Losses in Power Electronic Converters

Size: px
Start display at page:

Download "Losses in Power Electronic Converters"

Transcription

1 Losses in Power Electronic Converters Stephan Meier Division of Electrical Machines and Power Electronics EME Department of Electrical Engineering ETS Royal Institute of Technology KTH Teknikringen 33 SE- 44 Stockholm Abstract This work is the proposed solution for Task, Problem, in the Nordic PhD course on Wind Power, held in Smøla, Norway, between June 5-, 5. It discusses the converter losses and the expected costs of the back-to-back converter in a doubly-fed induction generator (DFIG) in a wind turbine application. Two different topologies of back-to-back converters are considered: A conventional two-level converter and a three-level diode-clamped converter. I. INTRODUCTION During the past few years, variable-speed wind turbines have become the dominant type among newly-installed units. Variable-speed wind turbines are designed to achieve maximum aerodynamic efficiency over a wide range of wind speeds by continuously adapting the rotational speed of the wind turbine to the wind speed. The advantages of variable-speed wind turbines are an increased energy capture, improved power quality and reduced mechanical stress on the structure. In order to achieve variable-speed operation of the wind turbine, the electric system is getting more complicated. In recent years, mainly back-to-back converters are being used in the power conversion field for wind turbines. One solution is to use a fullscale back-to-back converter that allows full variable-speed operation of the wind turbine at the cost of a large, expensive and lossy frequency converter that is rated at nominal generator power. This configuration is used by e.g. Enercon. Another solution is to equip the variable-speed wind turbine with a DFIG. In the DFIG wind turbine configuration, the stator of the wound-rotor induction generator is directly connected to the collection grid whereas the rotor windings are connected to a back-to-back converter over slip rings. However, this solution does only provide a limited speed range, depending on the rating of the frequency converter. A manufacturer using this configuration is e.g. Vestas. The advantage of applying back-to-back converters in the power conversion field for wind turbines is that these converters are completely programmable and due to it, they are very versatile. This allows different control strategies to control the active power flow and to both provide reactive power to the induction generator and to achieve the compensation of reactive power on the line side. According to [], the DFIG system has the advantage that the back-to-back converter needs only to be dimensioned with a fraction of the rated turbine power depending on the required speed range. Both the costs and the conduction and switching losses of the semiconductor valves are approximately proportional to the converter rating and are thus decreasing with the same proportion. Also the converter filters and the filters for electromagnetic interference (EMI) can be relaxed as they only have to be rated proportional to the converter rating, which signifies an additional large cost reduction. The disadvantage of applying back-to-back converters is that these electronic devices are relatively expensive and that they introduce additional losses in the system due to the conduction and switching losses of the semiconductor valves. Recently, a new and promising technology was introduced, the multilevel converters. These type of converters promise improvements in the harmonic quality of the output voltage which is an advantage because the output filters of the system can be relaxed. But at first sight, these converters seem to increase the cost and the losses of the converters, as the number of components increases compared to the conventional two-level converters. Therefore, this work presents a study of the losses and the expected costs of two different back-to-back converter topologies; a conventional two-level converter and a threelevel diode-clamped converter. At first, the problem is defined properly and it is determined what power flows that can be expected in both the rotor-side and the line-side voltage source converter (VSC). Then, the two considered topologies are presented and the harmonic spectrum in the respective output voltages are analyzed. Finally, a comprehensive simulation of the losses in the back-to-back converter is presented. A basic cost comparison and a summary of the main findings concludes this work. II. PROBLEM DEFINITION The active and reactive power flows have to be determined in order to know the operation status of the back-to-back converter. Therefore, it is essential to have a generator model and a basic control system for the two VSCs. The parameters of the wound-rotor induction generator are given in p.u.-values and it is very convenient to normalize the voltage-current equations of the DFIG. In this section, it is also described how the base values for the simulation were chosen and how the

2 variables have to be scaled during a transformation between P r different reference frames. PSfrag replacements Q s P r Q r A. Generator model In order to determine the power flows, currents and voltages for different operating conditions, i.e. for different rotor speeds, it is necessary to develop a generator model. The wound-rotor induction generator used in the DFIG system comprises a three-phase stator winding and a three-phase rotor winding, which is fed via slip rings. The used generator model is chosen according to [], neglecting the stator and rotor transients which are not important in this context. The equations that describe the voltage-current relationship of a doubly-fed induction generator are given in p.u.-values as: u ds = R s i ds + ω s ((L sσ + L m ) i qs + L m i qr ) u qs = R s i qs ω s ((L sσ + L m ) i ds + L m i dr ) u dr = R r i dr + sω s ((L rσ + L m ) i qr + L m i qs ) u qr = R r i qr sω s ((L rσ + L m ) i dr + L m i ds ) () In these equations, a synchronous two-phase dq-reference frame is used, that is fixed to the space vector of the stator voltage. This is a convenient alternative because the DFIG operates as a generator being fed with constant stator voltage (in the dq-reference frame). Hence, the stator voltage and current are given for line operation of the DFIG system. The equations for determining active and reactive power flows, which are defined according to Figure, are given as: P s = u ds i ds + u qs i qs P r = u dr i dr + u qr i qr Q s = u qs i ds u ds i qs Q r = u qr i dr u dr i qr () The absolute values of the stator and rotor voltages, respective currents, can be calculated as: u s = u ds + u qs u r = u dr + u qr i s = i qs + i ds i r = i qr + i dr (3) The power factors cos φ on the rotor and stator side are defined as: cos φ s = P s S s = P s P s + Q s cos φ r = P r P r = S r P r + Q r = P s u s i s = P r u r i r (4) P = P s + P r, Q = Fig.. P s, Q s Active and reactive power flows in the DFIG system. TABLE I PARAMETERS OF THE WOUND-ROTOR INDUCTION GENERATOR. Parameter Value [p.u.] Magnetising inductance L m 4. Stator leakage inductance L sσ. Rotor leakage inductance L rσ. Stator resistance R s.5 Rotor resistance R r.5 Stator connection Delta Rotor connection Star B. Simulation parameters and their normalization For this work, it is assumed that the rated power S N of the wind turbine is MVA. The collection grid voltage U N at the connection point is 69 V, which is a common choice for wind turbines. The normalized p.u.-values of the woundrotor induction generator can be found in Table I. It is very convenient to work with normalized values as the control system and the design process get independent of the actual generator size. The peak phase voltage and peak phase current are chosen as the base values, base on which the other base values of the model can be calculated as shown in Table II. It has to be considered that all quantities are given in the rotating dq-reference frame, and that the stator windings are delta connected while the rotor windings are star connected. The transformation from the stationary three-phase abc-reference frame to the rotating two-phase dq-reference frame via the stationary two-phase αβ-reference frame is given as (valid for both currents and voltages): u α = ( u a 3 u b ) u c ( u β = ) u b u c (5) u d = u α cos θ u β sin θ u q = u β cos θ + u α sin θ (6) where θ is the angular position of the rotating dq-reference frame relative to the stationary αβ-reference frame. However, the dq-quantities have to be scaled in order to get the same amplitudes as the phase quantities according to Table III [3].

