Mitigation & Protection of Sub-Synchronous Controller Interactions (SSCI) in DFIG Wind Turbine Systems

Size: px
Start display at page:

Download "Mitigation & Protection of Sub-Synchronous Controller Interactions (SSCI) in DFIG Wind Turbine Systems"

Transcription

1 Mitigation & Protection of Sub-Synchronous Controller Interactions (SSCI) in DFIG Wind Turbine Systems Krish Narendra, P.hD. CTO ERL Protection, Automation, Control & Smart Grid ERLPhase Power Technologies Ltd. All Rights Reserved. 14 April 2015, Hannover, Germanay

2 Outline What is DFIG? What is Sub Synchronous Controller Interaction (SSCI)? Why does the Wind System Controller interact with the system? How does the Wind System Controller interact with the system? Why it is important to Mitigate & Protect against SSCI? What is S-PRO Relay? How to mitigate the SSCI Using S-PRO Relay? How to protect from SSC Using S-PRO Relay? What are the consequences if we don t mitigate or protect? Conclusions

3 What is DFIG? Doubly Fed Induction Generator Double Fed : There will be excitation (voltage & current) on both STATOR & ROTOR windings This is different from normal induction machine, where the STATOR is excited and the ROTOR is normally short circuited or through a variable resistance

4 DFIG should produce CONSTANT POWER to the electrical grid to which it is connected?? ROTOR excitation is applied here STATOR excitation is applied here Wind Turbine

5 Electrical Equivalent Circuit of DFIG S = Slip = w1 wm w1 : w1 = synchronous speed, wm = rotor mechanical speed Pr = -s Ps; Pr = rotor power, s= slip, Ps= stator power fr = s f1; fr = rotor frequency, s = slip, f1 = stator or network frequency

6 DFIG constant power how to achieve? SHOULD KEEP THE RATIO OF STATOR VOLTAGE / FREQUENCY A CONSTANT V/ f = constant = flux

7 What is SSCI (sub synchronous controller Interaction)? Sub Synchronous Controller Interaction (SSCI)

8 How does the controller interact with the system?

9 Ohms Ohms How Does Turbine Side Dynamic Resistance Varies with Frequency? Turbine Side Scans, R & X, 100% Dispatch Resistance Reactance -4-6 Frequency (Hz) Turbine Side Scans, R & X, 30% Dispatch Resistance Reactance Frequency (Hz) 9

10 Ohms Z1 (ohms) How does the controller interact with the system..? Frequency Scan - CTG Frequency (Hz) CTG008-current_injection CTG008-Harmonic_Scan Turbine Side Scans, R & X, 100% Dispatch Resistance Reactance -4-6 Frequency (Hz)

11 Xcel Energy (USA) Utility Event System Single Line Diagram- 2008

12 Utility Event: What Happened? 1- Breaker 1 & 2 opened for regular system switching procedure 2- CT1,CT2, and W start feeding radially through series capacitor 345 kv To the System Line kv 15 MW (20% of total generation) 45 MVA 3- Tripped the CT generator unit 12

13 Utility Event - TESLA DFR Capture 9 Hz & 13 Hz dominant sub harmonics High speed recording of 3 phase generator currents captured by the DFR 13

14 Utility Event Slow Speed Event Analysis Slow speed (swing ) recording of one of the phases 14

15 What are the consequences? Damage to the wind turbine Damage to the series compensation system Damage to the electronics convertor Possible saturation of the transformers at low frequency sub harmonics

16 How to mitigate SSCI Use advanced Micro Processor Based Protection Relay Use high speed detection sub harmonic currents / voltages using advanced microprocessor based system Improve existing controller performance more positive damping at critical sub harmonic frequencies Faster command to by pass the series compensation system

17 Microprocessor Based Sub harmonic Protection Relay (S-PRO)

18 AC Voltages SSCI - Sub harmonic calculations using dual processor implementations in S-PRO AC line currents FPGA Processor -1 (Field Programmable Gate Arrays) Anti Aliasing Filter High Speed Recursive Fourier Transform (RFT) Using 2 ms Sliding Window from high speed samples (5760 / s on 60 Hz or 4800/ s on 50 Hz) A/D Conversion DSP Processor -2 Sub Harmonic Detection Logic ( 5 45 Hz) Band Pass Filtering (5 45 Hz) Evaluation of sub harmonic logic using MAX (f5 f45) principle. Trip / Alarm based on user configuration

19 Microprocessor Sub Harmonic Detection Logic Diagram

20 Microprocessor Sub Harmonic Detection Trip or Alarm: = max (f2, f3, f4, f5, f6, f7) > Lset 20

21 Mitigation: By Passing of Series Capacitor Using S-PRO Relay Use existing PLCC to send close command to bypass circuit Wind generators Series Capacitor Other Generators (Combustion, Steam etc.) Direct Connection from Relay output contact to the bypass circuit IEC GOOSE message through FO

22 Mitigation: Change Wind Controller gain using S-PRO Relay Logic Wind generators User defined Relay logic to vary the gain of the controller to damp the oscillations Other Generators (Combustion, Steam etc.) Series Capacitor

23 Mitigation: Transfer Trip Wind Generator using S-PRO Relay Logic Wind generators Send transfer trip command through output contact or GOOSE message to remove Wind Generator System from the grid Other Generators (Combustion, Steam etc.) Series Capacitor

24 Protection : Trip Wind Generator / Other Generators using S-PRO Relay Logic Wind generators Other Generators (Combustion, Steam etc.) Series Capacitor

