Comparative Analysis of HEMT LNA Performance Based On Microstrip Based Design Methodology

Size: px
Start display at page:

Download "Comparative Analysis of HEMT LNA Performance Based On Microstrip Based Design Methodology"

Transcription

1 International Conference on Trends in Electrical, Electronics and Power Engineering (ICTEEP'212) July 15-1, 212 Singapore Comparative Analysis of HEMT LNA Performance Based On Microstrip Based Design Methodology V.J.K.Kishor Sonti and V.Kannan Abstract In this paper, Comparative analysis of HEMT LNA performance was done with two different approaches that are designed using Micro strip based design methodology. Noise analysis has also been done and the design is carried out at a centre frequency of 5.8GHz and the noise bandwidth considered is GHz. Return loss, mismatch loss were obtained in the frequency range of 1GHz to 1GHz.Variation of VSWR w.r.t frequency is also obtained. In this paper the work is carried out using ADS simulation software.. From the results the best design of HEMT LNA was obtained by comparison with the other design models. Results obtained are in greater coherence with the theoretical observations. Keywords HEMT, Microstrip line, Noise, Scattering Parameters, VSWR. H I. INTRODUCTION EMT refers to High electron Mobility Transistor. This is very useful in designing Microwave Monolithic Circuits and also useful for designing circuits at higher frequency range of operation.. Optimization in performance can be obtained by considering various performance issues. Limitations in performance certainly do exist at these frequency ranges, where the influence of shot noise is one major area of concern. This noise influence is certain due to the fact that device parameters like gate resistance are significant in the noise performance of the device at GHz ranges of operation. Novel techniques are needed to lead towards the optimization and microstrip based design methodology is one among many that technology has seen in the recent past. These HEMT S are good because of the fact that they are high speed, radiation hard circuits with lower power consumption values. They are better in performance, when compared with MESFET and have cutting edge, when it comes to cryogenic applications. [1], [7]. An equivalent circuit that can be categorized into the extrinsic and intrinsic parts, that represents microwave HEMTs. The extrinsic part is related to device layout and modeled with linear elements. The intrinsic part is in general described in terms of state functions. These devices are fabricated using various substrates like Gallium Arsenide V.J.K.Kishor Sonti is the Research Scholar of Sathyabama University, Chennai, India ( ; jaykrishna_adc@yahoo.com). V.Kanna is the Principal of Jeppiaar Institute of Technology, Kunnam, Chennai, India (drvkannan123@gmail.com). (GaAS) and Gallium Nitride (GaN). Circuits with different topologies were developed for different applications, particularly at higher frequencies of operation. One such attempt is also made in this paper and this paper is organized as follows. Section I describes the introduction followed by Section II about the structure of the HEMT device, Section III about the design of low noise amplifier using HEMT device with different models. Section IV describes about the results and conclusion. II. HEMT STRUCTURE Typical AlGaN/GaN HEMT device structure is as shown in the Fig.1. The device structure consists of 1 μm thick GaN quantum well channel separated by 1nm of undoped Al.35Ga.5N spacer layer from 1nm thick n-type Al.35Ga.5N supply layer. The function of the un-doped spacer layer is to reduce impurity scattering. The structure of the device is shown with drain and source electrodes as ohmic contacts. The SiO2 layer is about 5-1 nm thick and can be grown by the liquid phase deposition (LPD) process that is a low temperature, low cost and reliable method [2]. Fig.1 Structure of AlGaN/GaN HEMT [2] High Electron Mobility Transistors or AlGaN/GaN MODFETs are high performance devices for their potential 92

2 International Conference on Trends in Electrical, Electronics and Power Engineering (ICTEEP'212) July 15-1, 212 Singapore use at higher frequencies because of the GaN as substrate, which offers thermal stability, and high electron velocity. Another typical model of Pseudomorphic HEMT (or PHEMTs) are rapidly replacing conventional MESFET technology in military and commercial applications requiring low noise figures and high gain, particularly at millimeterwave frequencies. The application of PHEMTs for highefficiency power amplification is gaining popularity. The structure of a basic HEMT is illustrated in Fig. 2. [3]. III. HEMT LNA DESIGN The Design of EE_HEMT LNA design is as shown in Fig.3. Fig.3. Design of EE_HEMT LNA Fig.2 AlGaAs/GaAs HEMT Device Structure [3] This PHEMT technology is used in the Avago MGA 5P8 model.the buffer layer, also typically GaAs, is epitaxially grown on the substrate. Many PHEMT structures contain a super lattice structure to further inhibit substrate conduction The most important point about the channel layer in the HEMT and PHEMT devices is the two dimensional electron gas (2DEG) that results from the band-gap difference between AlxGa1-xAs and GaAs. [3], [4].These substrates are properly chosen in accordance with the requirements or application. The device structure consists of parameters which are sources of noise. Parasitic contribution and channel noise is greater for HEMT structure. The influence of noise is predominant on this device performance at the range of frequencies. Due to higher gain, estimated device noise is greater for the MODFET than MESFET. Shorter channel lengths of MODFET s also contribute to higher noise current. Noise currents are inversely proportional to channel resistance which in turn to gate length. Therefore proper selection of device structure is very important for particular applications. The Design of PHEMT Low Noise Amplifier is as shown in Fig.4. Fig. 4 Design of PHEMT Low Noise Amplifier [] 93

3 International Conference on Trends in Electrical, Electronics and Power Engineering (ICTEEP'212) July 15-1, 212 Singapore In the design shown in Fig.3.Micro strip line based methodology [5] is followed and a line of 4. dielectric constant value is considered with H=1.mm, W =3.mm and L =.79 mm and the centre frequency is considered to be 5.8GHz. EE_HEMT Model is considered. In Fig.4 Avago MGA 5P8 model is considered as it is based on PHEMT technology. []. Operating voltage is considered as 3v dc in both the cases. Impedance matching networks were designed using L and C components with terminations of 5 ohms at input and output. Avago MGA 5P8 model design is based on FR4 substrate. Sweep frequency is considered to be 1 GHz to 1GHz with a step value of 1GHz. The design shown in Fig.3 is also modified with regard to RT Duroid substrate, where the substrate parameters are H =.75mm, dielectric constant of 2.2 and Tan value of.15mm. IV. RESULTS AND CONCLUSION Performance evaluation of the above designs was done by comparison and the results obtained for the design shown in Fig.3 are as shown in Fig. 5,, 7 and Fig.8. Fig.5, Fig. and Fig.7 represents S11, S12 and S21 variation w.r.t frequency respectively. Fig.8 represents variation of NFmin w.r.t frequency, whereas Fig.9 represents variation of noise figure at port 1 and port 2 respectively. Fig.1 represents the variation of VSWR w.r.t frequency. NFmin db(s(2,1)) Fig.7 S21 variation w.r.t frequency db(s(1,1)) Fig. 8 Variation of NFmin w.r.t Frequency Fig.5 S11 variation w.r.t frequency db(s(1,2)) nf 2 1 Fig. S12 variation w.r.t frequency Fig.9 nf(1) and nf(2) w.r.t Frequency 94

