Gradient Accelerator Research at MIT Presented by Richard Temkin MIT Physics and Plasma Science and Fusion Center May 23, 2007 MIT Accelerator Research Collaborators MIT Plasma Science

More information

High acceleration gradient. Critical applications: Linear colliders e.g. ILC X-ray FELs e.g. DESY XFEL

High acceleration gradient. Critical applications: Linear colliders e.g. ILC X-ray FELs e.g. DESY XFEL High acceleration gradient Critical applications: Linear colliders e.g. ILC X-ray FELs e.g. DESY XFEL Critical points The physical limitation of a SC resonator is given by the requirement that the RF magnetic

More information

Design of ESS-Bilbao RFQ Linear Accelerator

Design of ESS-Bilbao RFQ Linear Accelerator Design of ESS-Bilbao RFQ Linear Accelerator J.L. Muñoz 1*, D. de Cos 1, I. Madariaga 1 and I. Bustinduy 1 1 ESS-Bilbao *Corresponding author: Ugaldeguren III, Polígono A - 7 B, 48170 Zamudio SPAIN, jlmunoz@essbilbao.org

More information

ELECTRON BEAM DIAGNOSTICS AND FEEDBACK FOR THE LCLS-II*

ELECTRON BEAM DIAGNOSTICS AND FEEDBACK FOR THE LCLS-II* THB04 Proceedings of FEL2014, Basel, Switzerland ELECTRON BEAM DIAGNOSTICS AND FEEDBACK FOR THE LCLS-II* Josef Frisch, Paul Emma, Alan Fisher, Patrick Krejcik, Henrik Loos, Timothy Maxwell, Tor Raubenheimer,

More information

FAST KICKERS LNF-INFN

FAST KICKERS LNF-INFN ILC Damping Rings R&D Workshop - ILCDR06 September 26-28, 2006 at Cornell University FAST KICKERS R&D @ LNF-INFN Fabio Marcellini for the LNF fast kickers study group* * D. Alesini, F. Marcellini P. Raimondi,

More information

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH INVESTIGATION OF A RIDGE-LOADED WAVEGUIDE STRUCTURE FOR CLIC X-BAND CRAB CAVITY

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH INVESTIGATION OF A RIDGE-LOADED WAVEGUIDE STRUCTURE FOR CLIC X-BAND CRAB CAVITY CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CLIC Note 1003 INVESTIGATION OF A RIDGE-LOADED WAVEGUIDE STRUCTURE FOR CLIC X-BAND CRAB CAVITY V.F. Khan, R. Calaga and A. Grudiev CERN, Geneva, Switzerland.

More information

The impedance budget of the CERN Proton Synchrotron (PS)

The impedance budget of the CERN Proton Synchrotron (PS) The impedance budget of the CERN Proton Synchrotron (PS) Serena Persichelli CERN Hadron Synchrotron Collective effects University of Rome La Sapienza serena.persichelli@cern.ch Why do we study the beam

More information

Physics Requirements Document Document Title: SCRF 1.3 GHz Cryomodule Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7

Physics Requirements Document Document Title: SCRF 1.3 GHz Cryomodule Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7 Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7 Document Approval: Originator: Tor Raubenheimer, Physics Support Lead Date Approved Approver: Marc Ross, Cryogenic System Manager Approver: Jose Chan,

More information

DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE

DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE 1 DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE PRESENTED BY- ARPIT RAWANKAR THE GRADUATE UNIVERSITY FOR ADVANCED STUDIES, HAYAMA 2 INDEX 1. Concept

More information

Precision RF Beam Position Monitors for Measuring Beam Position and Tilt Progress Report

Precision RF Beam Position Monitors for Measuring Beam Position and Tilt Progress Report Precision RF Beam Position Monitors for Measuring Beam Position and Tilt Progress Report UC Berkeley Senior Personnel Yury G. Kolomensky Collaborating Institutions Stanford Linear Accelerator Center: Marc

More information

JUAS 2018 LINACS. Jean-Baptiste Lallement, Veliko Dimov BE/ABP CERN.

