Investigation of Coupling of EMC Disturbances in Doubly Fed Induction Generators

Size: px
Start display at page:

Download "Investigation of Coupling of EMC Disturbances in Doubly Fed Induction Generators"

Transcription

1 PIERS ONLINE, VOL. 5, NO. 8, Investigation of Coupling of EMC Disturbances in Doubly Fed Induction Generators S. Schulz, R. Doebbelin, and A. Lindemann Institute of Electric Power Systems, Otto-von-Guericke-University Magdeburg, Germany Abstract In renewable power generation doubly fed induction generators (DFIG) are used, in which the stator of the generator is directly connected to mains, while the converter for the rotor is rated only for slip power. Due to the interaction of rotor and stator windings in a DFIG, the high-frequency harmonics caused by the pulsed output of rotor power converters are transmitted into the stator current and cause conducted emissions. These high-frequency harmonics have to be considered, taking into account that harmonics which can be limited by filters will also be transmitted into the stator. 1. INTRODUCTION In recent years the exploitation of renewable energy has significantly increased with a major contribution of wind and water energy. One intent of energy production is high yield as achievable by variable speed operation. This requires the use of a converter. However, the high-frequency and fast changing output voltage of the converter can cause conducted emissions and system perturbation. 2. GRID COUPLING 2.1. Possibilities of Grid Coupling In power plants (especially in water-power plants and wind farms) turbines are based on synchronous or induction generators. To supply the energy of the generators into the grid it is common to use a power converter [1]. There are two possibilities: power converter for the full rated power, cf. the topologies in Figures 1(a), (c), (d)) power converter for the rotor of a DFIG only to be rated for slip power, cf. 1(b)) (a) (b) (c) (d) Figure 1: Possibilities of grid coupling in power plants. Generally speaking, care must be taken to comply with the EMC regulations for grid connection. Filters may be used to compensate harmonics; however they reach a considerable size and cause considerable cost at high power ratings of the converter Doubly Fed Induction Machine Using doubly fed induction generators (DFIG), in which the stator of the generator is directly connected to the mains, whereas the rotor of the machine is supplied by a converter. The converter for the rotor is only rated for slip power which is about 30% of the nominal power of the DFIG. Thus, this topology can inherently decrease the EMI level because of the lower power rating of the rotor converter compared to a converter for full rated power in conventional systems. This kind of system according to Figure 2 allows a large speed range of about 70% to 130% of the nominal rotor speed for optimized power generation [2].

2 PIERS ONLINE, VOL. 5, NO. 8, SYSTEM PERTURBATION OF DFIG 3.1. EMI Sources In DFIG the applied rotor converters are designed as indirect power converter with DC link or as cycloconverters. Electromagnetic compatibility aspects concerning system perturbation (up to 2 khz) and conducted emissions (9 khz to 30 MHz) of power converters are regulated in grid connection regulations of the transmission system operator [3], and furthermore in EN [4, 5], EN [6] and EN [7]. The emission limits given by these standards correspond with limits of the fundamental EMC standard EN [8]. System perturbation and conducted emissions are generally determined in the usually non-regulated (2 khz to 9 khz) range of the switching frequency of rotor converters. The harmonics and conducted emissions produced by the rotor converter are compensated by an input filter of the converter. Figure 2 shows several possibilities for the emergence and propagation of conducted emissions in the considered system: High-frequency pulsed rotor voltages cause harmonics of the rotor currents (A) which are transferred to the stator current (B); considering the slip of the generator, interharmonics will occur. The stator current supplies the transformer, thus the harmonics and interharmonics will proceed to the grid (C). The implemented EMC filter is mostly intended to reduce the additional conducted emissions of the rotor converter (E) on transformer side (D). Emissions of the stator current are hardly affected by this filter Simulation Model of the Power System Figure 3 shows the configuration of the simulated power system. The stator shall feed a power of 12 kw into the line sources (u e1, u e2, u e3 ). The rotor current i r of the DFIG is supplied by a converter. It is nearly sinusoidal but will include harmonics given by the modulation of the rotor converter. Mechanically, the rotor is driven by a torque of 76 Nm; it rotates with /min. Note that the relatively low power level has been chosen to facilitate comparison with experimental results according to Section gearbox n 1n2 generato r DFIG f s B 3 690V C grid f r 3 transformer 20kV A L DC-AC converte r AC-DC converte r E EMC filter D Figure 2: Doubly fed induction generator for wind power generation (DFIG). ue1 L = 10 µh i s1 ue2 ue3 U = 400V f e = 50Hz i s2 i s3 i r1 DFIG i r2 i r3 n r = /min j r = -76 Nm L = 300 µh UY = 70V f wr = 0.93Hz f t = 4kHz 3 ~ phase pwm voltage source R = 0.6 Ω Figure 3: Simulation model of doubly fed induction generator (DFIG).

3 PIERS ONLINE, VOL. 5, NO. 8, Simulation Results of the Power System The simulation results correspond excellently to the theoretically expected waveforms. The threephase rotor current and stator current are nearly sinusoidal. While stator frequency corresponds to mains frequency of 50 Hz, rotor frequency is low. The detailed simulation results are shown in Figure 4(a). The harmonics generated by the 4 khz pulsed rotor converter appear in the rotor current i r as well as in the stator current i s. This result illustrates that the harmonics are transmitted by the magnetic field, i.e., the waveform of simulated stator current i s shows the transmitted harmonics into the stator windings. FFT analysis in Figure 4(b) again shows the harmonics caused by pulsed rotor converter Model of Driving a Doubly Fed Induction Machine To verify this effect it is possible to consider the inverse method of operation of the power system. Figure 5 shows the configuration of the simulation of an existing experimental setup. Here, the stator of the 11 kw DFIG is supplied by an AC-DC-AC power converter with a switching frequency of 4 khz, while the wound rotor is short-circuited. The only filter elements are line inductors (L = 810 µh) between converter and stator windings. (a) (b) Figure 4: Simulation of (a) stator current i s, rotor current i r, (b) FFT of the simulated stator current i s, rotor current i r. Figure 5: Simulation and experimental setup for driving a DFIG. (a) Figure 6: Simulation of (a) stator current i s, rotor current i r, (b) FFT of the simulated stator current i s, rotor current i r. (b)