25 Xcel Energy (USA) SSCI EVENT 2008 Playback on S-PRO Relay

26 Xcel Energy (USA) SSCI EVENT 2008 Playback on S-PRO Relay

27 ERCOT TEXAS (USA) SSCI EVENT 2009 Playback on S-PRO Relay

28 ERCOT TEXAS (USA) SSCI EVENT 2009 Playback on S-PRO Relay

29 Conclusions With the increase use of wind generators (DFIGs) feeding HV and EHV utility networks with series compensation, it is necessary to ensure that sub harmonic oscillations are monitored, and that the electrical grid is protected from any resulting detrimental effects. Micro Processor Based S-PRO Relay can reliably mitigate / protect from sub harmonics ( 5 55 Hz with 60 Hz system) generated due to following phenomena with dual processor ( < 250 ms) : SSR sub synchronous resonance (Generators, HVDC, FACTS, PV - Convertor etc..) SSI sub synchronous interactions SSCI sub synchronous controller instability/interactions- New phenomena in Wind Turbines controller interactions in Type 3 DFIG system. SSTI sub synchronous torsional interactions IGE- Induction generator effect SSFR sub synchronous ferro resonance (in distribution system transformers)

30 THANK YOU!! erlphase.com

Wind and Solar (PV) Sub harmonic Interactions with Power Systems

Wind and Solar (PV) Sub harmonic Interactions with Power Systems I PCGRID Workshop - 2017 Wind and Solar (PV) Sub harmonic Interactions with Power Systems Dr. Krish Narendra Chief Technology Officer ERLPhase Protection, Automation, Control & Smart Grid ERLPhase Power

More information

Application for A Sub-harmonic Protection Relay. ERLPhase Power Technologies

Application for A Sub-harmonic Protection Relay. ERLPhase Power Technologies Application for A Sub-harmonic Protection Relay ERLPhase Power Technologies 1 Outline Introduction System Event at Xcel Energy Event Analysis Microprocessor based relay hardware architecture Sub harmonic

More information

Protection for Sub SSTI Conditions Using an Industrial Sub-harmonic Relay

Protection for Sub SSTI Conditions Using an Industrial Sub-harmonic Relay Relay Conference 2018 Protection for Sub SSTI Conditions Using an Industrial Sub-harmonic Relay R. Midence ERLPhase Power Technologies Winnipeg, MB Canada 1 Outline Sub Synchronous Torsional Interactions

More information

Commissioning Process and Acceptance Test of a Sub-harmonic Protection Relay

Commissioning Process and Acceptance Test of a Sub-harmonic Protection Relay Commissioning Process and Acceptance Test of a Sub-harmonic Protection Relay K. Narendra, R. Midence, A. Oliveira, N. Perera, N. Zhang - ERLPhase Power Technologies Ltd Abstract Numerous technical papers

More information

Planners Perspective on Series Compensated Transmission Lines

Planners Perspective on Series Compensated Transmission Lines TOGETHER WE DELIVER Planners Perspective on Series Compensated Transmission Lines Kenneth A. Donohoo, PE Director, System Planning Distribution and Transmission kenneth.donohoo@oncor.com Oncor Electric

More information

A New Subsynchronous Oscillation (SSO) Relay for Renewable Generation and Series Compensated Transmission Systems

A New Subsynchronous Oscillation (SSO) Relay for Renewable Generation and Series Compensated Transmission Systems 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http : //www.cigre.org 2015 Grid of the Future Symposium A New Subsynchronous Oscillation (SSO) Relay for Renewable Generation and Series Compensated

More information

COMPARATIVE PERFORMANCE OF SMART WIRES SMARTVALVE WITH EHV SERIES CAPACITOR: IMPLICATIONS FOR SUB-SYNCHRONOUS RESONANCE (SSR)

COMPARATIVE PERFORMANCE OF SMART WIRES SMARTVALVE WITH EHV SERIES CAPACITOR: IMPLICATIONS FOR SUB-SYNCHRONOUS RESONANCE (SSR) 7 February 2018 RM Zavadil COMPARATIVE PERFORMANCE OF SMART WIRES SMARTVALVE WITH EHV SERIES CAPACITOR: IMPLICATIONS FOR SUB-SYNCHRONOUS RESONANCE (SSR) Brief Overview of Sub-Synchronous Resonance Series

More information

ABB Inc. April 1, 2016 Slide 1

ABB Inc. April 1, 2016 Slide 1 Galina S. Antonova, ABB Inc., i-pcgrid Workshop - 2016 Combining subsynchronous oscillations detection and synchrophasor measurements to increase power system stability April 1, 2016 Slide 1 Sub synchronous

More information

Artificial Island Open Window Concerns re: Dominion Proposal 1A

Artificial Island Open Window Concerns re: Dominion Proposal 1A Artificial Island Open Window Concerns re: Dominion Proposal 1A Esam A. Khadr Michael Kayes Robert Pollock Donald Shoup Managing Director PSE&G Electric Delivery Planning Director PSE&G Delivery Projects

More information

UNDERSTANDING SUB-HARMONICS

UNDERSTANDING SUB-HARMONICS UNDERSTANDING SUB-HARMONICS Joe Perez, P.E., SynchroGrid, College Station, TX 77845, jperez@synchrogrid.com Introduction: Over the years, engineers have employed fundamental principles of electrical engineering

More information

Harmonic Design Considerations for Wind Farms

Harmonic Design Considerations for Wind Farms Harmonic Design Considerations for Wind Farms To Ensure Grid Code Compliance Liam Breathnach Power System Studies Group ESB International Agenda Introduction Harmonic Theory and Concepts Grid Code Requirements