3 TABLE II MODEL BASE VALUES. Parameter Equation Value Base voltage U base = U N V 3 PSfrag replacements Base power S base = S N = 3 U basei base MVA Base current I base = S base 3U base = U base I base.8 ka Base impedance Z base.48 Ω Base angular frequency ω base = πf N 34 rad/s TABLE III SCALING FACTORS FOR REFERENCE FRAME TRANSFORMATIONS. Active, reactive power [p.u.] P s Q r P Q s P r Slip Fig.. Active and reactive power of the rotor and stator as a function of the slip. Parameter Scaling factor Stator voltages u ds, u qs, u s 3 3 =.385 Rotor voltages u dr, u qr, u r = Stator currents i ds, i qs, i s =.55 3 Rotor currents i dr, i qr, i r 3 =.667 Stator power P s, Q s, S s 3 =.667 Rotor power P r, Q r, S r 3 =.667 C. DFIG vector control In order to get the operation conditions for different operation points, i.e. for different rotor speeds, a basic vector control scheme was implemented. Its main purpose is to guarantee stable operation and enable the independent control of active and reactive power of the back-to-back converter. The controller is using the generator model equations derived in the previous section in the rotating dq-reference frame. The desired rotor voltage command is determined in order to control the active and reactive rotor power by controlling the rotor currents. The line-side converter is controlling the DClink voltage and the reactive power of the total DFIG system, which is assumed to have unity power factor, i.e. it is neither absorbing nor generating reactive power (Q = ). In this study, it is assumed that the mechanical rotor speed is required to have the possibility to change from.7 to.3 times the synchronous generator speed, which corresponds to a slip range between -.3 to +.3. The slip s of the induction generator is given as s = ω s ω mech ω s = ω r ω s, (7) where ω s is the electrical angular frequency of the stator quantities (which is constant and equal to the base angular frequency ω base ), ω mech is the mechanical angular frequency of the rotor shaft and ω r is the electrical angular frequency of the rotor quantities. This equation is valid for an induction generator with two poles (one pole pair). The number of electrical poles in the induction generator does not influence its electrical behavior but changes the requirement on the gear ratio in the gear box of the wind turbine. It can be noticed that the electrical angular rotor frequency at zero slip becomes zero, which means that a pure DC current will flow in the rotor. Figure shows the active and reactive rotor and stator power over the required speed range. It can be noticed that the active rotor power P r is flowing through the back-to-back converter, as it cannot generate, consume or store active power (apart from the losses that inherently appear). The total active power generated by the doubly-fed induction generator is the sum of the rotor and stator active power P = P s + P r. With the chosen DFIG control scheme, the active stator power is kept constant over the whole speed range while the rotor power is proportional to the slip. In contrary to the active power, the back-to-back converter can generate or consume reactive power, which is utilized in order to get unity power factor at the connection point of the wind turbine. It can be seen that the back-to-back converter operates as a generator of active power above synchronous speed and delivers active power to the grid. At a slip of s =.3, the wind turbine delivers rated active power to the collection grid. Contrary, below synchronous speed, the back-to-back converter by-passes active power from the grid into the rotor circuit and the active power delivered to the grid becomes approximatively half the rated power at a slip of s =.3. Figure 3 shows the rotor and stator voltages and currents over the required speed range. It can be seen that the stator voltage is as expected p.u. Also the stator and rotor currents are constant over the whole speed range, while the rotor voltage is approximately proportional to the absolute value of the slip and becomes zero for zero slip. III. CONSIDERED TOPOLOGIES The considered topologies for the back-to-back converter are a conventional two-level converter as shown in Figure 4 and a three-level diode-clamped converter as shown in Figure 6. The two-level topology is widely used in VSC transmission systems and in back-to-back converters in DFIG wind turbines at a wide range of power levels. Figure 5 shows the output waveform of the two-level converter which is either positive or negative. p.u. voltage corresponds to half the DC-link voltage. In order to improve the quality of the voltage output, a pulse width modulation (PWM) switching 3

4 .9 u s.8 placements Voltage, current [p.u.] i s i r.. u r Slip Fig. 4. Conventional two-level converter. Fig. 3. Voltage and current of the rotor and stator as a function of the slip. scheme is used that produces a waveform with a dominant fundamental component with the compromise that significant higher-order harmonics are also generated, as shown in the harmonic spectrum of the two-level converter in Figure 5. The applied PWM switching scheme is a carrier-based control method with a switching frequency of 5 Hz (frequency modulation ratio p = ). The amplitude modulation ratio in Figure 5 is m a =.94, which corresponds to the operation point of the line-side VSC in the back-to-back converter. By splitting up the DC capacitor and the insulated gate bipolar transistor (IGBT) valves and with the help of additional diodes, a three-level diode-clamped converter as shown in Figure 6 can be formed. The output waveform comprises three voltage levels, i.e. p.u.,, - p.u. as shown in Figure 7. p.u. voltage corresponds to half the DC-link voltage that is the voltage above one of the bus-splitting capacitors. As for the two-level converter, a carrier-based PWM switching scheme with an identical frequency and amplitude modulation ratio is appplied in order to be able to compare the results with the two-level converter topology. Figure 7 shows the harmonic content in the waveform, which has a considerably lower total harmonic distortion (THD). It should be noticed that the effective switching frequency of the IGBT valves is only half the one in the two-level converter topology. This is due to the splitting of the valves and the characteristics of the control method. The advantages and disadvantages of the two-, respectively three-level converter topologies can be summerized according to Table VI. The conduction and switching losses as well as the converter costs and the capacitor size are further investigated in this work. A. Choice of components Table V shows the characteristics of the back-to-back converters and the choice of the IGBT semiconductor components from Semikron [4] and the DC link capacitors from Evox Riva [5]. Please refer to the corresponding datasheets for further information about the chosen components. Voltage [p.u.] Amplitude [p.u.].5.5 Fig Time [ms] Harmonic number Output waveform and harmonic spectrum of the two-level converter. Fig. 6. Three-level diode-clamped converter. TABLE IV COMPARISON BETWEEN TWO- AND THREE-LEVEL CONVERTERS. Characteristic Two-level Three-level Circuitry Very simple More complex Control Very simple More problematic Capacitor size Small Large IGBT duty Equal Different IGBT blocking voltage Large Small (half) Harmonic content Large Small Switching losses High Relatively low Footprint (size) Small Somewhat larger 4