4 PIERS ONLINE, VOL. 5, NO. 8, Simulation Results of Driving a Doubly Fed Induction Machine The simulation results are in very good coincidence with the theoretically expected waveforms. The three-phase stator current is a superposition of a sinusoidal current (50 Hz mains frequency) with high-frequency harmonics caused by the switching frequency of 4 khz of the converter. According to the preceding considerations, harmonics in the stator currents should cause harmonics in the rotor currents as well. Figure 6 illustrates that harmonics of all three stator currents caused by their pulsed supply voltage can be found in rotor currents Circuit Theory Equivalent Circuit of a Doubly Fed Wound Rotor Induction Machine The reason for this behavior can be found in the single-phase equivalent circuit of a doubly fed induction machine which corresponds to the equivalent circuit of a transformer (Figure 7), where the equations of Faraday s law of induction apply: u s = i s (R 1 + jω 1 L 1σ ) + u µ (1) u ( ) r R s = i r 2 s + jω 1L 2σ + u µ (2) ( ) R u s = i s (R 1 + jω 1 L 1σ ) i r 2 s + jω 1L 2σ + u r (3) s Harmonics in rotor voltage u r /s caused by the converter will produce harmonics in rotor and stator currents. Therefore, mains current of the DFIG is a superposition of a sinusoidal current with highfrequency harmonics. The conducted emissions and harmonics depend on the pulse pattern of the rotor converter, frequency, the rotor filter and the line filter of the system. is R 1 L1σ L' 2σ R' 2/s i' r iµ us uµ L h u'r /s Figure 7: One phase equivalent circuit of a DFIG [9, 10]. (a) (b) Figure 8: Measurement of (a) stator current i s, rotor current i r, stator voltage u s, (b) FFT of the measured stator current i s, rotor current i r, stator voltage u s.

5 PIERS ONLINE, VOL. 5, NO. 8, Figure 9: Measurement of rotor current i r with superimposed pulses of the power converter Experiment Experimental Setup To investigate the effect of the transmitted high frequency harmonics, an existing experimental setup according to Figure 5 has been used: Here, the stator of the 11 kw DFIG is supplied by an AC-DC-AC power converter with a switching frequency of 4 khz, while the wound rotor is shortcircuited. The only filter elements are line inductors (L = 200 µh) between converter and stator windings Experimental Results According to the preceding considerations, harmonics in the stator currents of the experimental setup should cause harmonics in the rotor currents as well. The detailed view in Figure 8 with waveforms over time and results of FFT analysis illustrates that harmonics of all three stator currents caused by their pulsed supply voltage can be found in rotor current. 4. CONCLUSION With the increase of power plants with DFIG without line filters of the rotor circuit or system filters also EMC disturbances increase. These high frequency harmonics influence the mains, transformers and line filters of other systems connected to the mains. As a consequence malfunction and damage of electronic equipment can occur. This paper deals with the interaction of rotor and stator winding in a doubly fed induction generator [12]. High frequency harmonics caused by the pulsed output of rotor power converters are transmitted into the stator current and cause conducted emissions. It is possible to reduce them with filters in the rotor circuit, thus requiring a rating of only 30% of the nominal power. REFERENCES 1. Kimura, N., T. Morizane, K. Taniguchi, and T. Hamada, Inverter excited induction machine for high performance wind power generation system, European Power Electronics and Drives Association (EPE), Aalborg, Toufik, B., M. Machmoum, and F. Poitiers, Doubly fed induction generator with active filtering function for wind energy conversion system, European Power Electronics and Drives Association (EPE), Dresden, E.ON Netz GmbH, Grid Connection Regulations for High and Extra High Voltage, Bayreuth, Electromagnetic compatibility (EMC) Part 3-2: Limits for harmonic current emissions (equipment input current 16 A per phase) (IEC :2005); German version EN : Electromagnetic compatibility (EMC) Part 6-4: Generic standards Emission standard for industrial environments (IEC :2006), German version EN : Adjustable speed electrical power drive systems Part 3: EMC requirements and specific test methods (IEC :2004); German version EN : Voltage characteristics of electricity supplied by public distribution networks, German version EN 50160: Industrial scientific and medical (ISM) radio-frequency equipment Electromagnetic disturbance characteristics Limits and methods of measurement (IEC/CISPR 11: A1:2004, modified + A2:2006); German version EN 55011: A2: Sinelnikova, E., Design und optimale Betriebsfuehrung doppelt gespeister Asynchrongeneratoren fuer die regenerative Energieerzeugung, Dissertation, Fakultaet fuer Elektrotechnik und Informationstechnik der Technischen Universitaet Chemnitz, 2004.

6 PIERS ONLINE, VOL. 5, NO. 8, Schroeder, D., Elektrische Antriebe Regelung von Antriebssystemen, Springer Verlag, Giesecke, J. and E. Mosonyi, Wasserkraftanlagen Planung, Bau und Betrieb, Springer Verlag, Schulz, S. and A. Lindemann, Investigation of coupling of EMC disturbances in wind generators with DFIG, 4th PhD Seminar on Wind Energy in Europe, Magdeburg, 2008.

Development of an Experimental Rig for Doubly-Fed Induction Generator based Wind Turbine

Development of an Experimental Rig for Doubly-Fed Induction Generator based Wind Turbine Development of an Experimental Rig for Doubly-Fed Induction Generator based Wind Turbine T. Neumann, C. Feltes, I. Erlich University Duisburg-Essen Institute of Electrical Power Systems Bismarckstr. 81,

More information

Power Quality in Wind Power Systems

Power Quality in Wind Power Systems Power Quality in Wind Power Systems Z. Leonowicz Department of Electrical Engineering Wroclaw University of Technology Wyb. Wyspianskiego 7 Wroclaw, 537 Wroclaw (Poland) Phone/Fax number:+48 7 366/+48

More information

HIGH-SPEED GENERATOR - CONVERTER SET FOR AUXILIARY POWER UNITS

HIGH-SPEED GENERATOR - CONVERTER SET FOR AUXILIARY POWER UNITS 30 th DASC 2011 October 16-20, 2011, Seattle HIGH-SPEED GENERATOR - CONVERTER SET FOR AUXILIARY POWER UNITS by Jan Leuchter 1, Pavol Bauer 2 1 University of Defence, Faculty of Military Technology the