JUAS 2018 LINACS. Jean-Baptiste Lallement, Veliko Dimov BE/ABP CERN. LINACS Jean-Baptiste Lallement, Veliko Dimov BE/ABP CERN jean-baptiste.lallement@cern.ch http://jlalleme.web.cern.ch/jlalleme/juas2018/ Credits Much material is taken from: Thomas Wangler, RF linear accelerators

More information

Undulator K-Parameter Measurements at LCLS

Undulator K-Parameter Measurements at LCLS Undulator K-Parameter Measurements at LCLS J. Welch, A. Brachmann, F-J. Decker, Y. Ding, P. Emma, A. Fisher, J. Frisch, Z. Huang, R. Iverson, H. Loos, H-D. Nuhn, P. Stefan, D. Ratner, J. Turner, J. Wu,

More information

Bunch-by-Bunch Broadband Feedback for the ESRF

Bunch-by-Bunch Broadband Feedback for the ESRF Bunch-by-Bunch Broadband Feedback for the ESRF ESLS RF meeting / Aarhus 21-09-2005 J. Jacob, E. Plouviez, J.-M. Koch, G. Naylor, V. Serrière Goal: Active damping of longitudinal and transverse multibunch

More information

LHC TRANSVERSE FEEDBACK SYSTEM: FIRST RESULTS OF COMMISSIONING. V.M. Zhabitsky XXI Russian Particle Accelerator Conference

LHC TRANSVERSE FEEDBACK SYSTEM: FIRST RESULTS OF COMMISSIONING. V.M. Zhabitsky XXI Russian Particle Accelerator Conference LHC TRANSVERSE FEEDBACK SYSTEM: FIRST RESULTS OF COMMISSIONING V.M. Zhabitsky XXI Russian Particle Accelerator Conference 28.09-03.10.2008, Zvenigorod LHC Transverse Feedback System: First Results of Commissioning

More information

BEAM HALO OBSERVATION BY CORONAGRAPH

BEAM HALO OBSERVATION BY CORONAGRAPH BEAM HALO OBSERVATION BY CORONAGRAPH T. Mitsuhashi, KEK, TSUKUBA, Japan Abstract We have developed a coronagraph for the observation of the beam halo surrounding a beam. An opaque disk is set in the beam

More information

S.M. Lidia, G. Bazouin, P.A. Seidl Accelerator and Fusion Research Division Lawrence Berkeley National Laboratory Berkeley, CA USA

S.M. Lidia, G. Bazouin, P.A. Seidl Accelerator and Fusion Research Division Lawrence Berkeley National Laboratory Berkeley, CA USA S.M. Lidia, G. Bazouin, P.A. Seidl Accelerator and Fusion Research Division Lawrence Berkeley National Laboratory Berkeley, CA USA The Heavy Ion Fusion Sciences Virtual National Laboratory 1 NDCX Increased

More information

Status of Proton Beam Commissioning at MedAustron Ion Beam Therapy Center

Status of Proton Beam Commissioning at MedAustron Ion Beam Therapy Center Status of Proton Beam Commissioning at MedAustron Ion Beam Therapy Center A. Garonna, A. Wastl, C. Kurfuerst, T. Kulenkampff, C. Schmitzer, L. Penescu, M. Pivi, M. Kronberger, F. Osmic, P. Urschuetz On

More information

GROUND MOTION IN THE INTERACTION. ensured that the final focus quadrupoles on both. rms amplitudes higher than some fraction of the

GROUND MOTION IN THE INTERACTION. ensured that the final focus quadrupoles on both. rms amplitudes higher than some fraction of the GROUND MOTION IN THE INTERACTION REGION C.Montag, DESY Abstract Ground motion and according quadrupole vibration is of great importance for all Linear Collider schemes currently under study, since these

More information

LCLS Injector Diagnostics. Henrik Loos. Diagnostics overview Transverse Beam Properties Longitudinal Beam Properties

LCLS Injector Diagnostics. Henrik Loos. Diagnostics overview Transverse Beam Properties Longitudinal Beam Properties Diagnostics overview Transverse Beam Properties Longitudinal Beam Properties LCLS Diagnostics Tasks Charge Toroids (Gun, Inj, BC, Und) Faraday cups (Gun & Inj) Trajectory & energy Stripline BPMs (Gun,