5 Voltage [p.u.] Amplitude [p.u.] Time [ms] Harmonic number Fig. 7. Output waveform and harmonic spectrum of the three-level diodeclamped converter. DC link voltage Semiconductor components [4] TABLE V CHOICE OF COMPONENTS. IGBT module (-level rotor-side): IGBT module (-level line-side): IGBT module (3-level rotor-side): IGBT module (3-level line-side): Clamping diode module (3-level): DC link capacitors [5] -level (3 series-capacitors à 4 V): 3-level (6 series-capacitors à V): IV. LOSSES V SKM 5GA3D SKM 4GA3D SKM 4GB66D SKM 3GB66D SKKD 5F PEHVV447AM 4.7 mf PEH69RV5VM mf The losses are calculated in Matlab under the assumption that the three-phase currents on the rotor- and line- side are perfectly sinusoidal, which can be assumed as the current ripple in average will not generate any additional losses. The total losses consist of conduction and switching losses in the IGBT and clamping diode modules. The conduction losses P cond depend on the on-state voltage drop across the device and the current through it. They can be calculated from the on-state threshold voltage V ce, the onstate slope resistance r ce, and the device current I ce according to f ( P cond = f Vce I ce (t) + r ce Ice (t)) dt (8) t= Both the on-state slope resistance and the threshold voltage depend on the device temperature and were chosen according to the typical values given in the datasheets. The switching losses consist of turn-on and turn-off losses of the IGBTs, the anti-parallel diodes and the clamping diodes in the three-phase converter topology. The switching losses can be calculated from the characteristic turn-on and turn-off energy (E on, respectively E off ) given in the datasheets. Unfortunately, the switching losses for the antiparallel diodes are not mentioned and could therefore not be included in this study. Also the losses from the reverse recovery energy E rr have to be considered. A reverse recovery current is required in order to sweep out the excess carriers in the anti-parallel diode and allow it to block a negative polarity voltage. The switching losses are also dependent on the switched current and the device temperature. The switching losses P sw can be calculated by summing up the switching events during a fundamental period according to ( P sw = f Eon (I ce ) + E off (I ce ) + ) E rr (I ce ) (9) A. Results of the loss comparison The results of the loss comparison between the two- and three-level converter topologies is shown in Table VI. Different operation points corresponding to slip levels between -.3 and.3 are investigated. The total losses are divided in switching losses, IGBT conduction losses and diode conduction losses and presented both for the rotor- and line-side converter. The conclusions from Table VI can be summerized as follows: The total losses of the three-level converter are approximately % bigger for all points of operation. This is mainly due to the dominating conduction losses, which are increasing by approximately 3 % compared to the conventional two-level converter. The conduction losses are contributing with over 9 % to the total losses. The switching losses of the three-level converter are approximately 6 % smaller for all points of operation. This is a huge improvement but does not influence the total losses due to their relatively low significance at the chosen switching frequency of 5 Hz. However, for increasing switching frequencies, the switching losses are getting more important. Another advantage of the threelevel converter is that the low harmonic content allows to decrease the switching frequency considerably compared to the two-level converter, which will further decrease the switching losses. It is also interesting to see how the distribution of the conduction losses between the IGBT and their antiparallel diodes changes depending on the operation point and the line- or rotor-side converter. It is also noticeable that the total losses are the smallest when the DFIG system is operating near the synchronous speed. The total losses are slightly increasing with an increasing slip. V. COST COMPARISON A cost comparison ist not simple and would require further design consideration in order to get accurate results. However, it is possible to estimate the thendency by watching at the rating of the semiconductor devices and the size of the DClink capacitors. 5

6 TABLE VI LOSS COMPARISON BETWEEN TWO- AND THREE-LEVEL CONVERTER TOPOLOGIES FOR DIFFERENT OPERATION POINTS. Slip s Shaft speed ω mech.7 ω s.8 ω s.9 ω s ω s. ω s. ω s.3 ω s Electrical phase quantities of the rotor-side converter Voltage u r [ ˆV] Current i r [Â] cos φ r N.A Electrical phase quantities of the line-side converter Voltage u s [ ˆV] Current i s [Â] cos φ s Losses in the rotor-side converter Topology level 3level level 3level level 3level level 3level level 3level level 3level level 3level Switching losses [W] IGBT conduction [W] Diode conduction [W] Total [W] Losses in the line-side converter Topology level 3level level 3level level 3level level 3level level 3level level 3level level 3level Switching losses [W] IGBT conduction [W] Diode conduction [W] Total [W] Total losses in the DFIG back-to-back converter Switching losses [W] Difference [%] Conduction losses [W] Difference [%] Total losses [W] Difference [%] The rating of the semiconductor devices is comparable for the two different converter topologies. The three-level converter, however, has an additional clamping diode module for each VSC. The costs for the gate drive and control system are also increasing somewhat for the three-level converter, as the number of IGBTs is twice the one in the two-level converter and the control of mainly the DC capacitor voltage is more complex as it is shown below. The DC capacitor volume will also affect the costs for the two converter topologies. It has to be calculated in order to limit the voltage ripple to a comparable level. An acceptable voltage ripple is 5 %. The size of the capacitance is then determined by the capacitor current, which is shown in Figure 8 for the twoand three-level converters. It can be seen that the short-time average current in the two-level converter is approximately zero, unlike for the three-level converter, where it is varying considerably. This is due to the different duty ratios of the semiconductor devices. As expected, this fact has a strong influence on the voltage ripple, as shown in Figure 9. While the voltage ripple can easily be limited to below 5 % for the twolevel converter, it is not possible for the three-level converter. Even the largest available capacitor with mf does not limit the voltage ripple to below 4 %. It can be noticed that the DC-link voltage has to be actively controlled by the line-side VSC in order to keep it in a reasonable range. A comparison for the chosen configuration shows that the capacitor size is twice as large for the three-level compared to the twolevel converter topology. Both implemented capacitors have the same dimensions (75 mm diameter, 45 mm length), but the number of required components differs with a factor two. In order to do an appropriate cost comparison, it would also be essential not only to consider the initial costs but also the costs due to increased or decreased system losses. However, this is out of the scope of this work. VI. CONCLUSIONS A conventional two-level and a three-level diode-clamped converter have been introduced for the application in the backto-back converter of a DFIG wind turbine. A comprehensive loss evaluation showed that the system losses are lower for the two-level converter for any point of operation. This is valid 6

7 level converter 4 Capacitor current [A] level diode clamped converter Capacitor current [A] Fig. 8. Capacitor current for the - and 3-level converter topologies. 3 level converter DC capacitor voltage [V] level diode clamped converter DC capacitor voltage [V] Fig. 9. Capacitor voltage for the - and 3-level converter topologies. for the investigated switching frequency of 5 Hz, where the conduction losses are dominating over the switching losses. It was also shown that the initial costs of the three-level converter are somewhat increased due to the larger DC-link capacitors required. The future will show if and in what applications the obvious advantages of multi-level converters can stand up to the simplicity and robustness of conventional two-level converters. REFERENCES [] S. Müller, M. Deicke, R. W. de Doncker, Doubly Fed Induction Generator Systems for Wind Turbines, IEEE Industry Applications Magazine, May/June. [] Wind Power in Power Systems, Editor T. Ackermann, John Wiley & Sons, Ltd. 5. [3] R. Pena, J. C. Clare, G. M. Asher, Doubly Fed Induction Generator using Back-to-back PWM Converters and its Application to Variable- Speed Wind-Energy Generation, IEE Proc.-Electr. Power Appl., Vol. 43, No. 3, May 996. [4] Semikron, [5] Evox Riva, 7