More information

Reduction of flicker effect in wind power plants with doubly fed machines

Reduction of flicker effect in wind power plants with doubly fed machines Reduction of flicker effect in wind power plants with doubly fed machines J. Bendl, M. Chomat and L. Schreier Institute of Electrical Engineering Academy of Sciences of the Czech Republic Dolejskova 5,

More information

Efficient HF Modeling and Model Parameterization of Induction Machines for Time and Frequency Domain Simulations

Efficient HF Modeling and Model Parameterization of Induction Machines for Time and Frequency Domain Simulations Efficient HF Modeling and Model Parameterization of Induction Machines for Time and Frequency Domain Simulations M. Schinkel, S. Weber, S. Guttowski, W. John Fraunhofer IZM, Dept.ASE Gustav-Meyer-Allee

More information

Courseware Sample F0

Courseware Sample F0 Electric Power / Controls Courseware Sample 85822-F0 A ELECTRIC POWER / CONTROLS COURSEWARE SAMPLE by the Staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this publication

More information

Harnessing of wind power in the present era system

Harnessing of wind power in the present era system International Journal of Scientific & Engineering Research Volume 3, Issue 1, January-2012 1 Harnessing of wind power in the present era system Raghunadha Sastry R, Deepthy N Abstract This paper deals

More information

Influence of Wind Generators in Voltage Dips

Influence of Wind Generators in Voltage Dips Influence of Wind Generators in Voltage Dips E. Belenguer, N. Aparicio, J.L. Gandía, S. Añó 2 Department of Industrial Engineering and Design Universitat Jaume I Campus de Riu Sec, E-27 Castelló (Spain)

More information

Computerized Calculation of Leakage Inductance Values of Transformers

Computerized Calculation of Leakage Inductance Values of Transformers PIERS ONLINE, VOL. 5, NO. 8, 2009 721 Computerized Calculation of Leakage Inductance Values of Transformers R. Doebbelin, C. Teichert, M. Benecke, and A. Lindemann Institute of Electric Power Systems,

More information

Modeling and Analysis of Common-Mode Voltages Generated in Medium Voltage PWM-CSI Drives

Modeling and Analysis of Common-Mode Voltages Generated in Medium Voltage PWM-CSI Drives IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 18, NO. 3, MAY 2003 873 Modeling and Analysis of Common-Mode Voltages Generated in Medium Voltage PWM-CSI Drives José Rodríguez, Senior Member, IEEE, Luis Morán,

More information

Type of loads Active load torque: - Passive load torque :-

Type of loads Active load torque: - Passive load torque :- Type of loads Active load torque: - Active torques continues to act in the same direction irrespective of the direction of the drive. e.g. gravitational force or deformation in elastic bodies. Passive

More information

New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage

New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage 1 New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage B. B. Pimple, V. Y. Vekhande and B. G. Fernandes Department of Electrical Engineering, Indian Institute of Technology Bombay,

More information

ANALYSIS OF EFFECTS OF VECTOR CONTROL ON TOTAL CURRENT HARMONIC DISTORTION OF ADJUSTABLE SPEED AC DRIVE

ANALYSIS OF EFFECTS OF VECTOR CONTROL ON TOTAL CURRENT HARMONIC DISTORTION OF ADJUSTABLE SPEED AC DRIVE ANALYSIS OF EFFECTS OF VECTOR CONTROL ON TOTAL CURRENT HARMONIC DISTORTION OF ADJUSTABLE SPEED AC DRIVE KARTIK TAMVADA Department of E.E.E, V.S.Lakshmi Engineering College for Women, Kakinada, Andhra Pradesh,

More information

MEASURING ELECTROMAGNETIC EMISSIONS FROM LARGE POWER ROTATING MACHINES

MEASURING ELECTROMAGNETIC EMISSIONS FROM LARGE POWER ROTATING MACHINES Vienna, AUSTRIA,, September 25-28 MEASURING ELECTROMAGNETIC EMISSIONS FROM LARGE POWER ROTATING MACHINES P. Ferrari, A. Mariscotti and P. Pozzobon Electrical Engineering Department University of Genova

More information

1 INTRODUCTION 2 MODELLING AND EXPERIMENTAL TOOLS

1 INTRODUCTION 2 MODELLING AND EXPERIMENTAL TOOLS Investigation of Harmonic Emissions in Wound Rotor Induction Machines K. Tshiloz, D.S. Vilchis-Rodriguez, S. Djurović The University of Manchester, School of Electrical and Electronic Engineering, Power

More information

Exercise 3. Doubly-Fed Induction Generators EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Doubly-fed induction generator operation

Exercise 3. Doubly-Fed Induction Generators EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Doubly-fed induction generator operation Exercise 3 Doubly-Fed Induction Generators EXERCISE OBJECTIVE hen you have completed this exercise, you will be familiar with the operation of three-phase wound-rotor induction machines used as doubly-fed

More information

Design and Simulation of PFC Circuit for AC/DC Converter Based on PWM Boost Regulator

Design and Simulation of PFC Circuit for AC/DC Converter Based on PWM Boost Regulator International Journal of Automation and Power Engineering, 2012, 1: 124-128 - 124 - Published Online August 2012 www.ijape.org Design and Simulation of PFC Circuit for AC/DC Converter Based on PWM Boost

More information

Power Electronics Converters for Variable Speed Pump Storage

Power Electronics Converters for Variable Speed Pump Storage International Journal of Power Electronics and Drive System (IJPEDS) Vol. 3, No. 1, March 2013, pp. 74~82 ISSN: 2088-8694 74 Power Electronics Converters for Variable Speed Pump Storage Othman Hassan Abdalla,

More information

Bearing Currents and Shaft Voltages of an Induction Motor Under Hard and Soft Switching Inverter Excitation

Bearing Currents and Shaft Voltages of an Induction Motor Under Hard and Soft Switching Inverter Excitation Bearing Currents and Shaft Voltages of an Induction Motor Under Hard and Soft Switching Inverter Excitation Shaotang Chen Thomas A. Lipo Electrical and Electronics Department Department of Electrical and

More information

A Three-Phase AC-AC Buck-Boost Converter using Impedance Network

A Three-Phase AC-AC Buck-Boost Converter using Impedance Network A Three-Phase AC-AC Buck-Boost Converter using Impedance Network Punit Kumar PG Student Electrical and Instrumentation Engineering Department Thapar University, Patiala Santosh Sonar Assistant Professor