More information

DEVELOPMENT OF CAPACITIVE LINEAR-CUT BEAM POSITION MONITOR FOR HEAVY-ION SYNCHROTRON OF KHIMA PROJECT

DEVELOPMENT OF CAPACITIVE LINEAR-CUT BEAM POSITION MONITOR FOR HEAVY-ION SYNCHROTRON OF KHIMA PROJECT DEVELOPMENT OF CAPACITIVE LINEAR-CUT BEAM POSITION MONITOR FOR HEAVY-ION SYNCHROTRON OF KHIMA PROJECT Ji-Gwang Hwang, Tae-Keun Yang, Seon Yeong Noh Korea Institute of Radiological and Medical Sciences,

More information

(A) 2f (B) 2 f (C) f ( D) 2 (E) 2

(A) 2f (B) 2 f (C) f ( D) 2 (E) 2 1. A small vibrating object S moves across the surface of a ripple tank producing the wave fronts shown above. The wave fronts move with speed v. The object is traveling in what direction and with what

More information

Illinois. I Physics. Fourier engineering: progress on alternative TESLA kickers

Illinois. I Physics. Fourier engineering: progress on alternative TESLA kickers George Gollin, Fourier engineering Victoria, LC 2004 1 I hysics Fourier engineering: progress on alternative TESLA kickers George Gollin Department of hysics University of at Urbana-Champaign USA George

More information

Feedback Requirements for SASE FELS. Henrik Loos, SLAC IPAC 2010, Kyoto, Japan

Feedback Requirements for SASE FELS. Henrik Loos, SLAC IPAC 2010, Kyoto, Japan Feedback Requirements for SASE FELS Henrik Loos, SLAC, Kyoto, Japan 1 1 Henrik Loos Outline Stability requirements for SASE FELs Diagnostics for beam parameters Transverse: Beam position monitors Longitudinal:

More information

UV/X-RAY DIFFRACTION RADIATION FOR NON-INTERCEPTING MICRON-SCALE BEAM SIZE MEASUREMENT

UV/X-RAY DIFFRACTION RADIATION FOR NON-INTERCEPTING MICRON-SCALE BEAM SIZE MEASUREMENT UV/X-RAY DIFFRACTION RADIATION FOR NON-INTERCEPTING MICRON-SCALE BEAM SIZE MEASUREMENT L. Bobb, N. Chritin, T. Lefevre CERN, Geneva, Switzerland P. Karataev, JAI at RHUL, Egham, Surrey, UK M. Billing,

More information

X-Ray Beam Size Monitor for CESRTA

X-Ray Beam Size Monitor for CESRTA X-Ray Beam Size Monitor for CESRTA Bunch-by-bunch measurements of beam profile for fast emittance determination Image individual bunches spaced by 4ns. Transverse resolution

More information

Analysis of Phase Space Matching with RF Quadrupole

Analysis of Phase Space Matching with RF Quadrupole Analysis of Phase Space Matching with RF Quadrupole D.L.Rubin December 2, 21 1 Introduction Young-Im Kim, Seung Pyo Chang, Martin Gaisser, Uiryeol Lee, Soohyung Lee, and Yannis Semertzidis propose to superimpose

More information

Electro-Optic Longitudinal Bunch Profile Measurements at FLASH: Experiment, Simulation, and Validation

Electro-Optic Longitudinal Bunch Profile Measurements at FLASH: Experiment, Simulation, and Validation Electro-Optic Longitudinal Bunch Profile Measurements at FLASH: Experiment, Simulation, and Validation Bernd Steffen, DESY FEL 2007 Novosibirsk, August 29th 2007 Electro-Optic Bunch Length Detection fs

More information

Beam Loss Monitoring (BLM) System for ESS

Beam Loss Monitoring (BLM) System for ESS Beam Loss Monitoring (BLM) System for ESS Lali Tchelidze European Spallation Source ESS AB lali.tchelidze@esss.se March 2, 2011 Outline 1. BLM Types; 2. BLM Positioning and Calibration; 3. BLMs as part

More information

New Tracking Gantry-Synchrotron Idea. G H Rees, ASTeC, RAL, U.K,

New Tracking Gantry-Synchrotron Idea. G H Rees, ASTeC, RAL, U.K, New Tracking Gantry-Synchrotron Idea G H Rees, ASTeC, RAL, U.K, Scheme makes use of the following: simple synchrotron and gantry magnet lattices series connection of magnets for 5 Hz tracking one main