4 International Conference on Trends in Electrical, Electronics and Power Engineering (ICTEEP'212) July 15-1, 212 Singapore 12 1 VSWR Fig.1 Variation of VSWR w.r.t Frequency Performance Summary of the designs shown in Fig.3, Fig.4 and also using RT Duroid substrate is shown in Table I. TABLE I PERFORMANCE COMPARISON OF DIFFERENT MODELS OF HEMT LNA HEMT LNA model AVAGO Model EE_HEMT FR4 Model EE_HEMT RT Duroid Model VSWR Return Loss in db Mismatch Loss in db Fig.12 Comparison of Return Loss and Mismatch Loss of different LNA designs From the results various conclusion can be drawn as the maximum gain value obtained for the PHEMT LNA design is 1dB with NFmin having a good range of values between 1GHz and 9.5GHz. VSWR variation w.r.t frequency also suggests that the design is good in the frequency range of 2 to 4 and 7 to 9.5GHz. Return loss obtained is about 4dB at the centre frequency. As the noise influence is more at higher frequencies the reason for this behavior is because of the shot noise, which is inherent within the device. Fig.11 and Fig.12 describes the performance comparison of different LNA models designed using HEMT devices. It can also be inferred that the influence of noise at higher frequencies is evident in all the three models and AVAGO MGA 5P8 model based HEMT LNA design is best when compared with the other models, whereas EE_HEMT RT duroid model based LNA design is better in performance, when compared with its counterpart designed using FR4 substrate. REFERENCES Fig.11 Comparison VSWR values of different LNA designs [1] Mark C. Lau, Virginia Polytechnic Institute and State University, Small Signal Equivalent Circuit Extraction From A Gallium Arsenide Mesfet Device, [2] Hasina F. Huq, Syed K. Islam,Self-Aligned AlGaN/GaN MODFET with Liquid Phase Deposited Oxide Gate formicrowave Power Applications, Department of Electrical and Computer Engineering, The University of Tennessee, IEEE@25. [3] L. Aucoin, HEMTs and PHEMTs, parts.jpl.nasa.gov/mmic/3-iv.pdf [4] B.VanZeghbroeck, Principles of semiconductor devices, ecee.colorado.edu/~bart/book/book/chapter3/pdf/ch3_.pdf. [5] ZHANG Hualiang, The Design of Low Noise Amplifier Using ADS, December 22, 24. [] V.J.K.Kishor Sonti, V.Kannan, Performance Analysis Of Modfet LNA, NCVSC, 212. [7] Peter J. Rudge, Robert E. Miles, Michael B. Steer, Fellow, IEEE, and Christopher M. Snowden, Fellow, IEEE, Investigation Into Intermodulation Distortion in HEMTs Using a Quasi-2-D Physical Model, IEEE transactions on microwave theory and techniques, Vol. 49, no. 12, December

5 International Conference on Trends in Electrical, Electronics and Power Engineering (ICTEEP'212) July 15-1, 212 Singapore This author was born in Bhimavaram, Andhra Pradesh, Inida in He received Master Degree in VLSI Design from Sathyabama University in the year 27. Currently he is doing Ph.D in Sathyabama University. He is working as Assistant Professor in Department of VLSI Design in Sathyabama University. He has 29 Research publications in National / International Journals / Conferences to his credit. His interested areas of research are VLSI Design, Solid State Electronics, and Mixed Signal circuits. He is a life member of Instrument Society of India and Indian Society for Non destructive testing. He was born in Ariyalore, Tamilnadu, India in 197. He received his Bachelor Degree in Electronics and Communication Engineering from Madurai Kamarajar University in the year1991, Masters Degree in Electronics and control from BITS, Pilani in the year 199 and Ph.D., from Sathyabama University, Chennai, in the year 2. His interested areas of research are Optoelectronic Devices,VLSI Design, Nano Electronics, Digital Signal Processing and Image Processing. He has 157 Research publications in National / International Journals / Conferences to his credit. He has 2 years of experience in teaching and presently he is working as Principal, Jeppiaar Institute of Technology, Chennai, India, He is a life member of ISTE. 9

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1 Introduction of Device Technology Digital wireless communication system has become more and more popular in recent years due to its capability for both voice and data communication.

More information

High Gain Low Noise Amplifier Design Using Active Feedback

High Gain Low Noise Amplifier Design Using Active Feedback Chapter 6 High Gain Low Noise Amplifier Design Using Active Feedback In the previous two chapters, we have used passive feedback such as capacitor and inductor as feedback. This chapter deals with the

More information

High Power Wideband AlGaN/GaN HEMT Feedback. Amplifier Module with Drain and Feedback Loop. Inductances

High Power Wideband AlGaN/GaN HEMT Feedback. Amplifier Module with Drain and Feedback Loop. Inductances High Power Wideband AlGaN/GaN HEMT Feedback Amplifier Module with Drain and Feedback Loop Inductances Y. Chung, S. Cai, W. Lee, Y. Lin, C. P. Wen, Fellow, IEEE, K. L. Wang, Fellow, IEEE, and T. Itoh, Fellow,

More information

The Design & Simulation of LNA for GHz Using AWR Microwave Office

The Design & Simulation of LNA for GHz Using AWR Microwave Office The Design & Simulation of LNA for 2.4-2.5 GHz Using AWR Microwave Office 1 Osman Selcuk; 2 Hamid Torpi 1 Department of Computer Science, King Graduate School Monroe College New Rochelle, NY 11377, USA