New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage

New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage 1 New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage B. B. Pimple, V. Y. Vekhande and B. G. Fernandes Department of Electrical Engineering, Indian Institute of Technology Bombay,

More information

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY POWER QUALITY IMPROVEMENT OF GRID CONNECTED WIND ENERGY SYSTEM BY USING STATCOM Mr.Mukund S. Mahagaonkar*, Prof.D.S.Chavan * M.Tech

More information

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 98 CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 6.1 INTRODUCTION Process industries use wide range of variable speed motor drives, air conditioning plants, uninterrupted power supply systems

More information

Selected Problems of Induction Motor Drives with Voltage Inverter and Inverter Output Filters

Selected Problems of Induction Motor Drives with Voltage Inverter and Inverter Output Filters 9 Selected Problems of Induction Motor Drives with Voltage Inverter and Inverter Output Filters Drives and Filters Overview. Fast switching of power devices in an inverter causes high dv/dt at the rising

More information

Module 7. Electrical Machine Drives. Version 2 EE IIT, Kharagpur 1

Module 7. Electrical Machine Drives. Version 2 EE IIT, Kharagpur 1 Module 7 Electrical Machine Drives Version 2 EE IIT, Kharagpur 1 Lesson 34 Electrical Actuators: Induction Motor Drives Version 2 EE IIT, Kharagpur 2 Instructional Objectives After learning the lesson

More information

MODELLING AND SIMULATION OF DIODE CLAMP MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR FOR CMV ANALYSIS USING FILTER

MODELLING AND SIMULATION OF DIODE CLAMP MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR FOR CMV ANALYSIS USING FILTER MODELLING AND SIMULATION OF DIODE CLAMP MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR FOR CMV ANALYSIS USING FILTER Akash A. Chandekar 1, R.K.Dhatrak 2 Dr.Z.J..Khan 3 M.Tech Student, Department of

More information

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE Ms. K. Kamaladevi 1, N. Mohan Murali Krishna 2 1 Asst. Professor, Department of EEE, 2 PG Scholar, Department of

More information

IMPORTANCE OF VSC IN HVDC

IMPORTANCE OF VSC IN HVDC IMPORTANCE OF VSC IN HVDC Snigdha Sharma (Electrical Department, SIT, Meerut) ABSTRACT The demand of electrical energy has been increasing day by day. To meet these high demands, reliable and stable transmission

More information

Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control

Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control Irtaza M. Syed, Kaamran Raahemifar Abstract In this paper, we present a comparative assessment of Space Vector Pulse Width

More information

Active Rectifier in Microgrid

Active Rectifier in Microgrid 03.09.2012 Active Rectifier in Microgrid - Developing a simulation model in SimPower - Dimensioning the filter - Current controller comparison - Calculating average losses in the diodes and transistors

More information

COMPARISON STUDY OF THREE PHASE CASCADED H-BRIDGE MULTI LEVEL INVERTER BY USING DTC INDUCTION MOTOR DRIVES

COMPARISON STUDY OF THREE PHASE CASCADED H-BRIDGE MULTI LEVEL INVERTER BY USING DTC INDUCTION MOTOR DRIVES International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 5, May 214 COMPARISON STUDY OF THREE PHASE CASCADED H-BRIDGE MULTI LEVEL INVERTER BY USING DTC INDUCTION

More information

UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE

UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE 3.1 STATOR VOLTAGE CONTROL The induction motor 'speed can be controlled by varying the stator voltage. This method of speed control is known as stator

More information

Analysis of Hybrid Renewable Energy System using NPC Inverter

Analysis of Hybrid Renewable Energy System using NPC Inverter Analysis of Hybrid Renewable Energy System using NPC Inverter Reema Manavalan PG Scholar Power Electronics and Drives Anna University reemamanavalan87@gmail.com Abstract: In a variable-speed wind energy

More information

Analysis of Hybrid Renewable Energy System using NPC Inverter

Analysis of Hybrid Renewable Energy System using NPC Inverter Research Inventy: International Journal Of Engineering And Science Issn: 2278-4721, Vol.2, Issue 7 (March 2013), Pp 26-30 Www.Researchinventy.Com Analysis of Hybrid Renewable Energy System using NPC Inverter

More information

Investigation of negative sequence injection capability in H-bridge Multilevel STATCOM

Investigation of negative sequence injection capability in H-bridge Multilevel STATCOM Investigation of negative sequence injection capability in H-bridge Multilevel STATCOM Ehsan Behrouzian 1, Massimo Bongiorno 1, Hector Zelaya De La Parra 1,2 1 CHALMERS UNIVERSITY OF TECHNOLOGY SE-412

More information

A Comparative Study between DPC and DPC-SVM Controllers Using dspace (DS1104)

A Comparative Study between DPC and DPC-SVM Controllers Using dspace (DS1104) International Journal of Electrical and Computer Engineering (IJECE) Vol. 4, No. 3, June 2014, pp. 322 328 ISSN: 2088-8708 322 A Comparative Study between DPC and DPC-SVM Controllers Using dspace (DS1104)

More information

ELEC387 Power electronics

ELEC387 Power electronics ELEC387 Power electronics Jonathan Goldwasser 1 Power electronics systems pp.3 15 Main task: process and control flow of electric energy by supplying voltage and current in a form that is optimally suited

More information

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 58 CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 4.1 INTRODUCTION Conventional voltage source inverter requires high switching frequency PWM technique to obtain a quality output

More information

Investigation of Magnetic Field and Radial Force Harmonics in a Hydrogenerator Connected to a Three-Level NPC Converter

Investigation of Magnetic Field and Radial Force Harmonics in a Hydrogenerator Connected to a Three-Level NPC Converter Investigation of Magnetic Field and Radial Force Harmonics in a Hydrogenerator Connected to a Three-Level NPC Converter Mostafa Valavi, Arne Nysveen, and Roy Nilsen Department of Electric Power Engineering

More information

CONTROL SCHEME OF STAND-ALONE WIND POWER SUPPLY SYSTEM WITH BATTERY ENERGY STORAGE SYSTEM

CONTROL SCHEME OF STAND-ALONE WIND POWER SUPPLY SYSTEM WITH BATTERY ENERGY STORAGE SYSTEM CONTROL SCHEME OF STAND-ALONE WIND POWER SUPPLY SYSTEM WITH BATTERY ENERGY STORAGE SYSTEM 1 TIN ZAR KHAING, 2 LWIN ZA KYIN 1,2 Department of Electrical Power Engineering, Mandalay Technological University,

More information

Three Phase Induction Motor Drive Using Single Phase Inverter and Constant V/F method

Three Phase Induction Motor Drive Using Single Phase Inverter and Constant V/F method Three Phase Induction Motor Drive Using Single Phase Inverter and Constant V/F method Nitin Goel 1, Shashi yadav 2, Shilpa 3 Assistant Professor, Dept. of EE, YMCA University of Science & Technology, Faridabad,

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

A Novel Five-level Inverter topology Applied to Four Pole Induction Motor Drive with Single DC Link