More information

A novel solution for various monitoring applications at CERN

A novel solution for various monitoring applications at CERN A novel solution for various monitoring applications at CERN F. Lackner, P. H. Osanna 1, W. Riegler, H. Kopetz CERN, European Organisation for Nuclear Research, CH-1211 Geneva-23, Switzerland 1 Department

More information

RF Power Consumption in the ESS Spoke LINAC

RF Power Consumption in the ESS Spoke LINAC FREIA Report 23/ January 23 DEPARTMENT OF PHYSICS AND ASTRONOMY UPPSALA UNIVERSITY RF Power Consumption in the ESS Spoke LINAC ESS TDR Contribution V.A. Goryashko, V. Ziemann, T. Lofnes, R. Ruber Uppsala

More information

Diagnostics I M. Minty DESY

Diagnostics I M. Minty DESY Diagnostics I M. Minty DESY Introduction Beam Charge / Intensity Beam Position Summary Introduction Transverse Beam Emittance Longitudinal Beam Emittance Summary Diagnostics I Diagnostics II Synchrotron

More information

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017 R. J. Jones College of Optical Sciences OPTI 511L Fall 2017 Active Modelocking of a Helium-Neon Laser The generation of short optical pulses is important for a wide variety of applications, from time-resolved

More information

Initial Beam Phasing of the SRF Cavities in LCLS-II

Initial Beam Phasing of the SRF Cavities in LCLS-II Introduction Initial Beam Phasing of the SRF Cavities in LCLS-II P. Emma Nov. 28, 2016 One of the more challenging aspects of commissioning the LCLS-II accelerator is in the initial phasing of the SRF

More information

ELECTROMAGNETIC MODELING OF FAST BEAM CHOPPER FOR SNS PROJECT

ELECTROMAGNETIC MODELING OF FAST BEAM CHOPPER FOR SNS PROJECT ELECTROMAGNETIC MODELING OF FAST BEAM CHOPPER FOR SNS PROJECT S.S. Kurennoy Los Alamos National Laboratory, Los Alamos, NM 87545, USA Abstract High current and stringent restrictions on beam losses in

More information

Normal-conducting high-gradient rf systems

Normal-conducting high-gradient rf systems Normal-conducting high-gradient rf systems Introduction Motivation for high gradient Order of 100 GeV/km Operational and state-of-the-art SwissFEL C-band linac: Just under 30 MV/m CLIC prototypes: Over

More information

arxiv:physics/ v1 [physics.acc-ph] 18 Jul 2003

arxiv:physics/ v1 [physics.acc-ph] 18 Jul 2003 DESY 03 091 ISSN 0418-9833 July 2003 arxiv:physics/0307092v1 [physics.acc-ph] 18 Jul 2003 Two-color FEL amplifier for femtosecond-resolution pump-probe experiments with GW-scale X-ray and optical pulses

More information

Observation of X-rays generated by relativistic electrons in waveguide target mounted inside a betatron

Observation of X-rays generated by relativistic electrons in waveguide target mounted inside a betatron Observation of X-rays generated by relativistic electrons in waveguide target mounted inside a betatron V.V.Kaplin (1), V.V.Sohoreva (1), S.R.Uglov (1), O.F.Bulaev (2), A.A.Voronin (2), M.Piestrup (3),

More information

Using Higher Order Modes in the Superconducting TESLA Cavities for Diagnostics at DESY

Using Higher Order Modes in the Superconducting TESLA Cavities for Diagnostics at DESY Using Higher Order Modes in the Superconducting TESLA Cavities for Diagnostics at FLASH @ DESY N. Baboi, DESY, Hamburg for the HOM team : S. Molloy 1, N. Baboi 2, N. Eddy 3, J. Frisch 1, L. Hendrickson

More information

Electron Beam Diagnosis Using K-edge Absorp8on of Laser-Compton Photons

Electron Beam Diagnosis Using K-edge Absorp8on of Laser-Compton Photons LLNL-PRES-740689 Electron Beam Diagnosis Using K-edge Absorp8on of Laser-Compton Photons Y. Hwang 1, D. J. Gibson 2, R. A. Marsh 2, T. Tajima 1, C. P. J. Barty 1 1 University of California, Irvine 2 Lawrence