More information

SYNCHRONOUS MACHINES

SYNCHRONOUS MACHINES SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical

More information

Harmonics Reduction in a Wind Energy Conversion System with a Permanent Magnet Synchronous Generator

Harmonics Reduction in a Wind Energy Conversion System with a Permanent Magnet Synchronous Generator International Journal of Data Science and Analysis 2017; 3(6): 58-68 http://www.sciencepublishinggroup.com/j/ijdsa doi: 10.11648/j.ijdsa.20170306.11 ISSN: 2575-1883 (Print); ISSN: 2575-1891 (Online) Conference

More information

Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications

Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications Ranjan Sharma Technical University of Denmark ransharma@gmail.com Tonny

More information

Inter Harmonics of Cycloconveter Excited Induction Motor and Design its Filter Circuit

Inter Harmonics of Cycloconveter Excited Induction Motor and Design its Filter Circuit International Journal of Electrical Engineering. ISSN 974-2158 Volume 5, Number 3 (212), pp. 329-334 International Research Publication House http://www.irphouse.com Inter Harmonics of Cycloconveter Excited

More information

ROBUST ANALYSIS OF PID CONTROLLED INVERTER SYSTEM FOR GRID INTERCONNECTED VARIABLE SPEED WIND GENERATOR

ROBUST ANALYSIS OF PID CONTROLLED INVERTER SYSTEM FOR GRID INTERCONNECTED VARIABLE SPEED WIND GENERATOR ROBUST ANALYSIS OF PID CONTROLLED INVERTER SYSTEM FOR GRID INTERCONNECTED VARIABLE SPEED WIND GENERATOR Prof. Kherdekar P.D 1, Prof. Khandekar N.V 2, Prof. Yadrami M.S. 3 1 Assistant Prof,Electrical, Aditya

More information

Power Quality under the microscope

Power Quality under the microscope We take care of it. Power Quality Power Quality under the microscope Change in the producer and consumer structure The change in the producer and consumer structure of the Central European power grids

More information

ADVANCED CONTROLS FOR MITIGATION OF FLICKER USING DOUBLY-FED ASYNCHRONOUS WIND TURBINE-GENERATORS

ADVANCED CONTROLS FOR MITIGATION OF FLICKER USING DOUBLY-FED ASYNCHRONOUS WIND TURBINE-GENERATORS ADVANCED CONTROLS FOR MITIGATION OF FLICKER USING DOUBLY-FED ASYNCHRONOUS WIND TURBINE-GENERATORS R. A. Walling, K. Clark, N. W. Miller, J. J. Sanchez-Gasca GE Energy USA reigh.walling@ge.com ABSTRACT

More information

Course ELEC Introduction to electric power and energy systems. Additional exercises with answers December reactive power compensation

Course ELEC Introduction to electric power and energy systems. Additional exercises with answers December reactive power compensation Course ELEC0014 - Introduction to electric power and energy systems Additional exercises with answers December 2017 Exercise A1 Consider the system represented in the figure below. The four transmission

More information

Control of Wind Power Plant for Cooperation with Conventional Power Generation Unit and HVDC Classic Link

Control of Wind Power Plant for Cooperation with Conventional Power Generation Unit and HVDC Classic Link Control of Wind Power Plant for Cooperation with Conventional Power Generation Unit and HVDC Classic Link Li-Jun Cai*, Simon Jensen **, Vincenz Dinkhauser***, István Erlich**** REpower Systems SE,. Albert-Betz-Strasse,

More information

VIENNA RECTIFIER FED BLDC MOTOR

VIENNA RECTIFIER FED BLDC MOTOR VIENNA RECTIFIER FED BLDC MOTOR Dr. P. Sweety Jose #1, R.Gowthamraj *2, #Assistant Professor, * PG Scholar, Dept. of EEE, PSG College of Technology, Coimbatore, India 1psj.eee@psgtech.ac.in, 2 gowtham0932@gmail.com

More information

COOLTUBE Radiated Emissions Absorber

COOLTUBE Radiated Emissions Absorber COOLTUBE Radiated Emissions Absorber Radiated Emissions Solution from MH&W International Corp. Radiated Emissions In VFD Motor Systems 1. Defining the problem 2. Solutions 2 What is EMI? What Are Emissions?

More information

Control of a Double-Fed Induction Generator for Wind-Power Plants

Control of a Double-Fed Induction Generator for Wind-Power Plants Control of a Double-Fed Induction Generator for Wind-Power Plants W. Hofmann A. Thieme Lehrstuhl Elektrische Maschinen und Antriebe Technische Universität Chemnitz Reichenhainer Str. 70 D-09126 Chemnitz

More information

Design of a Cell Charger for an ipad Using Full Bridge Rectifier and Flyback Converter

Design of a Cell Charger for an ipad Using Full Bridge Rectifier and Flyback Converter Design of a Cell Charger for an ipad Using Full Bridge Rectifier and Flyback Converter 1 Ali Saleh Aziz, 2 Riyadh Nazar Ali 1, 2 Assistant Lecturer 1, 2 Department of Medical Instruments Techniques Engineering

More information

Bahram Amin. Induction Motors. Analysis and Torque Control. With 41 Figures and 50 diagrams (simulation plots) Springer

Bahram Amin. Induction Motors. Analysis and Torque Control. With 41 Figures and 50 diagrams (simulation plots) Springer Bahram Amin Induction Motors Analysis and Torque Control With 41 Figures and 50 diagrams (simulation plots) Springer 1 Main Parameters of Induction Motors 1.1 Introduction 1 1.2 Structural Elements of

More information

About Measurement Uncertainty of Conducted Emissions Generated by a Variable Speed Drive

About Measurement Uncertainty of Conducted Emissions Generated by a Variable Speed Drive About Measurement Uncertainty of Conducted Emissions Generated by a Variable Speed Drive Daniele Gallo 1, Carmine Landi, 1 Nicola Pasquino, 2 Vincenzo Ruotolo, 2 1 Dept. of Information Engineering, Second

More information

Eyenubo, O. J. & Otuagoma, S. O.