A Novel Five-level Inverter topology Applied to Four Pole Induction Motor Drive with Single DC Link Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet A Novel

More information

Hybrid PWM switching scheme for a three level neutral point clamped inverter

Hybrid PWM switching scheme for a three level neutral point clamped inverter Hybrid PWM switching scheme for a three level neutral point clamped inverter Sarath A N, Pradeep C NSS College of Engineering, Akathethara, Palakkad. sarathisme@gmail.com, cherukadp@gmail.com Abstract-

More information

ANALYSIS OF EFFECTS OF VECTOR CONTROL ON TOTAL CURRENT HARMONIC DISTORTION OF ADJUSTABLE SPEED AC DRIVE

ANALYSIS OF EFFECTS OF VECTOR CONTROL ON TOTAL CURRENT HARMONIC DISTORTION OF ADJUSTABLE SPEED AC DRIVE ANALYSIS OF EFFECTS OF VECTOR CONTROL ON TOTAL CURRENT HARMONIC DISTORTION OF ADJUSTABLE SPEED AC DRIVE KARTIK TAMVADA Department of E.E.E, V.S.Lakshmi Engineering College for Women, Kakinada, Andhra Pradesh,

More information

A Novel Voltage and Frequency Control Scheme for a Wind Turbine Driven Isolated Asynchronous Generator

A Novel Voltage and Frequency Control Scheme for a Wind Turbine Driven Isolated Asynchronous Generator International Journal of Modern Engineering Research (IJMER) Vol.2, Issue.2, Mar-Apr 2012 pp-398-402 ISSN: 2249-6645 A Novel Voltage and Frequency Control Scheme for a Wind Turbine Driven Isolated Asynchronous

More information

High Voltage DC Transmission 2

High Voltage DC Transmission 2 High Voltage DC Transmission 2 1.0 Introduction Interconnecting HVDC within an AC system requires conversion from AC to DC and inversion from DC to AC. We refer to the circuits which provide conversion

More information

SYNCHRONOUS MACHINES

SYNCHRONOUS MACHINES SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical

More information

Conventional Single-Switch Forward Converter Design

Conventional Single-Switch Forward Converter Design Maxim > Design Support > Technical Documents > Application Notes > Amplifier and Comparator Circuits > APP 3983 Maxim > Design Support > Technical Documents > Application Notes > Power-Supply Circuits

More information

Development of an Experimental Rig for Doubly-Fed Induction Generator based Wind Turbine

Development of an Experimental Rig for Doubly-Fed Induction Generator based Wind Turbine Development of an Experimental Rig for Doubly-Fed Induction Generator based Wind Turbine T. Neumann, C. Feltes, I. Erlich University Duisburg-Essen Institute of Electrical Power Systems Bismarckstr. 81,

More information

CONVERTERS IN POWER VOLTAGE-SOURCED SYSTEMS. Modeling, Control, and Applications IEEE UNIVERSITATSBIBLIOTHEK HANNOVER. Amirnaser Yazdani.

CONVERTERS IN POWER VOLTAGE-SOURCED SYSTEMS. Modeling, Control, and Applications IEEE UNIVERSITATSBIBLIOTHEK HANNOVER. Amirnaser Yazdani. VOLTAGE-SOURCED CONVERTERS IN POWER SYSTEMS Modeling, Control, and Applications Amirnaser Yazdani University of Western Ontario Reza Iravani University of Toronto r TECHNISCHE INFORMATIONSBIBLIOTHEK UNIVERSITATSBIBLIOTHEK

More information

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 105 CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 6.1 GENERAL The line current drawn by the conventional diode rectifier filter capacitor is peaked pulse current. This results in utility line

More information

Direct AC/AC power converter for wind power application

Direct AC/AC power converter for wind power application Direct AC/AC power converter for wind power application Kristian Prestrud Astad, Marta Molinas Norwegian University of Science and Technology Department of Electric Power Engineering Trondheim, Norway

More information

Reduction of flicker effect in wind power plants with doubly fed machines

Reduction of flicker effect in wind power plants with doubly fed machines Reduction of flicker effect in wind power plants with doubly fed machines J. Bendl, M. Chomat and L. Schreier Institute of Electrical Engineering Academy of Sciences of the Czech Republic Dolejskova 5,

More information

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES 47 CHAPTER 3 DC-DC CONVERTER TOPOLOGIES 3.1 INTRODUCTION In recent decades, much research efforts are directed towards finding an isolated DC-DC converter with high volumetric power density, low electro

More information

Harmonics Reduction in a Wind Energy Conversion System with a Permanent Magnet Synchronous Generator

Harmonics Reduction in a Wind Energy Conversion System with a Permanent Magnet Synchronous Generator International Journal of Data Science and Analysis 2017; 3(6): 58-68 http://www.sciencepublishinggroup.com/j/ijdsa doi: 10.11648/j.ijdsa.20170306.11 ISSN: 2575-1883 (Print); ISSN: 2575-1891 (Online) Conference

More information

Enhanced Performance of Multilevel Inverter Fed Induction Motor Drive

Enhanced Performance of Multilevel Inverter Fed Induction Motor Drive Enhanced Performance of Multilevel Inverter Fed Induction Motor Drive Venkata Anil Babu Polisetty 1, B.R.Narendra 2 PG Student [PE], Dept. of EEE, DVR. & Dr.H.S.MIC College of Technology, AP, India 1 Associate

More information

Self-Excitation and Voltage Control of an Induction Generator in an Independent Wind Energy Conversion System

Self-Excitation and Voltage Control of an Induction Generator in an Independent Wind Energy Conversion System Vol., Issue., Mar-Apr 01 pp-454-461 ISSN: 49-6645 Self-Excitation and Voltage Control of an Induction Generator in an Independent Wind Energy Conversion System 1 K. Premalatha, S.Sudha 1, Department of

More information

Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM

Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM Dr. Jagdish Kumar, PEC University of Technology, Chandigarh Abstract the proper selection of values of energy storing

More information

Development of a Single-Phase PWM AC Controller

Development of a Single-Phase PWM AC Controller Pertanika J. Sci. & Technol. 16 (2): 119-127 (2008) ISSN: 0128-7680 Universiti Putra Malaysia Press Development of a Single-Phase PWM AC Controller S.M. Bashi*, N.F. Mailah and W.B. Cheng Department of

More information

ISSN Vol.03,Issue.07, August-2015, Pages:

ISSN Vol.03,Issue.07, August-2015, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.03,Issue.07, August-2015, Pages:1276-1281 Comparison of an Active and Hybrid Power Filter Devices THAKKALAPELLI JEEVITHA 1, A. SURESH KUMAR 2 1 PG Scholar, Dept of EEE,

More information

CHAPTER 3 COMBINED MULTIPULSE MULTILEVEL INVERTER BASED STATCOM

CHAPTER 3 COMBINED MULTIPULSE MULTILEVEL INVERTER BASED STATCOM CHAPTER 3 COMBINED MULTIPULSE MULTILEVEL INVERTER BASED STATCOM 3.1 INTRODUCTION Static synchronous compensator is a shunt connected reactive power compensation device that is capable of generating or

More information

Investigation of D-Statcom Operation in Electric Distribution System

Investigation of D-Statcom Operation in Electric Distribution System J. Basic. Appl. Sci. Res., (2)29-297, 2 2, TextRoad Publication ISSN 29-434 Journal of Basic and Applied Scientific Research www.textroad.com Investigation of D-Statcom Operation in Electric Distribution

More information

Harmonic Reduction of Arc Furnaces Using D-Statcom

Harmonic Reduction of Arc Furnaces Using D-Statcom IOSR Journal of Engineering (IOSRJEN) e-issn: 5-31, p-issn: 78-8719 Vol. 3, Issue 4 (April. 13), V4 PP 7-14 S.Pushpavalli, A. CordeliaSumathy 1. PG Scholar, Francis Xavier Engineering College,Vannarpettai,Tirunelveli.