More information

Theoretical Study to calculate some parameters of Ion Optical System

Theoretical Study to calculate some parameters of Ion Optical System International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 97-9, ISSN(Online):55-9555 Vol.1 No.13, pp 1-18, 17 Theoretical Study to calculate some parameters of Ion Optical System *Bushra Joudah

More information

LINAC EXPERIENCE IN THE FIRST TWO YEARS OF CNAO (CENTRO NAZIONALE ADROTERAPIA ONCOLOGICA)

LINAC EXPERIENCE IN THE FIRST TWO YEARS OF CNAO (CENTRO NAZIONALE ADROTERAPIA ONCOLOGICA) LINAC EXPERIENCE IN THE FIRST TWO YEARS OF OPERATION @ CNAO (CENTRO NAZIONALE ADROTERAPIA ONCOLOGICA) S. Vitulli, E. Vacchieri, CNAO Foundation, Pavia, Italy A. Reiter, B. Schlitt, GSI, Darmstadt, Germany

More information

Investigations towards an optical transmission line for longitudinal phase space measurements at PITZ

Investigations towards an optical transmission line for longitudinal phase space measurements at PITZ Investigations towards an optical transmission line for longitudinal phase space measurements at PITZ Sergei Amirian Moscow institute of physics and technology DESY, Zeuthen, September 2005 Email:serami85@yahoo.com

More information

Betatron tune Measurement

Betatron tune Measurement Betatron tune Measurement Tom UESUGI, Y. Kuriyama, Y. Ishi FFA school, Sep. 8-9, Osaka, 218 CONTENTS Betatron oscillation and tune How to measure tunes KURNS FFAG, Diagnostics BETATRON OSCILLATION AND

More information

SIGNAL TRANSMISSION CHARACTERISTICS IN STRIPLINE-TYPE BEAM POSITION MONITOR

SIGNAL TRANSMISSION CHARACTERISTICS IN STRIPLINE-TYPE BEAM POSITION MONITOR SIGNAL TRANSISSION CHARACTERISTICS IN STRIPLINE-TYPE BEA POSITION ONITOR T. Suwada, KEK, Tsukuba, Ibaraki 305-0801, Japan Abstract A new stripline-type beam position monitor (BP) system is under development

More information

A Synchrotron Phase Detector for the Fermilab Booster

A Synchrotron Phase Detector for the Fermilab Booster FERMILAB-TM-2234 A Synchrotron Phase Detector for the Fermilab Booster Xi Yang and Rene Padilla Fermi National Accelerator Laboratory Box 5, Batavia IL 651 Abstract A synchrotron phase detector is diagnostic

More information

Thermionic Bunched Electron Sources for High-Energy Electron Cooling

Thermionic Bunched Electron Sources for High-Energy Electron Cooling Thermionic Bunched Electron Sources for High-Energy Electron Cooling Vadim Jabotinski 1, Yaroslav Derbenev 2, and Philippe Piot 3 1 Institute for Physics and Technology (Alexandria, VA) 2 Thomas Jefferson

More information

Beam Position Monitoring System In Accelerators

Beam Position Monitoring System In Accelerators Beam Position Monitoring System In Accelerators Department of Electrical and Information Technology Lund University & European Spallation source Lund, Sweden Elham Vafa Rouhina Behpour Supervisors: Anders

More information

DESIGN AND BEAM DYNAMICS STUDIES OF A MULTI-ION LINAC INJECTOR FOR THE JLEIC ION COMPLEX

DESIGN AND BEAM DYNAMICS STUDIES OF A MULTI-ION LINAC INJECTOR FOR THE JLEIC ION COMPLEX DESIGN AND BEAM DYNAMICS STUDIES OF A MULTI-ION LINAC INJECTOR FOR THE JLEIC ION COMPLEX Speaker: P.N. Ostroumov Contributors: A. Plastun, B. Mustapha and Z. Conway HB2016, July 7, 2016, Malmö, Sweden

More information

RF Cavity Design. Erk Jensen CERN BE/RF. CERN Accelerator School Accelerator Physics (Intermediate level) Darmstadt 2009

RF Cavity Design. Erk Jensen CERN BE/RF. CERN Accelerator School Accelerator Physics (Intermediate level) Darmstadt 2009 RF Cavity Design Erk Jensen CERN BE/RF CERN Accelerator School Accelerator Physics (Intermediate level) Darmstadt 009 CAS Darmstadt '09 RF Cavity Design 1 Overview DC versus RF Basic equations: Lorentz