More information

Small Signal Modelling of InGaAs/InAlAs phemt for low noise applications

Small Signal Modelling of InGaAs/InAlAs phemt for low noise applications Small Signal Modelling of InGaAs/InAlAs phemt for low noise applications N. Ahmad and M. Mohamad Isa School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 26 Arau, Perlis,

More information

DESIGN AND ANALYSIS OF RF LOW NOISE AND HIGH GAIN AMPLIFIER FOR WIRELESS COMMUNICATION

DESIGN AND ANALYSIS OF RF LOW NOISE AND HIGH GAIN AMPLIFIER FOR WIRELESS COMMUNICATION DESIGN AND ANALYSIS OF RF LOW NOISE AND HIGH GAIN AMPLIFIER FOR WIRELESS COMMUNICATION Parkavi N. 1 and Ravi T. 1 VLSI Design, Sathyabama University, Chennai, India Department of Electronics and Communication

More information

A 3 TO 5GHZ COMMON SOURCE LOW NOISE AMPLIFIER USING 180NM CMOS TECHNOLOGY FOR WIRELESS SYSTEMS

A 3 TO 5GHZ COMMON SOURCE LOW NOISE AMPLIFIER USING 180NM CMOS TECHNOLOGY FOR WIRELESS SYSTEMS International Journal of Computer Engineering and Applications, Volume V, Issue III, March 14 www.ijcea.com ISSN 2321-3469 A 3 TO 5GHZ COMMON SOURCE LOW NOISE AMPLIFIER USING 180NM CMOS TECHNOLOGY FOR

More information

Comparative Analysis of FR4 and RT-duroid Materials Antenna for Wireless Application

Comparative Analysis of FR4 and RT-duroid Materials Antenna for Wireless Application Vol. 2, No. 2, 2016, 1-10 Comparative Analysis of FR4 and RT-duroid Materials Antenna for Wireless Application a G B Waghmare, b A J Nadaf c P M Korake and * M K Bhanarkar a,b,c, * Communications Research

More information

Gallium nitride (GaN)

Gallium nitride (GaN) 80 Technology focus: GaN power electronics Vertical, CMOS and dual-gate approaches to gallium nitride power electronics US research company HRL Laboratories has published a number of papers concerning

More information

A GaAs/AlGaAs/InGaAs PSEUDOMORPHIC HEMT STRUCTURE FOR HIGH SPEED DIGITAL CIRCUITS

A GaAs/AlGaAs/InGaAs PSEUDOMORPHIC HEMT STRUCTURE FOR HIGH SPEED DIGITAL CIRCUITS IJRET: International Journal of Research in Engineering and Technology eissn: 239-63 pissn: 232-738 A GaAs/AlGaAs/InGaAs PSEUDOMORPHIC HEMT STRUCTURE FOR HIGH SPEED DIGITAL CIRCUITS Parita Mehta, Lochan

More information

Wide-Band Two-Stage GaAs LNA for Radio Astronomy

Wide-Band Two-Stage GaAs LNA for Radio Astronomy Progress In Electromagnetics Research C, Vol. 56, 119 124, 215 Wide-Band Two-Stage GaAs LNA for Radio Astronomy Jim Kulyk 1,GeWu 2, Leonid Belostotski 2, *, and James W. Haslett 2 Abstract This paper presents

More information

III-Nitride microwave switches Grigory Simin

III-Nitride microwave switches Grigory Simin Microwave Microelectronics Laboratory Department of Electrical Engineering, USC Research Focus: - Wide Bandgap Microwave Power Devices and Integrated Circuits - Physics, Simulation, Design and Characterization

More information

CHAPTER 2 HEMT DEVICES AND BACKGROUND

CHAPTER 2 HEMT DEVICES AND BACKGROUND CHAPTER 2 HEMT DEVICES AND BACKGROUND 2.1 Overview While the most widespread application of GaN-based devices is in the fabrication of blue and UV LEDs, the fabrication of microwave power devices has attracted

More information

Application Note 5057

Application Note 5057 A 1 MHz to MHz Low Noise Feedback Amplifier using ATF-4143 Application Note 7 Introduction In the last few years the leading technology in the area of low noise amplifier design has been gallium arsenide

More information

Simulation of GaAs MESFET and HEMT Devices for RF Applications

Simulation of GaAs MESFET and HEMT Devices for RF Applications olume, Issue, January February 03 ISSN 78-6856 Simulation of GaAs MESFET and HEMT Devices for RF Applications Dr.E.N.GANESH Prof, ECE DEPT. Rajalakshmi Institute of Technology ABSTRACT: Field effect transistor

More information

Modeling of CPW Based Passive Networks using Sonnet Simulations for High Efficiency Power Amplifier MMIC Design

Modeling of CPW Based Passive Networks using Sonnet Simulations for High Efficiency Power Amplifier MMIC Design ACES JOURNAL, VOL. 26, NO. 2, FEBRUARY 211 131 Modeling of CPW Based Passive Networks using Simulations for High Efficiency Power Amplifier MMIC Design Valiallah Zomorrodian, U. K. Mishra, and Robert A.

More information

A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier

A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier 852 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 7, JULY 2002 A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier Ryuichi Fujimoto, Member, IEEE, Kenji Kojima, and Shoji Otaka Abstract A 7-GHz low-noise amplifier

More information

Development of Microwave and Terahertz Detectors Utilizing AlN/GaN High Electron Mobility Transistors

Development of Microwave and Terahertz Detectors Utilizing AlN/GaN High Electron Mobility Transistors Development of Microwave and Terahertz Detectors Utilizing AlN/GaN High Electron Mobility Transistors L. Liu 1, 2,*, B. Sensale-Rodriguez 1, Z. Zhang 1, T. Zimmermann 1, Y. Cao 1, D. Jena 1, P. Fay 1,

More information

Uneven Doherty Amplifier Based on GaN HEMTs Characteristic

Uneven Doherty Amplifier Based on GaN HEMTs Characteristic 11 International Conference on Circuits, System and Simulation IPCSIT vol.7 (11) (11) IACSIT Press, Singapore Uneven Doherty Amplifier Based on GaN HEMTs Characteristic K. Pushyaputra, T. Pongthavornkamol,