More information

PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality

PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality P.Padmavathi, M.L.Dwarakanath, N.Sharief, K.Jyothi Abstract This paper presents an investigation

More information

LOW VOLTAGE RIDE - THROUGH CAPABILITY OF WIND FARMS

LOW VOLTAGE RIDE - THROUGH CAPABILITY OF WIND FARMS Scientific Journal Impact Factor (SJIF): 1.711 e-issn: 2349-9745 p-issn: 2393-8161 International Journal of Modern Trends in Engineering and Research www.ijmter.com LOW VOLTAGE RIDE - THROUGH CAPABILITY

More information

A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System

A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System 7 International Journal of Smart Electrical Engineering, Vol.3, No.2, Spring 24 ISSN: 225-9246 pp.7:2 A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System Mehrnaz Fardamiri,

More information

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 9 CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 2.1 INTRODUCTION AC drives are mainly classified into direct and indirect converter drives. In direct converters (cycloconverters), the AC power is fed

More information

Chapter 2 Shunt Active Power Filter

Chapter 2 Shunt Active Power Filter Chapter 2 Shunt Active Power Filter In the recent years of development the requirement of harmonic and reactive power has developed, causing power quality problems. Many power electronic converters are

More information

Hysteresis Controller and Delta Modulator- Two Viable Schemes for Current Controlled Voltage Source Inverter

Hysteresis Controller and Delta Modulator- Two Viable Schemes for Current Controlled Voltage Source Inverter Hysteresis Controller and Delta Modulator- Two Viable Schemes for Current Controlled Voltage Source Inverter B.Vasantha Reddy, B.Chitti Babu, Member IEEE Department of Electrical Engineering, National

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK INDUCTION MOTOR DRIVE WITH SINGLE DC LINK TO MINIMIZE ZERO SEQUENCE CURRENT IN

More information

Reduction of Power Electronic Devices with a New Basic Unit for a Cascaded Multilevel Inverter fed Induction Motor

Reduction of Power Electronic Devices with a New Basic Unit for a Cascaded Multilevel Inverter fed Induction Motor International Journal for Modern Trends in Science and Technology Volume: 03, Issue No: 05, May 2017 ISSN: 2455-3778 http://www.ijmtst.com Reduction of Power Electronic Devices with a New Basic Unit for

More information

Pak. J. Biotechnol. Vol. 13 (special issue on Innovations in information Embedded and communication Systems) Pp (2016)

Pak. J. Biotechnol. Vol. 13 (special issue on Innovations in information Embedded and communication Systems) Pp (2016) COORDINATED CONTROL OF DFIG SYSTEM DURING UNBALANCED GRID VOLTAGE CONDITIONS USING REDUCED ORDER GENERALIZED INTEGRATORS Sudhanandhi, K. 1 and Bharath S 2 Department of EEE, SNS college of Technology,

More information

Simulation & Implementation Of Three Phase Induction Motor On Single Phase By Using PWM Techniques

Simulation & Implementation Of Three Phase Induction Motor On Single Phase By Using PWM Techniques Simulation & Implementation Of Three Phase Induction Motor On Single Phase By Using PWM Techniques Ashwini Kadam 1,A.N.Shaikh 2 1 Student, Department of Electronics Engineering, BAMUniversity,akadam572@gmail.com,9960158714

More information

Harmonic Reduction in Induction Motor: Multilevel Inverter

Harmonic Reduction in Induction Motor: Multilevel Inverter International Journal of Multidisciplinary and Current Research Research Article ISSN: 2321-3124 Available at: http://ijmcr.com Harmonic Reduction in Induction Motor: Multilevel Inverter D. Suganyadevi,

More information

Power Electronics Converters for Variable Speed Pump Storage

Power Electronics Converters for Variable Speed Pump Storage International Journal of Power Electronics and Drive System (IJPEDS) Vol. 3, No. 1, March 2013, pp. 74~82 ISSN: 2088-8694 74 Power Electronics Converters for Variable Speed Pump Storage Othman Hassan Abdalla,

More information

Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications

Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications Ranjan Sharma Technical University of Denmark ransharma@gmail.com Tonny

More information

WILEY CONTROL OF POWER INVERTERS IN RENEWABLE ENERGY AND SMART GRID INTEGRATION. Qing-Chang Zhong. Tomas Hornik IEEE PRESS

WILEY CONTROL OF POWER INVERTERS IN RENEWABLE ENERGY AND SMART GRID INTEGRATION. Qing-Chang Zhong. Tomas Hornik IEEE PRESS CONTROL OF POWER INVERTERS IN RENEWABLE ENERGY AND SMART GRID INTEGRATION Qing-Chang Zhong The University of Sheffield, UK Tomas Hornik Turbo Power Systems Ltd., UK WILEY A John Wiley & Sons, Ltd., Publication

More information

Modeling and Simulation of Five Phase Induction Motor Fed with Five Phase Inverter Topologies

Modeling and Simulation of Five Phase Induction Motor Fed with Five Phase Inverter Topologies Indian Journal of Science and Technology, Vol 8(19), DOI: 1.17485/ijst/215/v8i19/7129, August 215 ISSN (Print) : 974-6846 ISSN (Online) : 974-5645 Modeling and Simulation of Five Phase Induction Motor

More information

Cascaded H-Bridge Five Level Inverter for Harmonics Mitigation and Reactive Power Control

Cascaded H-Bridge Five Level Inverter for Harmonics Mitigation and Reactive Power Control Cascaded H-Bridge Five Level Inverter for Harmonics Mitigation and Reactive Power Control Prof. D.S.Chavan 1, Mukund S.Mahagaonkar 2 Assistant professor, Dept. of ELE, BVCOE, Pune, Maharashtra, India 1

More information

Control Of Shunt Active Filter Based On Instantaneous Power Theory

Control Of Shunt Active Filter Based On Instantaneous Power Theory B.Pragathi Department of Electrical and Electronics Shri Vishnu Engineering College for Women Bhimavaram, India Control Of Shunt Active Filter Based On Instantaneous Power Theory G.Bharathi Department