More information

Use of a Sub Harmonic Protection Relay to Detect SSO Conditions Associated with Type-III Windfarms and Series Compensated Transmission Systems

Use of a Sub Harmonic Protection Relay to Detect SSO Conditions Associated with Type-III Windfarms and Series Compensated Transmission Systems 21, rue d Artois, F-75008 PARIS 095 DUBLIN 2017 http : //www.cigre.org Use of a Sub Harmonic Protection Relay to Detect SSO Conditions Associated with Type-III Windfarms and Series Compensated Transmission

More information

A Comprehensive Approach for Sub-Synchronous Resonance Screening Analysis Using Frequency scanning Technique

A Comprehensive Approach for Sub-Synchronous Resonance Screening Analysis Using Frequency scanning Technique A Comprehensive Approach Sub-Synchronous Resonance Screening Analysis Using Frequency scanning Technique Mahmoud Elfayoumy 1, Member, IEEE, and Carlos Grande Moran 2, Senior Member, IEEE Abstract: The

More information

4 Series Capacitor Compensation Requirements

4 Series Capacitor Compensation Requirements 4 Series Capacitor Compensation Requirements 4.1 Purposes and Benefits of Series Capacitor Compensation As noted previously, transmission lines inherently have an inductive reactance that is in series

More information

NOWADAYS, there is much interest in connecting various

NOWADAYS, there is much interest in connecting various IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013 419 Modified Dynamic Phasor Estimation Algorithm for the Transient Signals of Distributed Generators Dong-Gyu Lee, Sang-Hee Kang, and Soon-Ryul

More information

Conventional Paper-II-2013

Conventional Paper-II-2013 1. All parts carry equal marks Conventional Paper-II-013 (a) (d) A 0V DC shunt motor takes 0A at full load running at 500 rpm. The armature resistance is 0.4Ω and shunt field resistance of 176Ω. The machine

More information

Course ELEC Introduction to electric power and energy systems. Additional exercises with answers December reactive power compensation

Course ELEC Introduction to electric power and energy systems. Additional exercises with answers December reactive power compensation Course ELEC0014 - Introduction to electric power and energy systems Additional exercises with answers December 2017 Exercise A1 Consider the system represented in the figure below. The four transmission

More information

IOCL Electrical Engineering Technical Paper

IOCL Electrical Engineering Technical Paper IOCL Electrical Engineering Technical Paper 1. Which one of the following statements is NOT TRUE for a continuous time causal and stable LTI system? (A) All the poles of the system must lie on the left

More information

Comparison of the Behaviour of Wind Farms and Conventional Power Stations during Grid Failure Conditions

Comparison of the Behaviour of Wind Farms and Conventional Power Stations during Grid Failure Conditions May 4 Comparison of the Behaviour of Wind Farms and Conventional Power Dr. Martin Janßen APCG / 4MJA5_Wind-Farms-IEEE_13-5-4_EN.PPT Overview Introduction Grid Faults Requirements for Grid Stability Fault

More information

UProtection Requirements. Ufor a Large scale Wind Park. Shyam Musunuri Siemens Energy

UProtection Requirements. Ufor a Large scale Wind Park. Shyam Musunuri Siemens Energy UProtection Requirements Ufor a Large scale Wind Park Shyam Musunuri Siemens Energy Abstract: In the past wind power plants typically had a small power rating when compared to the strength of the connected

More information

ISSUES OF SYSTEM AND CONTROL INTERACTIONS IN ELECTRIC POWER SYSTEMS

ISSUES OF SYSTEM AND CONTROL INTERACTIONS IN ELECTRIC POWER SYSTEMS ISSUES OF SYSTEM AND CONTROL INTERACTIONS IN ELECTRIC POWER SYSTEMS INDO-US Workshop October 2009, I.I.T. Kanpur INTRODUCTION Electric Power Systems are very large, spread over a wide geographical area

More information

Fixed Series Compensation

Fixed Series Compensation Fixed Series Compensation High-reliable turnkey services for fixed series compensation NR Electric Corporation The Fixed Series Compensation (FSC) solution is composed of NR's PCS-9570 FSC control and

More information

Level 6 Graduate Diploma in Engineering Electrical Energy Systems

Level 6 Graduate Diploma in Engineering Electrical Energy Systems 9210-114 Level 6 Graduate Diploma in Engineering Electrical Energy Systems Sample Paper You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler,

More information

Power electronic converters in power systems. SINTEF Energy Research

Power electronic converters in power systems. SINTEF Energy Research Power electronic converters in power systems 1 Typical application of grid connected converters Active rectifier (sinusoidal line current, bi-directional power flow, adjustable power factor) Grid interface

More information

EASTERN ILLINI ELECTRIC COOPERATIVE Application for Operation of Member-Owned Generation

EASTERN ILLINI ELECTRIC COOPERATIVE Application for Operation of Member-Owned Generation EASTERN ILLINI ELECTRIC COOPERATIVE Application for Operation of Member-Owned Generation This application is to be completed and returned to the Cooperative member service representative in order to begin

More information

Digital Fault Recorder Deployment at HVDC Converter Stations

Digital Fault Recorder Deployment at HVDC Converter Stations Digital Fault Recorder Deployment at HVDC Converter Stations On line continuous monitoring at HVDC Converter Stations is an important asset in determining overall system performance and an essential diagnostic