More information

& ) > 35W, 33-37% PAE

& ) > 35W, 33-37% PAE Outline Status of Linear and Nonlinear Modeling for GaN MMICs Presented at IMS11 June, 11 Walter R. Curtice, Ph. D. Consulting www.curtice.org State of the Art Modeling considerations, types of models,

More information

Design of a Broadband HEMT Mixer for UWB Applications

Design of a Broadband HEMT Mixer for UWB Applications Indian Journal of Science and Technology, Vol 9(26), DOI: 10.17485/ijst/2016/v9i26/97253, July 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Design of a Broadband HEMT Mixer for UWB Applications

More information

Modeling and Simulation of Unilateral power gain for GaN/AlGaN HEMT

Modeling and Simulation of Unilateral power gain for GaN/AlGaN HEMT IN No: 39-4893 I Vol-4, Issue-4, August 16 Modeling and imulation of Unilateral power gain for GaN/AlGaN HEMT Vidashree.L, PG cholar, Department of Electronics and communication Daananda agar college of

More information

A 77 GHz mhemt MMIC Chip Set for Automotive Radar Systems

A 77 GHz mhemt MMIC Chip Set for Automotive Radar Systems A 77 GHz mhemt MMIC Chip Set for Automotive Radar Systems Dong Min Kang, Ju Yeon Hong, Jae Yeob Shim, Jin-Hee Lee, Hyung-Sup Yoon, and Kyung Ho Lee A monolithic microwave integrated circuit (MMIC) chip

More information

Recent Developments in Compound Semiconductor Microwave Power Transistor Technology

Recent Developments in Compound Semiconductor Microwave Power Transistor Technology Recent Developments in Compound Semiconductor Microwave Power Transistor Technology Christopher M. Snowden Filtronic plc, Salts Mill Road, Shipley, BD18 3TT UK and School of Electronic and Electrical Engineering,

More information

Performance Comparison of RF CMOS Low Noise Amplifiers in 0.18-µm technology scale

Performance Comparison of RF CMOS Low Noise Amplifiers in 0.18-µm technology scale Performance Comparison of RF CMOS Low Noise Amplifiers in 0.18-µm technology scale M.Sumathi* 1, S.Malarvizhi 2 *1 Research Scholar, Sathyabama University, Chennai -119,Tamilnadu sumagopi206@gmail.com

More information

International Workshop on Nitride Semiconductors (IWN 2016)

International Workshop on Nitride Semiconductors (IWN 2016) International Workshop on Nitride Semiconductors (IWN 2016) Sheng Jiang The University of Sheffield Introduction The 2016 International Workshop on Nitride Semiconductors (IWN 2016) conference is held

More information

1 of 7 12/20/ :04 PM

1 of 7 12/20/ :04 PM 1 of 7 12/20/2007 11:04 PM Trusted Resource for the Working RF Engineer [ C o m p o n e n t s ] Build An E-pHEMT Low-Noise Amplifier Although often associated with power amplifiers, E-pHEMT devices are

More information

Design of Gate-All-Around Tunnel FET for RF Performance

Design of Gate-All-Around Tunnel FET for RF Performance Drain Current (µa/µm) International Journal of Computer Applications (97 8887) International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing ICIIIOSP-213 Design

More information

87x. MGA GHz 3 V Low Current GaAs MMIC LNA. Data Sheet

87x. MGA GHz 3 V Low Current GaAs MMIC LNA. Data Sheet MGA-876 GHz V Low Current GaAs MMIC LNA Data Sheet Description Avago s MGA-876 is an economical, easy-to-use GaAs MMIC amplifier that offers low noise and excellent gain for applications from to GHz. Packaged

More information

Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials

Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials Kjeld Pedersen Department of Physics and Nanotechnology, AAU SEMPEL Semiconductor Materials for Power Electronics

More information

Surface Mount SOT-363 (SC-70) Package. Pin Connections and Package Marking GND. V dd. Note: Package marking provides orientation and identification.

Surface Mount SOT-363 (SC-70) Package. Pin Connections and Package Marking GND. V dd. Note: Package marking provides orientation and identification. GHz V Low Current GaAs MMIC LNA Technical Data MGA-876 Features Ultra-Miniature Package.6 db Min. Noise Figure at. GHz. db Gain at. GHz Single + V or V Supply,. ma Current Applications LNA or Gain Stage

More information

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Fourth Edition PAUL R. GRAY University of California, Berkeley PAUL J. HURST University of California, Davis STEPHEN H. LEWIS University of California,

More information

Dual-band LNA Design for Wireless LAN Applications. 2.4 GHz LNA 5 GHz LNA Min Typ Max Min Typ Max

Dual-band LNA Design for Wireless LAN Applications. 2.4 GHz LNA 5 GHz LNA Min Typ Max Min Typ Max Dual-band LNA Design for Wireless LAN Applications White Paper By: Zulfa Hasan-Abrar, Yut H. Chow Introduction Highly integrated, cost-effective RF circuitry is becoming more and more essential to the

More information

Investigations on Compound Semiconductor High Electron Mobility Transistor (HEMT)

Investigations on Compound Semiconductor High Electron Mobility Transistor (HEMT) Investigations on Compound Semiconductor High Electron Mobility Transistor (HEMT) Nov. 26, 2004 Outline I. Introduction: Why needs high-frequency devices? Why uses compound semiconductors? How to enable

More information

A WIDEBAND RECTANGULAR MICROSTRIP ANTENNA WITH CAPACITIVE FEEDING

A WIDEBAND RECTANGULAR MICROSTRIP ANTENNA WITH CAPACITIVE FEEDING A WIDEBAND RECTANGULAR MICROSTRIP ANTENNA WITH CAPACITIVE FEEDING Hind S. Hussain Department of Physics, College of Science, Al-Nahrain University, Baghdad, Iraq E-Mail: hindalrawi@yahoo.com ABSTRACT A