More information

SIMULATION AND EVALUATION OF A PHASE SYNCHRONOUS INVERTER FOR MICRO-GRID SYSTEM

SIMULATION AND EVALUATION OF A PHASE SYNCHRONOUS INVERTER FOR MICRO-GRID SYSTEM SIMULATION AND EVALUATION OF A PHASE SYNCHRONOUS INVERTER FOR MICRO-GRID SYSTEM Tawfikur Rahman, Muhammad I. Ibrahimy, Sheikh M. A. Motakabber and Mohammad G. Mostafa Department of Electrical and Computer

More information

OVERVIEW OF SVC AND STATCOM FOR INSTANTANEOUS POWER CONTROL AND POWER FACTOR IMPROVEMENT

OVERVIEW OF SVC AND STATCOM FOR INSTANTANEOUS POWER CONTROL AND POWER FACTOR IMPROVEMENT OVERVIEW OF SVC AND STATCOM FOR INSTANTANEOUS POWER CONTROL AND POWER FACTOR IMPROVEMENT Harshkumar Sharma 1, Gajendra Patel 2 1 PG Scholar, Electrical Department, SPCE, Visnagar, Gujarat, India 2 Assistant

More information

VSC Based HVDC Active Power Controller to Damp out Resonance Oscillation in Turbine Generator System

VSC Based HVDC Active Power Controller to Damp out Resonance Oscillation in Turbine Generator System VSC Based HVDC Active Power Controller to Damp out Resonance Oscillation in Turbine Generator System Rajkumar Pal 1, Rajesh Kumar 2, Abhay Katyayan 3 1, 2, 3 Assistant Professor, Department of Electrical

More information

Improving Passive Filter Compensation Performance With Active Techniques

Improving Passive Filter Compensation Performance With Active Techniques IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 50, NO. 1, FEBRUARY 2003 161 Improving Passive Filter Compensation Performance With Active Techniques Darwin Rivas, Luis Morán, Senior Member, IEEE, Juan

More information

Speed Control of Induction Motor using Multilevel Inverter

Speed Control of Induction Motor using Multilevel Inverter Speed Control of Induction Motor using Multilevel Inverter 1 Arya Shibu, 2 Haritha S, 3 Renu Rajan 1, 2, 3 Amrita School of Engineering, EEE Department, Amritapuri, Kollam, India Abstract: Multilevel converters

More information

Harnessing of wind power in the present era system

Harnessing of wind power in the present era system International Journal of Scientific & Engineering Research Volume 3, Issue 1, January-2012 1 Harnessing of wind power in the present era system Raghunadha Sastry R, Deepthy N Abstract This paper deals

More information

International Journal of Advancements in Research & Technology, Volume 7, Issue 4, April-2018 ISSN

International Journal of Advancements in Research & Technology, Volume 7, Issue 4, April-2018 ISSN ISSN 2278-7763 22 A CONVENTIONAL SINGLE-PHASE FULL BRIDGE CURRENT SOURCE INVERTER WITH LOAD VARIATION 1 G. C. Diyoke *, 1 C. C. Okeke and 1 O. Oputa 1 Department of Electrical and Electronic Engineering,

More information

Design and Simulation of Passive Filter

Design and Simulation of Passive Filter Chapter 3 Design and Simulation of Passive Filter 3.1 Introduction Passive LC filters are conventionally used to suppress the harmonic distortion in power system. In general they consist of various shunt

More information

Power Conditioning Equipment for Improvement of Power Quality in Distribution Systems M. Weinhold R. Zurowski T. Mangold L. Voss

Power Conditioning Equipment for Improvement of Power Quality in Distribution Systems M. Weinhold R. Zurowski T. Mangold L. Voss Power Conditioning Equipment for Improvement of Power Quality in Distribution Systems M. Weinhold R. Zurowski T. Mangold L. Voss Siemens AG, EV NP3 P.O. Box 3220 91050 Erlangen, Germany e-mail: Michael.Weinhold@erls04.siemens.de

More information

Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans-Peter

Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans-Peter 1 Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans-Peter Nee, Staffan Norrga, Remus Teodorescu ISBN-10: 1118851560

More information

POWER- SWITCHING CONVERTERS Medium and High Power

POWER- SWITCHING CONVERTERS Medium and High Power POWER- SWITCHING CONVERTERS Medium and High Power By Dorin O. Neacsu Taylor &. Francis Taylor & Francis Group Boca Raton London New York CRC is an imprint of the Taylor & Francis Group, an informa business

More information

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) ISSN: Volume 8 Issue 1 APRIL 2014.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) ISSN: Volume 8 Issue 1 APRIL 2014. WIND TURBINE VOLTAGE STABILITY USING FACTS DEVICE PRAVEEN KUMAR.R# and C.VENKATESH KUMAR* #M.E.POWER SYSTEMS ENGINEERING, EEE, St. Joseph s college of engineering, Chennai, India. *Asst.Professor, Department

More information

Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices

Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices Suroso* (Nagaoka University of Technology), and Toshihiko Noguchi (Shizuoka University) Abstract The paper proposes

More information

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System 1 G.Balasundaram, 2 Dr.S.Arumugam, 3 C.Dinakaran 1 Research Scholar - Department of EEE, St.

More information

Model Predictive Control of Matrixconverter Fed Induction Generator for Wind Turbine

Model Predictive Control of Matrixconverter Fed Induction Generator for Wind Turbine Model Predictive Control of Matrixconverter Fed Induction Generator for Wind Turbine K.Naveen Babu Master of Engineering, Power Electronics and Drives, Department of Electrical and Electronics Engineering,

More information

Exercise 3. Doubly-Fed Induction Generators EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Doubly-fed induction generator operation

Exercise 3. Doubly-Fed Induction Generators EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Doubly-fed induction generator operation Exercise 3 Doubly-Fed Induction Generators EXERCISE OBJECTIVE hen you have completed this exercise, you will be familiar with the operation of three-phase wound-rotor induction machines used as doubly-fed

More information

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS Chapter 1 : Power Electronics Devices, Drivers, Applications, and Passive theinnatdunvilla.com - Google D Download Power Electronics: Devices, Drivers and Applications By B.W. Williams - Provides a wide

More information

CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER

CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER 97 CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER 6.1 INTRODUCTION Multi level inverters are proven to be an ideal technique for improving the voltage and current profile to closely match with the sinusoidal

More information

CASCADED H-BRIDGE MULTILEVEL INVERTER FOR INDUCTION MOTOR DRIVES

CASCADED H-BRIDGE MULTILEVEL INVERTER FOR INDUCTION MOTOR DRIVES CASCADED H-BRIDGE MULTILEVEL INVERTER FOR INDUCTION MOTOR DRIVES A.Venkadesan 1, Priyatosh Panda 2, Priti Agrawal 3, Varun Puli 4 1 Asst Professor, Electrical and Electronics Engineering, SRM University,

More information

Voltage Regulated Five Level Inverter Fed Wind Energy Conversion System using PMSG

Voltage Regulated Five Level Inverter Fed Wind Energy Conversion System using PMSG Voltage Regulated Five Level Inverter Fed Wind Energy Conversion System using PMSG Anjali R. D PG Scholar, EEE Dept Mar Baselios College of Engineering & Technology Trivandrum, Kerala, India Sheenu. P