Eyenubo, O. J. & Otuagoma, S. O. PERFORMANCE ANALYSIS OF A SELF-EXCITED SINGLE-PHASE INDUCTION GENERATOR By 1 Eyenubo O. J. and 2 Otuagoma S. O 1 Department of Electrical/Electronic Engineering, Delta State University, Oleh Campus, Nigeria

More information

6. du/dt-effects in inverter-fed machines

6. du/dt-effects in inverter-fed machines 6. du/dt-effects in inverter-fed machines Source: A. Mütze, PhD Thesis, TU Darmstadt 6/1 6. du/dt-effects in inverter-fed machines 6.1 Voltage wave reflections at motor terminals Source: A. Mütze, PhD

More information

Distributed Energy Engineering

Distributed Energy Engineering Distributed Energy Engineering (IKE1002) Part5: Frequency Converter Energy growth 2007-2030 by IEA World average Energy efficiency potential Electrical energy needed to produce 1 USD in GNP Midle-East

More information

Measurements of the Distorted No-load Current of a 60/20 kv, 6 MVA Power Transformer Søgaard, Kim; Bak, Claus Leth; Wiechowski, Wojciech Tomasz

Measurements of the Distorted No-load Current of a 60/20 kv, 6 MVA Power Transformer Søgaard, Kim; Bak, Claus Leth; Wiechowski, Wojciech Tomasz Aalborg Universitet Measurements of the Distorted No-load Current of a 60/20 kv, 6 MVA Power Transformer Søgaard, Kim; Bak, Claus Leth; Wiechowski, Wojciech Tomasz Publication date: 2005 Document Version

More information

Electrical Motor Power Measurement & Analysis

Electrical Motor Power Measurement & Analysis Electrical Motor Power Measurement & Analysis Understand the basics to drive greater efficiency Test&Measurement Energy is one of the highest cost items in a plant or facility, and motors often consume

More information

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 9 CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 2.1 INTRODUCTION AC drives are mainly classified into direct and indirect converter drives. In direct converters (cycloconverters), the AC power is fed

More information

CONTROL SCHEME OF STAND-ALONE WIND POWER SUPPLY SYSTEM WITH BATTERY ENERGY STORAGE SYSTEM

CONTROL SCHEME OF STAND-ALONE WIND POWER SUPPLY SYSTEM WITH BATTERY ENERGY STORAGE SYSTEM CONTROL SCHEME OF STAND-ALONE WIND POWER SUPPLY SYSTEM WITH BATTERY ENERGY STORAGE SYSTEM 1 TIN ZAR KHAING, 2 LWIN ZA KYIN 1,2 Department of Electrical Power Engineering, Mandalay Technological University,

More information

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE 3.1 GENERAL The PMBLDC motors used in low power applications (up to 5kW) are fed from a single-phase AC source through a diode bridge rectifier

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 GENERAL Induction motor drives with squirrel cage type machines have been the workhorse in industry for variable-speed applications in wide power range that covers from fractional

More information

Direct AC/AC power converter for wind power application

Direct AC/AC power converter for wind power application Direct AC/AC power converter for wind power application Kristian Prestrud Astad, Marta Molinas Norwegian University of Science and Technology Department of Electric Power Engineering Trondheim, Norway

More information

Power Quality Improvement by Designing the LCL Filters for the Matrix Converter in a DFIG System

Power Quality Improvement by Designing the LCL Filters for the Matrix Converter in a DFIG System Power Quality Improvement by Designing the LCL Filters for the Matrix Converter in a DFIG System Vijaya raju Vasipalli, PG Student Dept. of Electrical Engineering SATI, Vidisha Madhya Pradesh, India Vikalp

More information

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL 47 CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL 4.1 INTRODUCTION Passive filters are used to minimize the harmonic components present in the stator voltage and current of the BLDC motor. Based on the design,

More information

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 105 CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 6.1 GENERAL The line current drawn by the conventional diode rectifier filter capacitor is peaked pulse current. This results in utility line

More information

Alternative Coupling Method for Immunity Testing of Power Grid Protection Equipment

Alternative Coupling Method for Immunity Testing of Power Grid Protection Equipment Alternative Coupling Method for Immunity Testing of Power Grid Protection Equipment Christian Suttner*, Stefan Tenbohlen Institute of Power Transmission and High Voltage Technology (IEH), University of

More information

High Frequency Grid Impedance Analysis by Current Injection

High Frequency Grid Impedance Analysis by Current Injection High Frequency Grid Impedance Analysis by Current Injection A. Knop, F.W. Fuchs, Senior Member Institute of Power Electronics and Electrical Drives, Christian-Albrechts-University of Kiel, D-44 Kiel, Germany,

More information

Vienna Rectifier Fed BLDC Motor

Vienna Rectifier Fed BLDC Motor Vienna Rectifier Fed BLDC Motor Dr. P. Sweety Jose 1, R.Gowthamraj 2 1 Assistant Professor, 2 PG Scholar, Dept. of Electrical & Electronics Engg., PSG College of Technology, Coimbatore 1 psj.eee@psgtech.ac.in

More information

Losses in Power Electronic Converters

Losses in Power Electronic Converters Losses in Power Electronic Converters Stephan Meier Division of Electrical Machines and Power Electronics EME Department of Electrical Engineering ETS Royal Institute of Technology KTH Teknikringen 33

More information

Modeling of Conduction EMI Noise and Technology for Noise Reduction

Modeling of Conduction EMI Noise and Technology for Noise Reduction Modeling of Conduction EMI Noise and Technology for Noise Reduction Shuangching Chen Taku Takaku Seiki Igarashi 1. Introduction With the recent advances in high-speed power se miconductor devices, the

More information

Enhancement of Reactive Power Capability of DFIG using Grid Side Converter

Enhancement of Reactive Power Capability of DFIG using Grid Side Converter Enhancement of Reactive Power Capability of DFIG using Grid Side Converter V. Sumitha 1 R. Gnanadass 2 Abstract - In the new electricity grid code, reactive power generation by wind farms, which must operate

More information

Detection of Broken Damper Bars of a Turbo Generator by the Field Winding

Detection of Broken Damper Bars of a Turbo Generator by the Field Winding Detection of Broken Damper Bars of a Turbo Generator by the Field Winding J. Bacher 1 1 Institute of Electrical Machines and Drive Technology E.M.A, University of Technology Graz Kopernikusgasse, 8010

More information

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 58 CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 4.1 INTRODUCTION Conventional voltage source inverter requires high switching frequency PWM technique to obtain a quality output

More information

A Robust Fuzzy Speed Control Applied to a Three-Phase Inverter Feeding a Three-Phase Induction Motor.