More information

MODELLING OF ADVANCED SUBMICRON GATE InGaAs/InAlAs phemts AND RTD DEVICES FOR VERY HIGH FREQUENCY APPLICATIONS

MODELLING OF ADVANCED SUBMICRON GATE InGaAs/InAlAs phemts AND RTD DEVICES FOR VERY HIGH FREQUENCY APPLICATIONS MODELLING OF ADVANCED SUBMICRON GATE InGaAs/InAlAs phemts AND RTD DEVICES FOR VERY HIGH FREQUENCY APPLICATIONS A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy

More information

Application Note 5499

Application Note 5499 MGA-31389 and MGA-31489 High-Gain Driver Amplifier Using Avago MGA-31389 and MGA-31489 Application Note 5499 Introduction The MGA-31389 and MGA-31489 from Avago Technologies are.1 Watt flat-gain driver

More information

10W Ultra-Broadband Power Amplifier

10W Ultra-Broadband Power Amplifier (TH1B-01 ) 10W Ultra-Broadband Power Amplifier Amin K. Ezzeddine and Ho. C. Huang AMCOM Communications, Inc 401 Professional Drive, Gaithersburg, MD 20879, USA Tel: 301-353-8400 Email: amin@amcomusa.com

More information

Investigating the Electronic Behavior of Nano-materials From Charge Transport Properties to System Response

Investigating the Electronic Behavior of Nano-materials From Charge Transport Properties to System Response Investigating the Electronic Behavior of Nano-materials From Charge Transport Properties to System Response Amit Verma Assistant Professor Department of Electrical Engineering & Computer Science Texas

More information

Design of Enhancement Mode Single-gate and Double-gate Multi-channel GaN HEMT with Vertical Polarity Inversion Heterostructure

Design of Enhancement Mode Single-gate and Double-gate Multi-channel GaN HEMT with Vertical Polarity Inversion Heterostructure MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Design of Enhancement Mode Single-gate and Double-gate Multi-channel GaN HEMT with Vertical Polarity Inversion Heterostructure Feng, P.; Teo,

More information

A Miniaturized Multi-Channel TR Module Design Based on Silicon Substrate

A Miniaturized Multi-Channel TR Module Design Based on Silicon Substrate Progress In Electromagnetics Research Letters, Vol. 74, 117 123, 2018 A Miniaturized Multi-Channel TR Module Design Based on Silicon Substrate Jun Zhou 1, 2, *, Jiapeng Yang 1, Donglei Zhao 1, and Dongsheng

More information

LECTURE 6 BROAD-BAND AMPLIFIERS

LECTURE 6 BROAD-BAND AMPLIFIERS ECEN 54, Spring 18 Active Microwave Circuits Zoya Popovic, University of Colorado, Boulder LECTURE 6 BROAD-BAND AMPLIFIERS The challenge in designing a broadband microwave amplifier is the fact that the

More information

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Fourth Edition PAUL R. GRAY University of California, Berkeley PAUL J. HURST University of California, Davis STEPHEN H. LEWIS University of California,

More information

mhemt based MMICs, Modules, and Systems for mmwave Applications Axel Hülsmann Axel Tessmann Jutta Kühn Oliver Ambacher

mhemt based MMICs, Modules, and Systems for mmwave Applications Axel Hülsmann Axel Tessmann Jutta Kühn Oliver Ambacher mhemt based MMICs, Modules, and Systems for mmwave Applications Christaweg 54 79114 Freiburg, Germany +49 761 5951 4692 info@ondosense.com www.ondosense.com Axel Hülsmann Axel Tessmann Jutta Kühn Oliver

More information

Design of Low Noise Amplifier Using Feedback and Balanced Technique for WLAN Application

Design of Low Noise Amplifier Using Feedback and Balanced Technique for WLAN Application Available online at www.sciencedirect.com Procedia Engineering 53 ( 2013 ) 323 331 Malaysian Technical Universities Conference on Engineering & Technology 2012, MUCET 2012 Part 1- Electronic and Electrical

More information

3-7 Nano-Gate Transistor World s Fastest InP-HEMT

3-7 Nano-Gate Transistor World s Fastest InP-HEMT 3-7 Nano-Gate Transistor World s Fastest InP-HEMT SHINOHARA Keisuke and MATSUI Toshiaki InP-based InGaAs/InAlAs high electron mobility transistors (HEMTs) which can operate in the sub-millimeter-wave frequency

More information

High-Efficiency L-Band 200-W GaN HEMT for Space Applications

High-Efficiency L-Band 200-W GaN HEMT for Space Applications INFOCOMMUNICATIONS High-Efficiency L-Band 200-W GaN HEMT for Space Applications Ken OSAWA*, Hiroyuki YOSHIKOSHI, Atsushi NITTA, Tsuneyuki TANAKA, Eizo MITANI, and Tomio SATOH ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

More information

DESIGN ANALYSIS AND COMPARATIVE STUDY OF RF RECEIVER FRONT-ENDS IN 0.18-µM CMOS

DESIGN ANALYSIS AND COMPARATIVE STUDY OF RF RECEIVER FRONT-ENDS IN 0.18-µM CMOS International Journal of Electrical and Electronics Engineering Research Vol.1, Issue 1 (2011) 41-56 TJPRC Pvt. Ltd., DESIGN ANALYSIS AND COMPARATIVE STUDY OF RF RECEIVER FRONT-ENDS IN 0.18-µM CMOS M.

More information

CHAPTER 4 DESIGN OF BROADBAND MICROSTRIP ANTENNA USING PARASITIC STRIPS WITH BAND-NOTCH CHARACTERISTIC

CHAPTER 4 DESIGN OF BROADBAND MICROSTRIP ANTENNA USING PARASITIC STRIPS WITH BAND-NOTCH CHARACTERISTIC CHAPTER 4 DESIGN OF BROADBAND MICROSTRIP ANTENNA USING PARASITIC STRIPS WITH BAND-NOTCH CHARACTERISTIC 4.1 INTRODUCTION Wireless communication technology has been developed very fast in the last few years.