More information

Dynamic Phasors for Small Signal Stability Analysis

Dynamic Phasors for Small Signal Stability Analysis for Small Signal Stability Analysis Chandana Karawita (Transgrid Solutions) for Small Signal Stability Analysis Outline Introduction 1 Introduction Simulation and Analysis Techniques Typical Outputs Modelling

More information

Owner/Customer Name: Mailing Address: City: County: State: Zip Code: Phone Number: Representative: Address: Fax Number:

Owner/Customer Name: Mailing Address: City: County: State: Zip Code: Phone Number: Representative:  Address: Fax Number: Interconnection of a Customer-Owned Renewable Generation System of Greater than 100 KW and Less than or Equal to 1 MW to the LCEC Electric Grid Tier 3 Application and Compliance Form Instructions: Complete

More information

ELEMENTS OF FACTS CONTROLLERS

ELEMENTS OF FACTS CONTROLLERS 1 ELEMENTS OF FACTS CONTROLLERS Rajiv K. Varma Associate Professor Hydro One Chair in Power Systems Engineering University of Western Ontario London, ON, CANADA rkvarma@uwo.ca POWER SYSTEMS - Where are

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index Index Note: Bold italic type refers to entries in the Table of Contents, refers to a Standard Title and Reference number and # refers to a specific standard within the buff book 91, 40, 48* 100, 8, 22*,

More information

IDAHO PURPA GENERATOR INTERCONNECTION REQUEST (Application Form)

IDAHO PURPA GENERATOR INTERCONNECTION REQUEST (Application Form) IDAHO PURPA GENERATOR INTERCONNECTION REQUEST (Application Form) Transmission Provider: IDAHO POWER COMPANY Designated Contact Person: Jeremiah Creason Address: 1221 W. Idaho Street, Boise ID 83702 Telephone

More information

Investigating Possible Induction Generator Effects Due to Sub-Synchronous Resonances

Investigating Possible Induction Generator Effects Due to Sub-Synchronous Resonances Investigating Possible Induction Generator Effects Due to Sub-Snchronous Resonances APPLICATION NOTES This application note deals with an investigation of possible induction generator effect triggered

More information

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control Spring 2014 Instructor: Kai Sun 1 References Saadat s Chapters 12.6 ~12.7 Kundur s Sections

More information

Excitation Systems THYRIPART. Compound-Excitation System for Synchronous Generators. Power Generation

Excitation Systems THYRIPART. Compound-Excitation System for Synchronous Generators. Power Generation Excitation Systems Compound-Excitation System for Synchronous Generators Power Generation Operating Characteristics Load dependent Short circuit supporting Low voltage gradient dv/dt Black start capability

More information

Embedded Generation Connection Application Form

Embedded Generation Connection Application Form Embedded Generation Connection Application Form This Application Form provides information required for an initial assessment of the Embedded Generation project. All applicable sections must be completed

More information

APPLICATION FOR INTERCONNECTION & OPERATIONS OF MEMBER-OWNED GENERATION

APPLICATION FOR INTERCONNECTION & OPERATIONS OF MEMBER-OWNED GENERATION APPLICATION FOR INTERCONNECTION & OPERATIONS OF MEMBER-OWNED GENERATION This application should be completed and returned to in order to begin processing the request for interconnecting as required by

More information

PART 1 OWNER/APPLICANT INFORMATION

PART 1 OWNER/APPLICANT INFORMATION CALHOUN COUNTY ELECTRIC COOP. ASSN. Application for Operation of Customer-Owned Generation This application should be completed as soon as possible and returned to the Cooperative in order to begin processing

More information

SRI VIDYA COLLEGE OF ENGG AND TECH

SRI VIDYA COLLEGE OF ENGG AND TECH EEE6603 PSOC Page 1 UNIT-III REACTIVE POWER VOLTAGE CONTROL 1. List the various components of AVR loop? The components of automatic voltage regulator loop are exciter, comparator, amplifier, rectifier

More information

Power Plant and Transmission System Protection Coordination of-field (40) and Out-of. of-step Protection (78)

Power Plant and Transmission System Protection Coordination of-field (40) and Out-of. of-step Protection (78) Power Plant and Transmission System Protection Coordination Loss-of of-field (40) and Out-of of-step Protection (78) System Protection and Control Subcommittee Protection Coordination Workshop Phoenix,

More information

NTG MULTIFUNCTON GENERATOR PROTECTION RELAY. NTG-Slide

NTG MULTIFUNCTON GENERATOR PROTECTION RELAY. NTG-Slide NTG MULTIFUNCTON GENERATOR PROTECTION RELAY 1 NTG Digital protection relay that integrates a number of functions required r for the protection of generators. It is used in power stations from gas, steam,

More information

Study of Subsynchronous Resonance in Power Systems

Study of Subsynchronous Resonance in Power Systems Study of Subsynchronous Resonance in Power Systems 1 Oza Jaidev Suresh, 2 Prof. Shabbir Ghadiali 1 P.G Student, 2 Associate Professor Electrical Engineering Department, S.C.E.T, Surat, India 1 oza.jaidev@gmail.com,

More information

Simulations of open phase conditions on the high voltage side of YNd05-power plant transformers

Simulations of open phase conditions on the high voltage side of YNd05-power plant transformers Simulations of open phase conditions on the high voltage side of YNd05-power plant transformers Disclaimer: All information presented in the report, the results and the related computer program, data,

More information

Sequence Networks p. 26 Sequence Network Connections and Voltages p. 27 Network Connections for Fault and General Unbalances p. 28 Sequence Network