A Robust Fuzzy Speed Control Applied to a Three-Phase Inverter Feeding a Three-Phase Induction Motor. A Robust Fuzzy Speed Control Applied to a Three-Phase Inverter Feeding a Three-Phase Induction Motor. A.T. Leão (MSc) E.P. Teixeira (Dr) J.R. Camacho (PhD) H.R de Azevedo (Dr) Universidade Federal de Uberlândia

More information

Comparative Analysis of Space Vector Pulse-Width Modulation and Third Harmonic Injected Modulation on Industrial Drives.

Comparative Analysis of Space Vector Pulse-Width Modulation and Third Harmonic Injected Modulation on Industrial Drives. Comparative Analysis of Space Vector Pulse-Width Modulation and Third Harmonic Injected Modulation on Industrial Drives. C.O. Omeje * ; D.B. Nnadi; and C.I. Odeh Department of Electrical Engineering, University

More information

Interactions Between Electrical Machine and Power Electronics

Interactions Between Electrical Machine and Power Electronics Interactions Between Electrical Machine and Power Electronics Prof. Dr. Ing. Ralph Kennel (ralph.kennel@tum.de) Technische Universität München Arcisstraße 21 80333 München Additional Losses Prof. Dr. Ing.

More information

Voltage Regulated Five Level Inverter Fed Wind Energy Conversion System using PMSG

Voltage Regulated Five Level Inverter Fed Wind Energy Conversion System using PMSG Voltage Regulated Five Level Inverter Fed Wind Energy Conversion System using PMSG Anjali R. D PG Scholar, EEE Dept Mar Baselios College of Engineering & Technology Trivandrum, Kerala, India Sheenu. P

More information

Harmonic Filtering in Variable Speed Drives

Harmonic Filtering in Variable Speed Drives Harmonic Filtering in Variable Speed Drives Luca Dalessandro, Xiaoya Tan, Andrzej Pietkiewicz, Martin Wüthrich, Norbert Häberle Schaffner EMV AG, Nordstrasse 11, 4542 Luterbach, Switzerland luca.dalessandro@schaffner.com

More information

Aalborg Universitet. Design and Control of A DC Grid for Offshore Wind Farms Deng, Fujin. Publication date: 2012

Aalborg Universitet. Design and Control of A DC Grid for Offshore Wind Farms Deng, Fujin. Publication date: 2012 Aalborg Universitet Design and Control of A DC Grid for Offshore Wind Farms Deng, Fujin Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link to publication from

More information

Realisation of the galvanic isolation in customer-end DC to AC inverters for the LVDC distribution

Realisation of the galvanic isolation in customer-end DC to AC inverters for the LVDC distribution Realisation of the galvanic isolation in customer-end DC to AC inverters for the LVDC distribution Background: The electric distribution network in Finland has normally voltage levels of 20 kv and 400

More information

ELECTRONIC CONTROL OF A.C. MOTORS

ELECTRONIC CONTROL OF A.C. MOTORS CONTENTS C H A P T E R46 Learning Objectives es Classes of Electronic AC Drives Variable Frequency Speed Control of a SCIM Variable Voltage Speed Control of a SCIM Chopper Speed Control of a WRIM Electronic

More information

Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method

Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 16, NO. 1, MARCH 2001 55 Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method S. L. Ho and W. N. Fu Abstract

More information

A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System

A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System 7 International Journal of Smart Electrical Engineering, Vol.3, No.2, Spring 24 ISSN: 225-9246 pp.7:2 A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System Mehrnaz Fardamiri,

More information

POWER FACTOR CORRECTION AND HARMONIC CURRENT REDUCTION IN DUAL FEEDBACK PWM CONTROLLED AC/DC DRIVES.

POWER FACTOR CORRECTION AND HARMONIC CURRENT REDUCTION IN DUAL FEEDBACK PWM CONTROLLED AC/DC DRIVES. POWER FACTOR CORRECTION AND HARMONIC CURRENT REDUCTION IN DUAL FEEDBACK PWM CONTROLLED AC/DC DRIVES. 1 RAJENDRA PANDAY, 2 C.VEERESH,ANIL KUMAR CHAUDHARY 1, 2 Mandsaur Institute of Techno;ogy,Mandsaur,

More information

MITIGATION OF VOLTAGE SAG IN A DFIG BASED WIND TURBINE USING DVR

MITIGATION OF VOLTAGE SAG IN A DFIG BASED WIND TURBINE USING DVR MITIGATION OF VOLTAGE SAG IN A DFIG BASED WIND TURBINE USING DVR M Venmathi*, Soumyadeep Chakraborti 1, Soham Ghosh 2, Abhirup Ray 3, Vidhya Nikam 4 * (Senior Lecturer, Dept. of Electrical and Electronics,

More information

Dynamic Phasors for Small Signal Stability Analysis

Dynamic Phasors for Small Signal Stability Analysis for Small Signal Stability Analysis Chandana Karawita (Transgrid Solutions) for Small Signal Stability Analysis Outline Introduction 1 Introduction Simulation and Analysis Techniques Typical Outputs Modelling

More information

Abstract. Introduction. correct current. control. Sensorless Control. into. distortion in. implementation. pulse introduces a large speeds as show in

Abstract. Introduction. correct current. control. Sensorless Control. into. distortion in. implementation. pulse introduces a large speeds as show in Sensorless Control of High Power Induction Motors Using Multilevel Converters K. Saleh, M. Sumner, G. Asher, Q. Gao Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham,

More information

Mitigation & Protection of Sub-Synchronous Controller Interactions (SSCI) in DFIG Wind Turbine Systems

Mitigation & Protection of Sub-Synchronous Controller Interactions (SSCI) in DFIG Wind Turbine Systems Mitigation & Protection of Sub-Synchronous Controller Interactions (SSCI) in DFIG Wind Turbine Systems Krish Narendra, P.hD. CTO ERL Protection, Automation, Control & Smart Grid ERLPhase Power Technologies

More information

DC-Voltage fluctuation elimination through a dc-capacitor current control for PMSG under unbalanced grid voltage conditions