More information

SIGNAL TRANSMISSION CHARACTERISTICS IN STRIPLINE-TYPE BEAM POSITION MONITOR

SIGNAL TRANSMISSION CHARACTERISTICS IN STRIPLINE-TYPE BEAM POSITION MONITOR Proceedings of IBIC01, Tsukuba, Japan SIGNAL TRANSISSION CHARACTERISTICS IN STRIPLINE-TYPE BEA POSITION ONITOR T. Suwada, KEK, Tsukuba, Ibaraki 305-0801, Japan Abstract A new stripline-type beam position

More information

Maurizio Vretenar Linac4 Project Leader EuCARD-2 Coordinator

Maurizio Vretenar Linac4 Project Leader EuCARD-2 Coordinator Maurizio Vretenar Linac4 Project Leader EuCARD-2 Coordinator Every accelerator needs a linac as injector to pass the region where the velocity of the particles increases with energy. At high energies (relativity)

More information

Improvement in High-Frequency Properties of Beam Halo Monitor using Diamond Detectors for SPring-8 XFEL

Improvement in High-Frequency Properties of Beam Halo Monitor using Diamond Detectors for SPring-8 XFEL 32 nd International Free Electron Laser Conference FEL 2010 Improvement in High-Frequency Properties of Beam Halo Monitor using Diamond Detectors for SPring-8 XFEL August 26, 2010 Thursday, THOC4 1 Hideki

More information

Resonant Excitation of High Order Modes in the 3.9 GHz Cavity of LCLS-II Linac

Resonant Excitation of High Order Modes in the 3.9 GHz Cavity of LCLS-II Linac Resonant Excitation of High Order Modes in the 3.9 GHz Cavity of LCLS-II Linac LCLS-II TN-16-05 9/12/2016 A. Lunin, T. Khabiboulline, N. Solyak, A. Sukhanov, V. Yakovlev April 10, 2017 LCLSII-TN-16-06

More information

EuroTeV High Bandwidth Wall Current Monitor. Alessandro D Elia AB-BI-PI 1-1 -

EuroTeV High Bandwidth Wall Current Monitor. Alessandro D Elia AB-BI-PI 1-1 - EU contract number RII3-CT-2003-506395 CARE/ELAN Document-2007-012 EuroTeV High Bandwidth Wall Current Monitor Alessandro D Elia AB-BI-PI 1-1 - EU contract number RII3-CT-2003-506395 CARE/ELAN Document-2007-012

More information

Present and future beams for SHE research at GSI W. Barth, GSI - Darmstadt

Present and future beams for SHE research at GSI W. Barth, GSI - Darmstadt Present and future beams for SHE research at GSI W. Barth, GSI - Darmstadt 1. Heavy Ion Linear Accelerator UNILAC 2. GSI Accelerator Facility Injector for FAIR 3. Status Quo of the UNILAC-performance 4.

More information

New apparatus for precise synchronous phase shift measurements in storage rings 1

New apparatus for precise synchronous phase shift measurements in storage rings 1 New apparatus for precise synchronous phase shift measurements in storage rings 1 Boris Podobedov and Robert Siemann Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 Measuring

More information

COMMISSIONING AND INITIAL OPERATING EXPERIENCE WITH THE SNS 1 GEV LINAC*

COMMISSIONING AND INITIAL OPERATING EXPERIENCE WITH THE SNS 1 GEV LINAC* COMMISSIONING AND INITIAL OPERATING EXPERIENCE WITH THE SNS 1 GEV LINAC* Stuart Henderson, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge TN, USA Abstract The Spallation Neutron Source

More information

DEVELOPMENT OF OFFNER RELAY OPTICAL SYSTEM FOR OTR MONITOR AT 3-50 BEAM TRANSPORT LINE OF J-PARC

DEVELOPMENT OF OFFNER RELAY OPTICAL SYSTEM FOR OTR MONITOR AT 3-50 BEAM TRANSPORT LINE OF J-PARC Proceedings of IBIC01, Tsukuba, Japan DEVELOPMENT OF OFFNER RELAY OPTICAL SYSTEM FOR OTR MONITOR AT 3-50 BEAM TRANSPORT LINE OF J-PARC M. Tejima #, Y. Hashimoto, T. Toyama, KEK/J-PARC, Tokai, Ibaraki,