Sequence Networks p. 26 Sequence Network Connections and Voltages p. 27 Network Connections for Fault and General Unbalances p. 28 Sequence Network Preface p. iii Introduction and General Philosophies p. 1 Introduction p. 1 Classification of Relays p. 1 Analog/Digital/Numerical p. 2 Protective Relaying Systems and Their Design p. 2 Design Criteria

More information

Development of an Experimental Rig for Doubly-Fed Induction Generator based Wind Turbine

Development of an Experimental Rig for Doubly-Fed Induction Generator based Wind Turbine Development of an Experimental Rig for Doubly-Fed Induction Generator based Wind Turbine T. Neumann, C. Feltes, I. Erlich University Duisburg-Essen Institute of Electrical Power Systems Bismarckstr. 81,

More information

SOUTH CENTRAL INDIANA REMC Application for Operation of Member-Owned Small Power Generation Systems

SOUTH CENTRAL INDIANA REMC Application for Operation of Member-Owned Small Power Generation Systems SOUTH CENTRAL INDIANA REMC Application for Operation of Member-Owned Small Power Generation Systems This application should be completed as soon as possible and returned to the Cooperative in order to

More information

SYNCHRONOUS MACHINES

SYNCHRONOUS MACHINES SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical

More information

EH2741 Communication and Control in Electric Power Systems Lecture 2

EH2741 Communication and Control in Electric Power Systems Lecture 2 KTH ROYAL INSTITUTE OF TECHNOLOGY EH2741 Communication and Control in Electric Power Systems Lecture 2 Lars Nordström larsno@kth.se Course map Outline Transmission Grids vs Distribution grids Primary Equipment

More information

GSR018: Sub-Synchronous Oscillations (SSO) Workgroup Report

GSR018: Sub-Synchronous Oscillations (SSO) Workgroup Report Stage 01: Workgroup National Electricity Transmission System Security and Quality of Supply Standards (NETS SQSS) GSR018: Sub-Synchronous Oscillations (SSO) Workgroup 01 02 03 Workgroup Industry Consultation

More information

Grid Code Review Panel. Information Required to Evaluate Subsynchrononous Resonance on the Transmission System

Grid Code Review Panel. Information Required to Evaluate Subsynchrononous Resonance on the Transmission System Grid Code Review Panel Information Required to Evaluate Subsynchrononous Resonance on the Transmission System Summary of Issue A paper by National Grid Contact: Graham Stein 1. All electrical and electromechanical

More information

GSR018/GC0077: Sub-Synchronous Oscillations (SSO)

GSR018/GC0077: Sub-Synchronous Oscillations (SSO) Stage 03: National Electricity Transmission System Security and Quality of Supply Standards (NETS SQSS) and Grid Code : Sub-Synchronous Oscillations (SSO) 01 Workgroup Report 02 Industry Consultation 03

More information

IJSER. Fig-1: Interconnection diagram in the vicinity of the RajWest power plant

IJSER. Fig-1: Interconnection diagram in the vicinity of the RajWest power plant International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 696 AN INVESTIGATION ON USE OF POWER SYSTEM STABILIZER ON DYNAMIC STABILITY OF POWER SYSTEM Mr. Bhuwan Pratap Singh

More information

Data. Dr Murari Mohan Saha ABB AB. KTH/EH2740 Lecture 3. Data Acquisition Block. Logic. Measurement. S/H and A/D Converter. signal conditioner

Data. Dr Murari Mohan Saha ABB AB. KTH/EH2740 Lecture 3. Data Acquisition Block. Logic. Measurement. S/H and A/D Converter. signal conditioner Digital Protective Relay Dr Murari Mohan Saha ABB AB KTH/EH2740 Lecture 3 Introduction to Modern Power System Protection A digital protective relay is an industrial microprocessor system operating in real

More information

Grid Impact of Neutral Blocking for GIC Protection:

Grid Impact of Neutral Blocking for GIC Protection: Report submitted to EMPRIMUS - Critical Infrastructure Protection Grid Impact of Neutral Blocking for GIC Protection: Impact of neutral grounding capacitors on network resonance Prepared By: Athula Rajapakse

More information

EXCITATION SYSTEM MODELS OF GENERATORS OF BALTI AND EESTI POWER PLANTS

EXCITATION SYSTEM MODELS OF GENERATORS OF BALTI AND EESTI POWER PLANTS Oil Shale, 2007, Vol. 24, No. 2 Special ISSN 0208-189X pp. 285 295 2007 Estonian Academy Publishers EXCITATION SYSTEM MODELS OF GENERATORS OF BALTI AND EESTI POWER PLANTS R. ATTIKAS *, H.TAMMOJA Department

More information

Advanced Applications of Multifunction Digital Generator Protection

Advanced Applications of Multifunction Digital Generator Protection Advanced Applications of Multifunction Digital Generator Protection Charles J. Mozina Beckwith Electric Company 6190-118th Avenue North Largo, FL 33773-3724 U.S.A. Abstract: The protection of generators

More information

System Protection and Control Subcommittee

System Protection and Control Subcommittee Power Plant and Transmission System Protection Coordination Reverse Power (32), Negative Sequence Current (46), Inadvertent Energizing (50/27), Stator Ground Fault (59GN/27TH), Generator Differential (87G),

More information

Harnessing of wind power in the present era system

Harnessing of wind power in the present era system International Journal of Scientific & Engineering Research Volume 3, Issue 1, January-2012 1 Harnessing of wind power in the present era system Raghunadha Sastry R, Deepthy N Abstract This paper deals