More information

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications International Journal of Electronics Engineering, 2(1), 2010, pp. 69-73 New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications A.C.Shagar 1 & R.S.D.Wahidabanu 2 1 Department of

More information

EDC UNIT IV- Transistor and FET Characteristics EDC Lesson 9- ", Raj Kamal, 1

EDC UNIT IV- Transistor and FET Characteristics EDC Lesson 9- , Raj Kamal, 1 EDC UNIT IV- Transistor and FET Characteristics Lesson-9: JFET and Construction of JFET 2008 EDC Lesson 9- ", Raj Kamal, 1 1. Transistor 2008 EDC Lesson 9- ", Raj Kamal, 2 Transistor Definition The transferred-resistance

More information

EE4101E: RF Communications. Low Noise Amplifier Design Using ADS (Report)

EE4101E: RF Communications. Low Noise Amplifier Design Using ADS (Report) EE4101E: RF Communications Low Noise Amplifier Design Using ADS (Report) SEM 1: 2014/2015 Student 1 Name Student 2 Name : Ei Ei Khin (A0103801Y) : Kyaw Soe Hein (A0103612Y) Page 1 of 29 INTRODUCTION The

More information

An Accurately Scalable Small-Signal Model for Millimeter-Wave HEMTs Based on Electromagnetic Simulation

An Accurately Scalable Small-Signal Model for Millimeter-Wave HEMTs Based on Electromagnetic Simulation Progress In Electromagnetics esearch M, Vol. 39, 77 84, 2014 An Accurately Scalable Small-Signal Model for Millimeter-Wave HEMTs Based on Electromagnetic Simulation Weibo Wang 1, 2, *, Zhigong Wang 1,XumingYu

More information

INTRODUCTION: Basic operating principle of a MOSFET:

INTRODUCTION: Basic operating principle of a MOSFET: INTRODUCTION: Along with the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available whose Gate input is electrically insulated from the main current carrying

More information

L/S-Band 0.18 µm CMOS 6-bit Digital Phase Shifter Design

L/S-Band 0.18 µm CMOS 6-bit Digital Phase Shifter Design 6th International Conference on Mechatronics, Computer and Education Informationization (MCEI 06) L/S-Band 0.8 µm CMOS 6-bit Digital Phase Shifter Design Xinyu Sheng, a and Zhangfa Liu, b School of Electronic

More information

RF and MICROWAVE SEMICONDUCTOR DEVICE HANDBOOK. Editor-in-Chief MIKE GOLIO. (g) CRC PRESS. Boca Raton London New York Washington, D.C.

RF and MICROWAVE SEMICONDUCTOR DEVICE HANDBOOK. Editor-in-Chief MIKE GOLIO. (g) CRC PRESS. Boca Raton London New York Washington, D.C. RF and MICROWAVE SEMICONDUCTOR DEVICE HANDBOOK Editor-in-Chief MIKE GOLIO (g) CRC PRESS Boca Raton London New York Washington, D.C. Contents 1 Varactors Jan Stake 1.1 Introduction 1-1 1.2 Basic Concepts

More information

K-BAND HARMONIC DIELECTRIC RESONATOR OS- CILLATOR USING PARALLEL FEEDBACK STRUC- TURE

K-BAND HARMONIC DIELECTRIC RESONATOR OS- CILLATOR USING PARALLEL FEEDBACK STRUC- TURE Progress In Electromagnetics Research Letters, Vol. 34, 83 90, 2012 K-BAND HARMONIC DIELECTRIC RESONATOR OS- CILLATOR USING PARALLEL FEEDBACK STRUC- TURE Y. C. Du *, Z. X. Tang, B. Zhang, and P. Su School

More information

The Design and Simulation of Radio Frequency Narrow Band Low Noise Amplifier with Input, Output, Intermediate Matching

The Design and Simulation of Radio Frequency Narrow Band Low Noise Amplifier with Input, Output, Intermediate Matching The Design and Simulation of Radio Frequency Narrow Band Low Noise Amplifier with Input, Output, Intermediate Matching Pramod K B Kumaraswamy H.V 1, Praveen K B 2 Department of Electronics Engineering

More information

Simulation and Design Analysis of Integrated Receiver System for Millimeter Wave Applications

Simulation and Design Analysis of Integrated Receiver System for Millimeter Wave Applications Simulation and Design Analysis of Integrated Receiver System for Millimeter Wave Applications Rekha 1, Rajesh Kumar 2, Dr. Raj Kumar 3 M.R.K.I.E.T., REWARI ABSTRACT This paper presents the simulation and

More information

ABSTRACT. Gallium Nitride (GaN) is beginning to emerge as an alternative to the Gallium

ABSTRACT. Gallium Nitride (GaN) is beginning to emerge as an alternative to the Gallium ABSTRACT Title of Dissertation: INVESTIGATION OF RELIABILITY IN GALLIUM NITRIDE HIGH ELECTRON MOBILITY TRANSISTORS USING EQUIVALENT CIRCUIT MODELS FOR USE IN HIGH POWER, HIGH FREQUENCY MICROWAVE AMPLIFIERS

More information

GaN: Applications: Optoelectronics

GaN: Applications: Optoelectronics GaN: Applications: Optoelectronics GaN: Applications: Optoelectronics - The GaN LED industry is >10 billion $ today. - Other optoelectronic applications of GaN include blue lasers and UV emitters and detectors.

More information

This article describes the design of a multiband,

This article describes the design of a multiband, A Low-Noise Amplifier for 2 GHz Applications Using the NE334S01 Transistor By Ulrich Delpy NEC Electronics (Europe) This article describes the design of a multiband, low-noise amplifier (LNA) using the

More information

Microwave Office Application Note

Microwave Office Application Note Microwave Office Application Note INTRODUCTION Wireless system components, including gallium arsenide (GaAs) pseudomorphic high-electron-mobility transistor (phemt) frequency doublers, quadruplers, and

More information

Department of Electrical Engineering University of North Texas

Department of Electrical Engineering University of North Texas Name: Shabuktagin Photon Khan UNT ID: 10900555 Instructor s Name: Professor Hualiang Zhang Course Name: Antenna Theory and Design Course ID: EENG 5420 Email: khan.photon@gmail.com Department of Electrical

More information

A 24-GHZ ACTIVE PATCH ARRAY

A 24-GHZ ACTIVE PATCH ARRAY A 24-GHZ ACTIVE PATCH ARRAY Dai Lu, Milan Kovacevic, Jon Hacker and David Rutledge Department of Electrical Engineering California Institute of Technology Pasadena, CA 91125 Abstract This paper presents