More information

Sources & Beam Line Optics

Sources & Beam Line Optics SSRL Scattering Workshop May 16, 2006 Sources & Beam Line Optics Thomas Rabedeau SSRL Beam Line Development Objective/Scope Objective - develop a better understanding of the capabilities and limitations

More information

Experiment 5: Spark Gap Microwave Generator Dipole Radiation, Polarization, Interference W14D2

Experiment 5: Spark Gap Microwave Generator Dipole Radiation, Polarization, Interference W14D2 Experiment 5: Spark Gap Microwave Generator Dipole Radiation, Polarization, Interference W14D2 1 Announcements Week 14 Prepset due Fri at 8:30 am PS 11 due Week 14 Friday at 9 pm in boxes outside 26-152

More information

Physics Design and Technology. Development of CSNS Accelerator

Physics Design and Technology. Development of CSNS Accelerator Physics Design and Technology Development of CSNS Accelerator Second CSNS International Accelerator Technology Advisory Committee Review Meeting Institute of High Energy Physics, CAS January, 2010, Beijing,

More information

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES S. Belomestnykh HPC workshop JLAB, 30 October 2002 Introduction Many aspects of the high-power coupler design, fabrication, preparation, conditioning, integration

More information

FREE ELECTRON LASER RESEARCH IN CHINA

FREE ELECTRON LASER RESEARCH IN CHINA 1996 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or

More information

3 General layout of the XFEL Facility

3 General layout of the XFEL Facility 3 General layout of the XFEL Facility 3.1 Introduction The present chapter provides an overview of the whole European X-Ray Free-Electron Laser (XFEL) Facility layout, enumerating its main components and

More information

Recent Experimental Studies of the Electron Cloud at the Los Alamos PSR

Recent Experimental Studies of the Electron Cloud at the Los Alamos PSR Recent Experimental Studies of the Electron Cloud at the Los Alamos PSR Robert Macek, 9/11/01 - KEK Workshop Co-authors: A. Browman, D. Fitzgerald, R. McCrady, T. Spickermann and T. S. Wang 1 Outline Background:

More information

StandingWaves_P2 [41 marks]

StandingWaves_P2 [41 marks] StandingWaves_P2 [41 marks] A loudspeaker emits sound towards the open end of a pipe. The other end is closed. A standing wave is formed in the pipe. The diagram represents the displacement of molecules

More information

Proton beam for UCN. UCN TAC-Meeting, May 12-13, 2005 Urs Rohrer, beam line physicist

Proton beam for UCN. UCN TAC-Meeting, May 12-13, 2005 Urs Rohrer, beam line physicist Proton beam for UCN UCN TAC-Meeting, May 12-13, 2005 Urs Rohrer, beam line physicist PSI Accelerator Division Department of Large Research Facilities Introduction Important parameters of the PSI proton

More information

ReA3 Marc Doleans (On behalf of the ReA3 team)

ReA3 Marc Doleans (On behalf of the ReA3 team) ReA3 Marc Doleans (On behalf of the ReA3 team) HIAT09, 08/06/2009, Slide 1 Building addition Office building (~100 staff + conf. rooms) ReA3 Experimental area 9100 sqft HIAT09, 08/06/2009, Slide 2 Why

More information

31th March 2017, Annual ILC detector meeting Tohoku University Shunsuke Murai on behalf of FPCCD group

31th March 2017, Annual ILC detector meeting Tohoku University Shunsuke Murai on behalf of FPCCD group 31th March 2017, Annual ILC detector meeting Tohoku University Shunsuke Murai on behalf of FPCCD group 1 Introduction Vertex detector FPCCD Radiation damage Neutron irradiation test Measurement of performance

More information

Low-beta Structures. Maurizio Vretenar CERN BE/RF CAS RF Ebeltoft 2010

Low-beta Structures. Maurizio Vretenar CERN BE/RF CAS RF Ebeltoft 2010 Low-beta Structures Maurizio Vretenar CERN BE/RF CAS RF Ebeltoft. Low-beta: problems and solutions. Coupled-cell accelerating structures 3. Overview and comparison of low-beta structures 4. The Radio Frequency