More information

DC-Voltage fluctuation elimination through a dc-capacitor current control for PMSG under unbalanced grid voltage conditions

DC-Voltage fluctuation elimination through a dc-capacitor current control for PMSG under unbalanced grid voltage conditions DC-Voltage fluctuation elimination through a dc-capacitor current control for PMSG under unbalanced grid voltage conditions P Kamalchandran 1, A.L.Kumarappan 2 PG Scholar, Sri Sairam Engineering College,

More information

GENERATOR INTERCONNECTION APPLICATION Category 5 For All Projects with Aggregate Generator Output of More Than 2 MW

GENERATOR INTERCONNECTION APPLICATION Category 5 For All Projects with Aggregate Generator Output of More Than 2 MW GENERATOR INTERCONNECTION APPLICATION Category 5 For All Projects with Aggregate Generator Output of More Than 2 MW ELECTRIC UTILITY CONTACT INFORMATION Consumers Energy Interconnection Coordinator 1945

More information

DESIGN OF A MODE DECOUPLING FOR VOLTAGE CONTROL OF WIND-DRIVEN IG SYSTEM

DESIGN OF A MODE DECOUPLING FOR VOLTAGE CONTROL OF WIND-DRIVEN IG SYSTEM IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 8, Issue 5 (Nov. - Dec. 2013), PP 41-45 DESIGN OF A MODE DECOUPLING FOR VOLTAGE CONTROL OF

More information

Power Quality enhancement of a distribution line with DSTATCOM

Power Quality enhancement of a distribution line with DSTATCOM ower Quality enhancement of a distribution line with DSTATCOM Divya arashar 1 Department of Electrical Engineering BSACET Mathura INDIA Aseem Chandel 2 SMIEEE,Deepak arashar 3 Department of Electrical

More information

Generation Interconnection Study Data Sheet Synchronous Machines

Generation Interconnection Study Data Sheet Synchronous Machines FOR INTERNAL USE ONLY GTC Project Number: Queue Date: Generation Interconnection Study Data Sheet Synchronous Machines Customers must provide the following information in its entirety. GTC will not proceed

More information

Wind Power Facility Technical Requirements CHANGE HISTORY

Wind Power Facility Technical Requirements CHANGE HISTORY CHANGE HISTORY DATE VERSION DETAIL CHANGED BY November 15, 2004 Page 2 of 24 TABLE OF CONTENTS LIST OF TABLES...5 LIST OF FIGURES...5 1.0 INTRODUCTION...6 1.1 Purpose of the Wind Power Facility Technical

More information

GATE 2000 Electrical Engineering

GATE 2000 Electrical Engineering GATE 2000 Electrical Engineering SECTION A (TOTAL MARKS=75) 1. This question consists of 25 (TWENTTY FIVE) sub-questions. Each sub-question carries ONE mark. The answers to these sub-questions MUST be

More information

Frequency Control of Smart Grid - A MATLAB/SIMULINK Approach

Frequency Control of Smart Grid - A MATLAB/SIMULINK Approach Frequency Control o Smart Grid - A MATLAB/SIMULINK Approach Vikash Kumar Dr. Pankaj Rai Dr. Ghanshyam M.tech Student Department o Electrical Engg. Dept. o Physics Department o Electrical Engg. BIT Sindri,

More information

HISTORY: How we got to where we are. March 2015 Roy Boyer 1

HISTORY: How we got to where we are. March 2015 Roy Boyer 1 HISTORY: How we got to where we are March 2015 Roy Boyer 1 Traditional Stability Analysis: 1. Maintain synchronism of synchronous machines 2. Simplifying assumptions: 1. Balanced positive sequence system

More information

Embedded Generation Connection Application Form

Embedded Generation Connection Application Form Embedded Generation Connection Application Form This Application Form provides information required for an initial assessment of the Embedded Generation project. All applicable sections must be completed

More information

New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage

New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage 1 New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage B. B. Pimple, V. Y. Vekhande and B. G. Fernandes Department of Electrical Engineering, Indian Institute of Technology Bombay,

More information

Ferroresonance Conditions Associated With a 13 kv Voltage Regulator During Back-feed Conditions

Ferroresonance Conditions Associated With a 13 kv Voltage Regulator During Back-feed Conditions Ferroresonance Conditions Associated With a Voltage Regulator During Back-feed Conditions D. Shoup, J. Paserba, A. Mannarino Abstract-- This paper describes ferroresonance conditions for a feeder circuit

More information

Harmonizing the Changing Resource Mix Keeping the Grid Together

Harmonizing the Changing Resource Mix Keeping the Grid Together Harmonizing the Changing Resource Mix Keeping the Grid Together Robert W. Cummings Senior Director of Engineering and Reliability Initiatives i-pcgrid March 30, 2017 NERC-IEEE Memorandum of Understanding

More information

SIMSEN Simulation software for the analysis of electrical power networks, adjustable speed drives and hydraulic systems

SIMSEN Simulation software for the analysis of electrical power networks, adjustable speed drives and hydraulic systems SIMSEN Simulation software for the analysis of electrical power networks, adjustable speed drives and hydraulic systems Main features Graphical input/output Modular structure with arbitrary topology No

More information

Voltage Sag and Swell Mitigation Using Dynamic Voltage Restore (DVR)

Voltage Sag and Swell Mitigation Using Dynamic Voltage Restore (DVR) Voltage Sag and Swell Mitigation Using Dynamic Voltage Restore (DVR) Mr. A. S. Patil Mr. S. K. Patil Department of Electrical Engg. Department of Electrical Engg. I. C. R. E. Gargoti I. C. R. E. Gargoti