DC-Voltage fluctuation elimination through a dc-capacitor current control for PMSG under unbalanced grid voltage conditions DC-Voltage fluctuation elimination through a dc-capacitor current control for PMSG under unbalanced grid voltage conditions P Kamalchandran 1, A.L.Kumarappan 2 PG Scholar, Sri Sairam Engineering College,

More information

The Energy Processing by Power Electronics and its Impact on Power Quality

The Energy Processing by Power Electronics and its Impact on Power Quality P a g e 99 Contents list available at IJRED website, ISSN : 2252-4940 Int. Journal of Renewable Energy Development (IJRED) Journal homepage: www.ijred.com The Energy Processing by Power Electronics and

More information

High Voltage DC Transmission 2

High Voltage DC Transmission 2 High Voltage DC Transmission 2 1.0 Introduction Interconnecting HVDC within an AC system requires conversion from AC to DC and inversion from DC to AC. We refer to the circuits which provide conversion

More information

Bearing Currents and Shaft Voltage Reduction in Dual-Inverter-Fed Open-End Winding Induction Motor With CMV PWM Methods Employing PID

Bearing Currents and Shaft Voltage Reduction in Dual-Inverter-Fed Open-End Winding Induction Motor With CMV PWM Methods Employing PID Bearing Currents and Shaft Voltage Reduction in Dual-Inverter-Fed Open-End Winding Induction Motor With CMV PWM Methods Employing PID T.Rakesh 1, K.Suresh 2 1 PG Scholar (PS), Nalanda Institute of Engineering

More information

Bearing Currents and Shaft Voltage Reduction in Dual-Inverter-Fed Open-End Winding Induction Motor With CMV PWM Methods Employing PID

Bearing Currents and Shaft Voltage Reduction in Dual-Inverter-Fed Open-End Winding Induction Motor With CMV PWM Methods Employing PID Bearing Currents and Shaft Voltage Reduction in Dual-Inverter-Fed Open-End Winding Induction Motor With CMV PWM Methods Employing PID I.Rajya Lakshmi 1 P.V Subba Rao 2 1 PG Scholar (EEE), RK College of

More information

ABB DRIVES Technical guide No. 6 Guide to harmonics with AC drives

ABB DRIVES Technical guide No. 6 Guide to harmonics with AC drives ABB DRIVES Technical guide No. 6 Guide to harmonics with AC drives 2 TECHNICAL GUIDE NO. 6 GUIDE TO HARMONICS WITH AC DRIVES Guide to harmonics This guide is part of ABB s technical guide series, describing

More information

Masterthesis. Variable Speed Wind Turbine equipped with a Synchronous Generator. by Christian Freitag

Masterthesis. Variable Speed Wind Turbine equipped with a Synchronous Generator. by Christian Freitag Masterthesis Variable Speed Wind Turbine equipped with a Synchronous Generator by Christian Freitag Title: Variable Speed Wind Turbines equipped with a Synchronous Generator Semester: 4 th Semester theme:

More information

A boost current source inverter based generator-converter topology for. direct drive wind turbines. Akanksha Singh AN ABSTRACT OF A DISSERTATION

A boost current source inverter based generator-converter topology for. direct drive wind turbines. Akanksha Singh AN ABSTRACT OF A DISSERTATION A boost current source inverter based generator-converter topology for direct drive wind turbines by Akanksha Singh B.E., Bengal Engineering and Science University, 2 AN ABSTRACT OF A DISSERTATION submitted

More information

COMPARISON OF NUMERICALLY DETERMINED NOISE OF A 290 KW INDUCTION MOTOR USING FEM AND MEASURED ACOUSTIC RADIATION

COMPARISON OF NUMERICALLY DETERMINED NOISE OF A 290 KW INDUCTION MOTOR USING FEM AND MEASURED ACOUSTIC RADIATION Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 66 Politechniki Wrocławskiej Nr 66 Studia i Materiały Nr 32 2012 Masen AL NAHLAOUI*, Hendrik STEINS*, Stefan KULIG*, Sven EXNOWSKI* inverter-fed,

More information

MODELLING AND CONTROL OF A VARIABLE-SPEED SWITCHED RELUCTANCE GENERATOR BASED WIND TURBINE

MODELLING AND CONTROL OF A VARIABLE-SPEED SWITCHED RELUCTANCE GENERATOR BASED WIND TURBINE MODELLING AND CONTROL OF A VARIABLE-SPEED SWITCHED RELUCTANCE GENERATOR BASED WIND TURBINE D. McSwiggan (1), L. Xu (1), T. Littler (1) (1) Queen s University Belfast, UK ABSTRACT This paper studies the

More information

Comparison and Detection of Abnormal Conditions in Induction Motors

Comparison and Detection of Abnormal Conditions in Induction Motors Comparison and Detection of Abnormal Conditions in Induction Motors Mehrdad Heidari 1, Ghodratollah Seifossadat 2, Davar Mirabbasi 1 mehrdad266@yahoo.com, seifossadat@yahoo.com, dmirabbasi@yahoo.com 1

More information

Analysis of Hybrid Renewable Energy System using NPC Inverter

Analysis of Hybrid Renewable Energy System using NPC Inverter Analysis of Hybrid Renewable Energy System using NPC Inverter Reema Manavalan PG Scholar Power Electronics and Drives Anna University reemamanavalan87@gmail.com Abstract: In a variable-speed wind energy

More information

Latest Control Technology in Inverters and Servo Systems

Latest Control Technology in Inverters and Servo Systems Latest Control Technology in Inverters and Servo Systems Takao Yanase Hidetoshi Umida Takashi Aihara. Introduction Inverters and servo systems have achieved small size and high performance through the

More information

A Comparative Study between DPC and DPC-SVM Controllers Using dspace (DS1104)

A Comparative Study between DPC and DPC-SVM Controllers Using dspace (DS1104) International Journal of Electrical and Computer Engineering (IJECE) Vol. 4, No. 3, June 2014, pp. 322 328 ISSN: 2088-8708 322 A Comparative Study between DPC and DPC-SVM Controllers Using dspace (DS1104)

More information

Bimal K. Bose and Marcelo G. Simões

Bimal K. Bose and Marcelo G. Simões United States National Risk Management Environmental Protection Research Laboratory Agency Research Triangle Park, NC 27711 Research and Development EPA/600/SR-97/010 March 1997 Project Summary Fuzzy Logic