More information

Microwave Office Application Note

Microwave Office Application Note Microwave Office Application Note INTRODUCTION Wireless system components, including gallium arsenide (GaAs) pseudomorphic high-electron-mobility transistor (phemt) frequency doublers, quadruplers, and

More information

Design of Low Noise Amplifier for Wimax Application

Design of Low Noise Amplifier for Wimax Application IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 6, Issue 1 (May. - Jun. 2013), PP 87-96 Design of Low Noise Amplifier for Wimax Application

More information

Wide Band-Gap Power Device

Wide Band-Gap Power Device Wide Band-Gap Power Device 1 Contents Revisit silicon power MOSFETs Silicon limitation Silicon solution Wide Band-Gap material Characteristic of SiC Power Device Characteristic of GaN Power Device 2 1

More information

Carbon Nanotube Bumps for Thermal and Electric Conduction in Transistor

Carbon Nanotube Bumps for Thermal and Electric Conduction in Transistor Carbon Nanotube Bumps for Thermal and Electric Conduction in Transistor V Taisuke Iwai V Yuji Awano (Manuscript received April 9, 07) The continuous miniaturization of semiconductor chips has rapidly improved

More information

A new Hetero-material Stepped Gate (HSG) SOI LDMOS for RF Power Amplifier Applications

A new Hetero-material Stepped Gate (HSG) SOI LDMOS for RF Power Amplifier Applications A new Hetero-material Stepped Gate (HSG) SOI LDMOS for RF Power Amplifier Applications Radhakrishnan Sithanandam and M. Jagadesh Kumar, Senior Member, IEEE Department of Electrical Engineering Indian Institute

More information

Quasi Self Complementary (QSC) Ultra-Wide Band (UWB) Antenna Integrated with Bluetooth

Quasi Self Complementary (QSC) Ultra-Wide Band (UWB) Antenna Integrated with Bluetooth Quasi Self Complementary (QSC) Ultra-Wide Band (UWB) Antenna Integrated with Bluetooth Sk.Jani Basha 1, U.Rama Krishna 2 1 Communication & signal processing M. Tech, 2 Assistant Professor in ECE Department,

More information

High Speed pin Photodetector with Ultra-Wide Spectral Responses

High Speed pin Photodetector with Ultra-Wide Spectral Responses High Speed pin Photodetector with Ultra-Wide Spectral Responses C. Tam, C-J Chiang, M. Cao, M. Chen, M. Wong, A. Vazquez, J. Poon, K. Aihara, A. Chen, J. Frei, C. D. Johns, Ibrahim Kimukin, Achyut K. Dutta

More information

General look back at MESFET processing. General principles of heterostructure use in FETs

General look back at MESFET processing. General principles of heterostructure use in FETs SMA5111 - Compound Semiconductors Lecture 11 - Heterojunction FETs - General HJFETs, HFETs Last items from Lec. 10 Depletion mode vs enhancement mode logic Complementary FET logic (none exists, or is likely

More information

Education on CMOS RF Circuit Reliability

Education on CMOS RF Circuit Reliability Education on CMOS RF Circuit Reliability Jiann S. Yuan 1 Abstract This paper presents a design methodology to study RF circuit performance degradations due to hot carrier and soft breakdown. The experimental

More information

Simulation Of GaN Based MIS Varactor

Simulation Of GaN Based MIS Varactor University of South Carolina Scholar Commons Theses and Dissertations 2016 Simulation Of GaN Based MIS Varactor Bojidha Babu University of South Carolina Follow this and additional works at: http://scholarcommons.sc.edu/etd

More information

PHYSICS OF SEMICONDUCTOR DEVICES

PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES by J. P. Colinge Department of Electrical and Computer Engineering University of California, Davis C. A. Colinge Department of Electrical

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT NAME & CODE: EC2403 & RF AND MICROWAVE ENGINEERING UNIT I

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT NAME & CODE: EC2403 & RF AND MICROWAVE ENGINEERING UNIT I FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai -625 020 An ISO 9001:2008 Certified Institution DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

More information

Design and Layout of a X-Band MMIC Power Amplifier in a Phemt Technology

Design and Layout of a X-Band MMIC Power Amplifier in a Phemt Technology Design and Layout of a X-Band MMIC Power Amplifier in a Phemt Technology Renbin Dai, and Rana Arslan Ali Khan Abstract The design of Class A and Class AB 2-stage X band Power Amplifier is described in

More information

A New Topology of Load Network for Class F RF Power Amplifiers

A New Topology of Load Network for Class F RF Power Amplifiers A New Topology of Load Network for Class F RF Firas Mohammed Ali Al-Raie Electrical Engineering Department, University of Technology/Baghdad. Email: 30204@uotechnology.edu.iq Received on:12/1/2016 & Accepted

More information

UNIT-4. Microwave Engineering

UNIT-4. Microwave Engineering UNIT-4 Microwave Engineering Microwave Solid State Devices Two problems with conventional transistors at higher frequencies are: 1. Stray capacitance and inductance. - remedy is interdigital design. 2.Transit

More information

Application Note 5460

Application Note 5460 MGA-89 High Linearity Amplifier with Low Operating Current for 9 MHz to. GHz Applications Application Note 6 Introduction The Avago MGA-89 is a high dynamic range amplifier designed for applications in

More information

FABRICATION OF SELF-ALIGNED T-GATE AlGaN/GaN HIGH

FABRICATION OF SELF-ALIGNED T-GATE AlGaN/GaN HIGH International Journal of High Speed Electronics and Systems World Scientific Vol. 14, No. 3 (24) 85-89 wworldscientific World Scientific Publishing Company www.worldsclentific.com FABRICATION OF SELF-ALIGNED

More information

DESCRIPTION. APPLICATIONS Microwave Radios Military Radios VSAT Telecom Infrastructure Test Equipment

DESCRIPTION. APPLICATIONS Microwave Radios Military Radios VSAT Telecom Infrastructure Test Equipment KX105 15 W, 6.0 GHz, GaN HEMT Transistor DESCRIPTION The KX105 is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) transistor in a Surface-Mount Technology (SMT) package for high reliability