More information

Investigation of Coupling of EMC Disturbances in Doubly Fed Induction Generators

Investigation of Coupling of EMC Disturbances in Doubly Fed Induction Generators PIERS ONLINE, VOL. 5, NO. 8, 2009 791 Investigation of Coupling of EMC Disturbances in Doubly Fed Induction Generators S. Schulz, R. Doebbelin, and A. Lindemann Institute of Electric Power Systems, Otto-von-Guericke-University

More information

Influence of Wind Generators in Voltage Dips

Influence of Wind Generators in Voltage Dips Influence of Wind Generators in Voltage Dips E. Belenguer, N. Aparicio, J.L. Gandía, S. Añó 2 Department of Industrial Engineering and Design Universitat Jaume I Campus de Riu Sec, E-27 Castelló (Spain)

More information

Embedded Generation Connection Application Form

Embedded Generation Connection Application Form Embedded Generation Connection Application Form This Application Form provides information required for an initial assessment of the Embedded Generation project. All applicable sections must be completed

More information

Sub-synchronous Electrical Torque Frequencies Monitoring before the SSR Presence.

Sub-synchronous Electrical Torque Frequencies Monitoring before the SSR Presence. Sub-synchronous Electrical Torque Frequencies Monitoring before the SSR Presence. *José A Castillo J *David Sebastián B **Carlos A Rivera S *Daniel Olguín S * Programa de Postgrado en Ingeniería Eléctrica,

More information

Joe Warner, Electric Power Industry Conference (EPIC), November 15, 2016 Advances in Grid Equipment Transmission Shunt Compensation

Joe Warner, Electric Power Industry Conference (EPIC), November 15, 2016 Advances in Grid Equipment Transmission Shunt Compensation Joe Warner, Electric Power Industry Conference (EPIC), November 15, 2016 Advances in Grid Equipment Transmission Shunt Compensation Slide 1 Excerpt from the BoA BoA: Book of Acronyms MSC/MSR: Mechanically

More information

CONVERTERS IN POWER VOLTAGE-SOURCED SYSTEMS. Modeling, Control, and Applications IEEE UNIVERSITATSBIBLIOTHEK HANNOVER. Amirnaser Yazdani.

CONVERTERS IN POWER VOLTAGE-SOURCED SYSTEMS. Modeling, Control, and Applications IEEE UNIVERSITATSBIBLIOTHEK HANNOVER. Amirnaser Yazdani. VOLTAGE-SOURCED CONVERTERS IN POWER SYSTEMS Modeling, Control, and Applications Amirnaser Yazdani University of Western Ontario Reza Iravani University of Toronto r TECHNISCHE INFORMATIONSBIBLIOTHEK UNIVERSITATSBIBLIOTHEK

More information

Fault Ride Through Principles. and. Grid Code Proposed Changes

Fault Ride Through Principles. and. Grid Code Proposed Changes Fault Ride Through Principles and Grid Code Proposed Changes Document identifier: FRT Principles and Proposals Authored by: Jonathan O Sullivan / Alan Rogers Document version: Ver 1.3 Checked by: Anne

More information

PJM Manual 07:: PJM Protection Standards Revision: 2 Effective Date: July 1, 2016

PJM Manual 07:: PJM Protection Standards Revision: 2 Effective Date: July 1, 2016 PJM Manual 07:: PJM Protection Standards Revision: 2 Effective Date: July 1, 2016 Prepared by System Planning Division Transmission Planning Department PJM 2016 Table of Contents Table of Contents Approval...6

More information

Texas Reliability Entity Event Analysis. Event: May 8, 2011 Loss of Multiple Elements Category 1a Event

Texas Reliability Entity Event Analysis. Event: May 8, 2011 Loss of Multiple Elements Category 1a Event Texas Reliability Entity Event Analysis Event: May 8, 2011 Loss of Multiple Elements Category 1a Event Texas Reliability Entity July 2011 Page 1 of 10 Table of Contents Executive Summary... 3 I. Event

More information

ITC Holdings Planning Criteria Below 100 kv. Category: Planning. Eff. Date/Rev. # 12/09/

ITC Holdings Planning Criteria Below 100 kv. Category: Planning. Eff. Date/Rev. # 12/09/ ITC Holdings Planning Criteria Below 100 kv * Category: Planning Type: Policy Eff. Date/Rev. # 12/09/2015 000 Contents 1. Goal... 2 2. Steady State Voltage & Thermal Loading Criteria... 2 2.1. System Loading...

More information

U I. HVDC Control. LCC Reactive power characteristics

U I. HVDC Control. LCC Reactive power characteristics Lecture 29 HVDC Control Series Compensation 1 Fall 2017 LCC Reactive power characteristics LCC HVDC Reactive compensation by switched filters and shunt capacitor banks Operates at lagging power factor

More information

B.Tech Academic Projects EEE (Simulation)

B.Tech Academic Projects EEE (Simulation) B.Tech Academic Projects EEE (Simulation) Head office: 2 nd floor, Solitaire plaza, beside Image Hospital, Ameerpet Ameerpet : 040-44433434, email id : info@kresttechnology.com Dilsukhnagar : 9000404181,

More information

Analysis of Temporary Over-Voltages from Self-Excited Large Induction Motors in the Presence of Resonance - Case Studies

Analysis of Temporary Over-Voltages from Self-Excited Large Induction Motors in the Presence of Resonance - Case Studies Analysis of Temporary Over-Voltages from Self-Excited Large Induction Motors in the Presence of Resonance - Case Studies T.G. Martinich, M. Nagpal, A. Bimbhra Abstract-- Technological advancements in high-power