More information

Introduction to the Physics of Free-Electron Lasers

Introduction to the Physics of Free-Electron Lasers Introduction to the Physics of Free-Electron Lasers 1 Outline Undulator Radiation Radiation from many particles The FEL Instability Advanced FEL concepts The X-Ray Free-Electron Laser For Angstrom level

More information

Vision for the Future: BESSY VSR A Variable Bunch Length Storage Ring

Vision for the Future: BESSY VSR A Variable Bunch Length Storage Ring Vision for the Future: BESSY VSR A Variable Bunch Length Storage Ring Gode Wüstefeld, HZB ESLS, Aarhus, Nov. 23-24, 211 presented by P. Kuske Outline BESSY VSR - Motivation - Limits of short bunches: measurements

More information

ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory

ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory ERL 09 8 th 12 th June 2009 ALICE Accelerators and Lasers In Combined Experiments Brief Description ALICE Superconducting

More information

Lecture 10. Dielectric Waveguides and Optical Fibers

Lecture 10. Dielectric Waveguides and Optical Fibers Lecture 10 Dielectric Waveguides and Optical Fibers Slab Waveguide, Modes, V-Number Modal, Material, and Waveguide Dispersions Step-Index Fiber, Multimode and Single Mode Fibers Numerical Aperture, Coupling

More information

... George Gollin. University of Illinois at Urbana-Champaign and Fermi National Accelerator Laboratory

... George Gollin. University of Illinois at Urbana-Champaign and Fermi National Accelerator Laboratory George Gollin, Damping ring kicker, December 15, 2004 1 I hysics Fourier Series ulse Compression Damping Ring Kicker: a rogress Report George Gollin University of at Urbana-Champaign and Fermi National

More information

Illinois. I Physics. Investigation of TESLA Damping Ring Kickers using the A0 Photoinjector Beam

Illinois. I Physics. Investigation of TESLA Damping Ring Kickers using the A0 Photoinjector Beam George Gollin, Investigation of TESLA Damping Ring Kickers using the A0 hotoinjector Beam 1 I hysics Investigation of TESLA Damping Ring Kickers using the A0 hotoinjector Beam George Gollin Department

More information

Detection of Beam Induced Dipole-Mode Signals in the SLC S-Band Structures* Abstract

Detection of Beam Induced Dipole-Mode Signals in the SLC S-Band Structures* Abstract -. SLAC-PUB-79 June 1997 Detection of Beam nduced Dipole-Mode Signals in the SLC S-Band Structures* M. Seidel, C. Adolphsen, R. Assmann, D.H. Whittum Stanford Linear Accelerator Center, Stanford University,

More information

The Principle of Superposition

The Principle of Superposition The Principle of Superposition If wave 1 displaces a particle in the medium by D 1 and wave 2 simultaneously displaces it by D 2, the net displacement of the particle is simply D 1 + D 2. Standing Waves

More information

Attosecond Diagnostics of Muti GeV Electron Beams Using W Band Deflectors

Attosecond Diagnostics of Muti GeV Electron Beams Using W Band Deflectors Attosecond Diagnostics of Muti GeV Electron Beams Using W Band Deflectors V.A. Dolgashev, P. Emma, M. Dal Forno, A. Novokhatski, S. Weathersby SLAC National Accelerator Laboratory FEIS 2: Femtosecond Electron

More information

VIBRATING WIRE SENSORS FOR BEAM INSTRUMENTATION Suren Arutunian

VIBRATING WIRE SENSORS FOR BEAM INSTRUMENTATION Suren Arutunian VIBRATING WIRE SENSORS FOR BEAM INSTRUMENTATION Suren Arutunian Yerevan Physics Institute Yerevan Physics Institute S.Arutunian, VIBRATING WIRE SENSORS FOR BEAM INSTRUMENTATION BIW 2008, Lake Tahoe, USA

More information

RF System Models and Longitudinal Beam Dynamics

RF System Models and Longitudinal Beam Dynamics RF System Models and Longitudinal Beam Dynamics T. Mastoridis 1, P. Baudrenghien 1, J. Molendijk 1, C. Rivetta 2, J.D. Fox 2 1 BE-RF Group, CERN 2 AARD-Feedback and Dynamics Group, SLAC T. Mastoridis LLRF

More information