More information

Determination of EMI of PWM fed Three Phase Induction Motor. Ankur Srivastava

Determination of EMI of PWM fed Three Phase Induction Motor. Ankur Srivastava Abstract International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) Impact Factor: 3.45 (SJIF-2015), e-issn: 2455-2584 Volume 3, Issue 05, May-2017 Determination of EMI of

More information

SIMULATION of EMC PERFORMANCE of GRID CONNECTED PV INVERTERS

SIMULATION of EMC PERFORMANCE of GRID CONNECTED PV INVERTERS SIMULATION of EMC PERFORMANCE of GRID CONNECTED PV INVERTERS Qin Jiang School of Communications & Informatics Victoria University P.O. Box 14428, Melbourne City MC 8001 Australia Email: jq@sci.vu.edu.au

More information

INVESTIGATION OF THE IMPACT OF SPEED-RIPPLE AND INERTIA ON THE STEADY-STATE CURRENT SPECTRUM OF A DFIG WITH UNBALANCED ROTOR

INVESTIGATION OF THE IMPACT OF SPEED-RIPPLE AND INERTIA ON THE STEADY-STATE CURRENT SPECTRUM OF A DFIG WITH UNBALANCED ROTOR INVESTIGATION OF THE IMPACT OF SPEED-RIPPLE AND INERTIA ON THE STEADY-STATE CURRENT SPECTRUM OF A DFIG WITH UNBALANCED ROTOR S. Djurović*, S. Williamson *School of Electrical and Electronic Engineering,

More information

motor that is connected to an inverter as a load (Fig. 2). The motor s winding can be thought of as an R-L load consisting of a resistance and inducta

motor that is connected to an inverter as a load (Fig. 2). The motor s winding can be thought of as an R-L load consisting of a resistance and inducta Effectiveness of Phase Correction When Evaluating the Efficiency of High-efficiency Motor Drives By Hideharu Kondo, Chiaki Yamaura, Yukiya Saito, Hiroki Kobayashi 1. Introduction Against the backdrop of

More information

Electromagnetic compatibility Guidance and manufacturer s declaration DIN EN :2007 (IEC :2007)

Electromagnetic compatibility Guidance and manufacturer s declaration DIN EN :2007 (IEC :2007) Compressor set Equipment Under Test (EUT) Type 028 Type 047 Type 052 Type 085 Electromagnetic compatibility Guidance and manufacturer s declaration DIN EN 60601-1-2:2007 (IEC 60601-1-2:2007) 2017 PARI

More information

SIMULATION AND EVALUATION OF A PHASE SYNCHRONOUS INVERTER FOR MICRO-GRID SYSTEM

SIMULATION AND EVALUATION OF A PHASE SYNCHRONOUS INVERTER FOR MICRO-GRID SYSTEM SIMULATION AND EVALUATION OF A PHASE SYNCHRONOUS INVERTER FOR MICRO-GRID SYSTEM Tawfikur Rahman, Muhammad I. Ibrahimy, Sheikh M. A. Motakabber and Mohammad G. Mostafa Department of Electrical and Computer

More information

Modeling and Simulation of Wind Farm with STATCOM in PSCAD/EMTDC Environment

Modeling and Simulation of Wind Farm with STATCOM in PSCAD/EMTDC Environment Modeling and Simulation of Wind Farm with STATCOM in PSCAD/EMTDC Environment Champa Nandi Assistant Professor Tripura University Ajoy Kr. Chakraborty Associate Professor NIT,Agartala Sujit Dutta, Tanushree

More information

A Three Phase Seven Level Inverter for Grid Connected Photovoltaic System by Employing PID Controller

A Three Phase Seven Level Inverter for Grid Connected Photovoltaic System by Employing PID Controller A Three Phase Seven Level Inverter for Grid Connected Photovoltaic System by Employing PID Controller S. Ragavan, Swaminathan 1, R.Anand 2, N. Ranganathan 3 PG Scholar, Dept of EEE, Sri Krishna College

More information

HIGH PERFORMANCE CONTROL OF AC DRIVES WITH MATLAB/SIMULINK MODELS

HIGH PERFORMANCE CONTROL OF AC DRIVES WITH MATLAB/SIMULINK MODELS HIGH PERFORMANCE CONTROL OF AC DRIVES WITH MATLAB/SIMULINK MODELS Haitham Abu-Rub Texas A&M University at Qatar, Qatar Atif Iqbal Qatar University, Qatar and Aligarh Muslim University, India Jaroslaw Guzinski

More information

CHAPTER 3 EQUIVALENT CIRCUIT AND TWO AXIS MODEL OF DOUBLE WINDING INDUCTION MOTOR

CHAPTER 3 EQUIVALENT CIRCUIT AND TWO AXIS MODEL OF DOUBLE WINDING INDUCTION MOTOR 35 CHAPTER 3 EQUIVALENT CIRCUIT AND TWO AXIS MODEL OF DOUBLE WINDING INDUCTION MOTOR 3.1 INTRODUCTION DWIM consists of two windings on the same stator core and a squirrel cage rotor. One set of winding

More information

POWER ELECTRONICS. Converters, Applications, and Design. NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota

POWER ELECTRONICS. Converters, Applications, and Design. NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota POWER ELECTRONICS Converters, Applications, and Design THIRD EDITION NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota TORE M. UNDELAND Department of Electrical

More information

EMC and Variable Speed Drives

EMC and Variable Speed Drives EMC stands for electromagnetic compatibility the ability of electric and electronic devices to work properly in the environment for which they are designed. For this purpose the environment is defined

More information

Conventional Paper-II-2013

Conventional Paper-II-2013 1. All parts carry equal marks Conventional Paper-II-013 (a) (d) A 0V DC shunt motor takes 0A at full load running at 500 rpm. The armature resistance is 0.4Ω and shunt field resistance of 176Ω. The machine

More information

DESIGN AND ANALYSIS OF ELIMINATION OF HARMONICS USING WIND ENERGY CONVERSION SYSTEMS

DESIGN AND ANALYSIS OF ELIMINATION OF HARMONICS USING WIND ENERGY CONVERSION SYSTEMS DESIGN AND ANALYSIS OF ELIMINATION OF HARMONICS USING WIND ENERGY CONVERSION SYSTEMS Dr.S.K.PURUSHOTHAMAN Associate Professor Department of EEE Sri Venkateswara College Of Engineering And Technology, Thirupachur

More information