More information

DESIGN AND DEVELOPMENT OF ACTIVE POWER FILTER FOR HARMONIC MINIMIZATION USING SYNCHRONOUS REFERENCE FRAME (SRF)

DESIGN AND DEVELOPMENT OF ACTIVE POWER FILTER FOR HARMONIC MINIMIZATION USING SYNCHRONOUS REFERENCE FRAME (SRF) DESIGN AND DEVELOPMENT OF ACTIVE POWER FILTER FOR HARMONIC MINIMIZATION USING SYNCHRONOUS REFERENCE FRAME (SRF) Rosli Omar, Mohammed Rasheed, Zheng Kai Low and Marizan Sulaiman Universiti Teknikal Malaysia

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 4, April -217 e-issn (O): 2348-447 p-issn (P): 2348-646 Analysis,

More information

Reduction of Harmonics and Torque Ripples of BLDC Motor by Cascaded H-Bridge Multi Level Inverter Using Current and Speed Control Techniques

Reduction of Harmonics and Torque Ripples of BLDC Motor by Cascaded H-Bridge Multi Level Inverter Using Current and Speed Control Techniques Reduction of Harmonics and Torque Ripples of BLDC Motor by Cascaded H-Bridge Multi Level Inverter Using Current and Speed Control Techniques A. Sneha M.Tech. Student Scholar Department of Electrical &

More information

Design and implementation of Open & Close Loop Speed control of Three Phase Induction Motor Using PI Controller

Design and implementation of Open & Close Loop Speed control of Three Phase Induction Motor Using PI Controller Design and implementation of Open & Close Loop Speed control of Three Phase Induction Motor Using PI Controller Ibtisam Naveed 1, Adnan Sabir 2 1 (Electrical Engineering, NFC institute of Engineering and

More information

Resonant Controller to Minimize THD for PWM Inverter

Resonant Controller to Minimize THD for PWM Inverter IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 3 Ver. III (May Jun. 2015), PP 49-53 www.iosrjournals.org Resonant Controller to

More information

Dr.Arkan A.Hussein Power Electronics Fourth Class. 3-Phase Voltage Source Inverter With Square Wave Output

Dr.Arkan A.Hussein Power Electronics Fourth Class. 3-Phase Voltage Source Inverter With Square Wave Output 3-Phase Voltage Source Inverter With Square Wave Output ١ fter completion of this lesson the reader will be able to: (i) (ii) (iii) (iv) Explain the operating principle of a three-phase square wave inverter.

More information

Modeling and Analysis of Common-Mode Voltages Generated in Medium Voltage PWM-CSI Drives

Modeling and Analysis of Common-Mode Voltages Generated in Medium Voltage PWM-CSI Drives IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 18, NO. 3, MAY 2003 873 Modeling and Analysis of Common-Mode Voltages Generated in Medium Voltage PWM-CSI Drives José Rodríguez, Senior Member, IEEE, Luis Morán,

More information

Voltage Balancing Control of Improved ZVS FBTL Converter for WECS

Voltage Balancing Control of Improved ZVS FBTL Converter for WECS Voltage Balancing Control of Improved ZVS FBTL Converter for WECS Janani.K 1, Anbarasu.L 2 PG Scholar, Erode Sengunthar Engineering College, Thudupathi, Erode, Tamilnadu, India 1 Assistant Professor, Erode

More information

A Novel Cascaded Multilevel Inverter Using A Single DC Source

A Novel Cascaded Multilevel Inverter Using A Single DC Source A Novel Cascaded Multilevel Inverter Using A Single DC Source Nimmy Charles 1, Femy P.H 2 P.G. Student, Department of EEE, KMEA Engineering College, Cochin, Kerala, India 1 Associate Professor, Department

More information

Harmonic Immunity And Power Factor Correction By Instantaneous Power Control Of D-STATCOM

Harmonic Immunity And Power Factor Correction By Instantaneous Power Control Of D-STATCOM Harmonic Immunity And Power Factor Correction By Instantaneous Power Control Of D-STATCOM B.Veerraju M.Tech Student (PE&ED) MIST Sathupally, Khammam Dist, India M.Lokya Assistant Professor in EEE Dept.

More information

CHAPTER 2 VSI FED INDUCTION MOTOR DRIVE

CHAPTER 2 VSI FED INDUCTION MOTOR DRIVE CHAPTER 2 VI FE INUCTION MOTOR RIVE 2.1 INTROUCTION C motors have been used during the last century in industries for variable speed applications, because its flux and torque can be controlled easily by

More information

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM N.Shakeela Begum M.Tech Student P.V.K.K Institute of Technology. Abstract This paper presents a modified instantaneous

More information

Available online at ScienceDirect. Procedia Technology 21 (2015 ) SMART GRID Technologies, August 6-8, 2015

Available online at   ScienceDirect. Procedia Technology 21 (2015 ) SMART GRID Technologies, August 6-8, 2015 Available online at www.sciencedirect.com ScienceDirect Procedia Technology 21 (2015 ) 310 316 SMART GRID Technologies, August 6-8, 2015 A Zig-Zag Transformer and Three-leg VSC based DSTATCOM for a Diesel

More information

Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL. Basically the HVDC transmission consists in the basic case of two

Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL. Basically the HVDC transmission consists in the basic case of two Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL Basically the HVDC transmission consists in the basic case of two convertor stations which are connected to each other by a transmission link consisting of an overhead

More information

Generation of Voltage Reference Signal in Closed-Loop Control of STATCOM

Generation of Voltage Reference Signal in Closed-Loop Control of STATCOM Generation of Voltage Reference Signal in Closed-Loop Control of STATCOM M. Tavakoli Bina 1,*, N. Khodabakhshi 1 1 Faculty of Electrical Engineering, K. N. Toosi University of Technology, * Corresponding

More information

Literature Review. Chapter 2

Literature Review. Chapter 2 Chapter 2 Literature Review Research has been carried out in two ways one is on the track of an AC-AC converter and other is on track of an AC-DC converter. Researchers have worked in AC-AC conversion

More information

Unipolar and Bipolar PWM Inverter

Unipolar and Bipolar PWM Inverter IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 7 December 2014 ISSN (online): 2349-6010 Unipolar and Bipolar PWM Inverter Anuja Namboodiri UG Student Power

More information

Module 5. DC to AC Converters. Version 2 EE IIT, Kharagpur 1

Module 5. DC to AC Converters. Version 2 EE IIT, Kharagpur 1 Module 5 DC to AC Converters Version EE II, Kharagpur 1 Lesson 34 Analysis of 1-Phase, Square - Wave Voltage Source Inverter Version EE II, Kharagpur After completion of this lesson the reader will be

More information

Conventional Paper-II-2013

Conventional Paper-II-2013 1. All parts carry equal marks Conventional Paper-II-013 (a) (d) A 0V DC shunt motor takes 0A at full load running at 500 rpm. The armature resistance is 0.4Ω and shunt field resistance of 176Ω. The machine

More information