More information

OMMIC Innovating with III-V s OMMIC OMMIC

OMMIC Innovating with III-V s OMMIC OMMIC Innovating with III-V s Innovating with III-V s Mixed D/A ED02AH process for radar control functions and new GaN/Si for hyper-frequency power applications Innovating with III-V s Europe s Independant IIIV

More information

Customized probe card for on-wafer testing of AlGaN/GaN power transistors

Customized probe card for on-wafer testing of AlGaN/GaN power transistors Customized probe card for on-wafer testing of AlGaN/GaN power transistors R. Venegas 1, K. Armendariz 2, N. Ronchi 1 1 imec, 2 Celadon Systems Inc. Outline Introduction GaN for power switching applications

More information

Simulation of GaAs phemt Ultra-Wideband Low Noise Amplifier using Cascaded, Balanced and Feedback Amplifier Techniques

Simulation of GaAs phemt Ultra-Wideband Low Noise Amplifier using Cascaded, Balanced and Feedback Amplifier Techniques 2011 International Conference on Circuits, System and Simulation IPCSIT vol.7 (2011) (2011) IACSIT Press, Singapore Simulation of GaAs phemt Ultra-Wideband Low Noise Amplifier using Cascaded, Balanced

More information

Silicon-on-Sapphire Technology: A Competitive Alternative for RF Systems

Silicon-on-Sapphire Technology: A Competitive Alternative for RF Systems 71 Silicon-on-Sapphire Technology: A Competitive Alternative for RF Systems Isaac Lagnado and Paul R. de la Houssaye SSC San Diego S. J. Koester, R. Hammond, J. O. Chu, J. A. Ott, P. M. Mooney, L. Perraud,

More information

RF2418 LOW CURRENT LNA/MIXER

RF2418 LOW CURRENT LNA/MIXER LOW CURRENT LNA/MIXER RoHS Compliant & Pb-Free Product Package Style: SOIC-14 Features Single 3V to 6.V Power Supply High Dynamic Range Low Current Drain High LO Isolation LNA Power Down Mode for Large

More information

improving further the mobility, and therefore the channel conductivity. The positive pattern definition proposed by Hirayama [6] was much improved in

improving further the mobility, and therefore the channel conductivity. The positive pattern definition proposed by Hirayama [6] was much improved in The two-dimensional systems embedded in modulation-doped heterostructures are a very interesting and actual research field. The FIB implantation technique can be successfully used to fabricate using these

More information

RF2044A GENERAL PURPOSE AMPLIFIER

RF2044A GENERAL PURPOSE AMPLIFIER GENERAL PURPOSE AMPLIFIER RoHS Compliant and Pb-Free Product Package Style: Micro-X Ceramic Features DC to >6000MHz Operation Internally matched Input and Output 18.5dB Small Signal Gain @ 2GHz 4.0dB Noise

More information

A GHz MICROWAVE UP CONVERSION MIXERS USING THE CONCEPTS OF DISTRIBUTED AND DOUBLE BALANCED MIXING FOR OBTAINING LO AND RF (LSB) REJECTION

A GHz MICROWAVE UP CONVERSION MIXERS USING THE CONCEPTS OF DISTRIBUTED AND DOUBLE BALANCED MIXING FOR OBTAINING LO AND RF (LSB) REJECTION A 2-40 GHz MICROWAVE UP CONVERSION MIXERS USING THE CONCEPTS OF DISTRIBUTED AND DOUBLE BALANCED MIXING FOR OBTAINING LO AND RF (LSB) REJECTION M. Mehdi, C. Rumelhard, J. L. Polleux, B. Lefebvre* ESYCOM

More information

Brief CV and Research Activities

Brief CV and Research Activities Brief CV and Research Activities Affiliation: Professor, Electrical and Computer Engineering Dept. Director, Solid State Electronics Lab and Device Characterization Lab University of Central Florida Research

More information

Application Note 5011

Application Note 5011 MGA-62563 High Performance GaAs MMIC Amplifier Application Note 511 Application Information The MGA-62563 is a high performance GaAs MMIC amplifier fabricated with Avago Technologies E-pHEMT process and

More information

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.2, APRIL, 2016 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2016.16.2.221 ISSN(Online) 2233-4866 Normally-Off Operation of AlGaN/GaN

More information

Downloaded from edlib.asdf.res.in

Downloaded from edlib.asdf.res.in ASDF India Proceedings of the Intl. Conf. on Innovative trends in Electronics Communication and Applications 2014 242 Design and Implementation of Ultrasonic Transducers Using HV Class-F Power Amplifier

More information

MICROWAVE ENGINEERING-II. Unit- I MICROWAVE MEASUREMENTS

MICROWAVE ENGINEERING-II. Unit- I MICROWAVE MEASUREMENTS MICROWAVE ENGINEERING-II Unit- I MICROWAVE MEASUREMENTS 1. Explain microwave power measurement. 2. Why we can not use ordinary diode and transistor in microwave detection and microwave amplification? 3.

More information

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s. UNIT-I FIELD EFFECT TRANSISTOR 1. Explain about the Field Effect Transistor and also mention types of FET s. The Field Effect Transistor, or simply FET however, uses the voltage that is applied to their

More information

ATF-531P8 E-pHEMT GaAs FET Low Noise Amplifier Design for 800 and 900 MHz Applications. Application Note 1371

ATF-531P8 E-pHEMT GaAs FET Low Noise Amplifier Design for 800 and 900 MHz Applications. Application Note 1371 ATF-31P8 E-pHEMT GaAs FET Low Noise Amplifier Design for 8 and 9 MHz Applications Application Note 1371 Introduction A critical first step in any LNA design is the selection of the active device. Low cost

More information

A Spline Large-Signal FET Model Based on Bias-Dependent Pulsed I V Measurement

A Spline Large-Signal FET Model Based on Bias-Dependent Pulsed I V Measurement 2598 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 11, NOVEMBER 2002 A Spline Large-Signal FET Model Based on Bias-Dependent Pulsed I V Measurement Kyoungmin Koh, Hyun-Min Park, and

More information

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34 CONTENTS Preface x Prologue Semiconductors and the Integrated Circuit xvii PART I Semiconductor Material Properties CHAPTER 1 The Crystal Structure of Solids 1 1.0 Preview 1 1.1 Semiconductor Materials

More information