More information

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Aggregated Generating Facilities Technical Requirements

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Aggregated Generating Facilities Technical Requirements Division 502 Technical Applicability 1(1) Section 502.1 applies to: Expedited Filing Draft August 22, 2017 the legal owner of an aggregated generating facility directly connected to the transmission system

More information

PAPER-II (Subjective)

PAPER-II (Subjective) PAPER-II (Subjective) 1.(A) Choose and write the correct answer from among the four options given in each case for (a) to (j) below: (a) Improved commutation in d.c machines cannot be achieved by (i) Use

More information

A Direct Power Controlled and Series Compensated EHV Transmission Line

A Direct Power Controlled and Series Compensated EHV Transmission Line A Direct Power Controlled and Series Compensated EHV Transmission Line Andrew Dodson, IEEE Student Member, University of Arkansas, amdodson@uark.edu Roy McCann, IEEE Member, University of Arkansas, rmccann@uark.edu

More information

Numbering System for Protective Devices, Control and Indication Devices for Power Systems

Numbering System for Protective Devices, Control and Indication Devices for Power Systems Appendix C Numbering System for Protective Devices, Control and Indication Devices for Power Systems C.1 APPLICATION OF PROTECTIVE RELAYS, CONTROL AND ALARM DEVICES FOR POWER SYSTEM CIRCUITS The requirements

More information

p. 1 p. 6 p. 22 p. 46 p. 58

p. 1 p. 6 p. 22 p. 46 p. 58 Comparing power factor and displacement power factor corrections based on IEEE Std. 18-2002 Harmonic problems produced from the use of adjustable speed drives in industrial plants : case study Theory for

More information

Direct AC/AC power converter for wind power application

Direct AC/AC power converter for wind power application Direct AC/AC power converter for wind power application Kristian Prestrud Astad, Marta Molinas Norwegian University of Science and Technology Department of Electric Power Engineering Trondheim, Norway

More information

Power System Stability. Course Notes PART-1

Power System Stability. Course Notes PART-1 PHILADELPHIA UNIVERSITY ELECTRICAL ENGINEERING DEPARTMENT Power System Stability Course Notes PART-1 Dr. A.Professor Mohammed Tawfeeq Al-Zuhairi September 2012 1 Power System Stability Introduction Dr.Mohammed

More information

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY POWER QUALITY IMPROVEMENT OF GRID CONNECTED WIND ENERGY SYSTEM BY USING STATCOM Mr.Mukund S. Mahagaonkar*, Prof.D.S.Chavan * M.Tech

More information

Transient stability improvement by using shunt FACT device (STATCOM) with Reference Voltage Compensation (RVC) control scheme

Transient stability improvement by using shunt FACT device (STATCOM) with Reference Voltage Compensation (RVC) control scheme I J E E E C International Journal of Electrical, Electronics ISSN No. (Online) : 2277-2626 and Computer Engineering 2(1): 7-12(2013) Transient stability improvement by using shunt FACT device (STATCOM)

More information

New HVDC Interaction between AC networks and HVDC Shunt Reactors on Jeju Converter Stations

New HVDC Interaction between AC networks and HVDC Shunt Reactors on Jeju Converter Stations New HVDC Interaction between AC networks 233 JPE 7-3-6 New HVDC Interaction between AC networks and HVDC Shunt Reactors on Jeju Converter Stations Chan-Ki Kim, Young-Hun Kwon * and Gil-Soo Jang ** KEPRI,

More information

HIGH PERFORMANCE CONTROL OF AC DRIVES WITH MATLAB/SIMULINK MODELS

HIGH PERFORMANCE CONTROL OF AC DRIVES WITH MATLAB/SIMULINK MODELS HIGH PERFORMANCE CONTROL OF AC DRIVES WITH MATLAB/SIMULINK MODELS Haitham Abu-Rub Texas A&M University at Qatar, Qatar Atif Iqbal Qatar University, Qatar and Aligarh Muslim University, India Jaroslaw Guzinski

More information

CONVERT ERLPhase TESLA DMEs TO PHASOR MEASUREMENT UNITS (PMUs)

CONVERT ERLPhase TESLA DMEs TO PHASOR MEASUREMENT UNITS (PMUs) CONVERT ERLPhase TESLA DMEs TO PHASOR MEASUREMENT UNITS (PMUs) Tony Weekes Manitoba Hydro Krish Narendra ERLPhase Power Technology Ltd. OUTLINE Introduction (Krish) Device Overview (Krish) Site Selection

More information

Distributed Energy Engineering

Distributed Energy Engineering Distributed Energy Engineering (IKE1002) Part5: Frequency Converter Energy growth 2007-2030 by IEA World average Energy efficiency potential Electrical energy needed to produce 1 USD in GNP Midle-East

More information

Forced Oscillation Event Analysis

Forced Oscillation Event Analysis Forced Oscillation Event Analysis January 11, 2019 Event Ryan D. Quint, PhD, PE Senior Manager, Advanced System Analytics and Modeling, NERC February 2019 Background Oscillation observed across entire

More information

Generator Protection GENERATOR CONTROL AND PROTECTION

Generator Protection GENERATOR CONTROL AND PROTECTION Generator Protection Generator Protection Introduction Device Numbers Symmetrical Components Fault Current Behavior Generator Grounding Stator Phase Fault (87G) Field Ground Fault (64F) Stator Ground Fault

More information