Digitized signals. Notes on the perils of low sample resolution and inappropriate sampling rates.

Size: px
Start display at page:

Download "Digitized signals. Notes on the perils of low sample resolution and inappropriate sampling rates."

Transcription

1 Digitized signals Notes on the perils of low sample resolution and inappropriate sampling rates. 1

2 Analog to Digital Conversion Sampling an analog waveform Sample = measurement of waveform amplitude at a specific instant in time. Samples should be evenly spaced in time Effects of sampling rate Effects of sample resolution Digitized waveforms are discrete approximations to continuous functions of time. Digital waveforms are described in terms of their sampling rate in Hertz and sample resolution in bits per sample. Although Hz normally means cycles per second, it is generalized to samples per second when describing a sampling rate. Samples are uniformly spaced in time and each sample is a measurement of the amplitude of an analog waveform at an instant in time. The sampling rate specifies how many measurements of the analog signal amplitude are made per second by the Analog to Digital Converter (ADC) hardware of the computer. Similarly, when digital waveforms are converted to analog signals (using a Digital to Analog Converter or DAC), sampling rate refers to how many times per second the (DAC) hardware must be updated with a new sample value. Sampling rate has a significant impact on the range of frequencies that can be represented in a digitized waveform Sample resolution specifies the accuracy of each amplitude measurement made by the ADC hardware. The more bits of resolution, the greater the accuracy. Using a large number of bits per sample allows the full amplitude range of an ADC to be partitioned into a large number of very small steps. This in turn determines the effective signal to noise ratio of a digitized waveform. 2

3 Digitized Waveform In this figure, the X axis is time in msec and the Y axis is amplitude in arbitrary units. This figure shows an analog sine wave (solid line) which is sampled (illustrated by the circle symbols) at a comparatively high rate compared to its frequency and with good sample resolution. 3

4 Aliasing Sampling rate determines the bandwidth of a digitized signal, that is, the frequency range that can be represented in the signal. The maximum frequency representable in a sampled waveform is termed its Nyquist frequency, and is equal to one half the sampling rate. Thus, for example, a waveform sampled at 16,000 Hz can represent all frequencies up to its Nyquist frequency of 8,000 Hz. Aliasing occurs when a sampled signal contains energy at frequencies above the Nyquist frequency. This is illustrated in the figure wherein the solid curve represents the input analog signal and circles show where samples were taken (at a low rate relative to the frequency of the input signal. The dotted line illustrates the apparent frequency of the sampled waveform, completing about two cycles in the period that the original signal completed 20 cycles. Aliasing generates components of lower frequency from components that are higher in frequency than the Nyquist frequency. It is impossible to distinguish a component generated by aliasing from one that was actually present in the input signal. This effect is one of the most common sources of distortion in digitized waveforms. Fortunately, most modern computer hardware for digitizing sound has built-in filters which are tuned to remove sound energy at frequencies beyond the Nyquist frequency for whatever sampling rate is being used. 4

5 Sample resolution Sample resolution (the number of bits per sample) determines how many gradations of amplitude (corresponding to loudness) can be represented in the digital waveform. The range of amplitudes from the most negative possible sample value to the most positive is referred to as the dynamic range and is normally expressed in decibels relative to the smallest non-zero digital value. For example, with 16-bit resolution, the largest positive value representable is +32,767 and the smallest value representable is -32,768 giving a total range of 65,536 values or about 96 db. That is, 20.0 * log10(65638 / 1) = 96.3 This figure illustrates the effects of varying sample resolution. An analog sine wave is sampled at moderate resolution (circles correspond to about 6 bits resolution) and at very coarse resolution (asterisks correspond to about 3 bits resolution). While the higher resolution samples approximate the shape of the waveform fairly closely, the low resolution samples give a coarse, stair-step, approximation to the original waveform shape. Typically, the ADC hardware has some noise floor such that the accuracy of the conversion is + or - some number of least significant bits. In that case, the signal to noise ratio expressed in decibels for the conversion (assuming 16-bit samples) is: 20.0 * log10(65638/noisefloor) 5

6 Waveform Display and Editing WEDW program - Download. Rules for labeling segments Homework Download sentences and transcriptions from class website. Label each phoneme in each file. Use getseg (runs in DOS window) to save segments from each file & mail to me. There is a link on our class website to Wedw. The zip file you will down load contains Wedw and its user manual, some support programs, and an example waveform. Verify that you can display and playback the example & use it to play with program if you wish. The Wedw manual is also separately available on the class web site. In class we ll go over some of the basics in how to segment waveforms. That is, where to put the boundary markers between adjacent segments. There is also a homework packet on the class website. It contains five waveforms for you to practice labeling. These are sentences from the TIMIT database. Each waveform file also has an associated.txt file that lists the English gloss for the sentence and the phoneme codes we ll use to label them. When you ve labeled the waveforms, use the program getseg (see documentation at to read out the locations of the segment labels into files and the files to me. 6

7 Obstruent - Vowel higher formants rule Nasal - Vowel abrupt spectral shift Labeling Rules 1 Approximant - Vowel higher formants rule maximum slope rule This and the next group of slides provide some sketchy rules for phonetic labeling. These are similar to rules described by Senneff et al. that were used in labeling the TIMIT database. 1) Higher Formants Rule - place the boundary at the onset of the first pitch period for which the higher formants (F2 & F3) are excited by voicing (CV sequence) or just after the last pitch period showing higher formant voiced excitation (VC sequence). 2) Abrupt spectral shift - particularly for sequences involving nasals, the onset of the nasal closure interval is well marked by the very sudden change in the speech spectrum 3) Maximum Slope Rule - In cases where voicing excitation is present for higher formants throughout the transition region, place the segment boundary at the location where the formant transitions (especially F2) are steepest. 7

8 Labeling Rules 2 /.[lrw]/ clusters (slap, trod, quad, etc.) Voiceless: voicing onset (not phonetically correct!). Voiced: max slope rule between /C/ & /[lrw]/. /s[ptk] clusters (spot, stack, scat) label silence between /s/ and vowel as stop. Final unreleased stop label silence as stop 1) It is convenient to mark the onset of approximants in voiceless stop clusters at the point where voicing begins because this can almost always be reliably located. In reality, the first part of the approximant is devoiced and begins during the aspiration interval following the stop release. 2) Voiced stop-approximant clusters generally show the formant transitions from the stop release into the approximant and from the approximant into the vowel. In this case, the approximant is delimited by the points of maximum slope in the transitions or by the higher formants rule if there is a steady-state approximant and onset of F2 & F3 is very abrupt (rarely happens). 3) In /s/-stop sequences, there is almost never a release burst or aspiration, and the transitions from stop to vowel are extremely fast. 4) Syllable-final stops are often unreleased. In a phrase like cat fur the /t/ is assigned the silence, between /ae/ and /f/. In a phrase like cat tail, there will normally be only one silent interval and one /t/ burst even though there are two adjacent /t/s. The silent interval is normally a little longer than it would be in a word like attack where there actually is only one /t/. In this case, we sometimes label it as only one /t/, and sometimes label the first /t/ as part of the silence with the second /t/ being the rest of the silence and release, aspiration, etc. Note that this depends entirely on how we decide to handle the phonology (i.e., one /t/ was deleted by a rule, or reduced by a rule?). 8

9 Labeling Rules 3 /V/ - /V/, /[lrwj]/ - /[lrwj]/, /V/ - /[lrwj]/ Use maximum slope rule Use presence of glottalization listen! Flaps a) Higher formants rule if possible b) Maximum slope rule if not a) c) Point of spectral movement if not [a) or b)] These can often be tricky combinations. 1) Words like piano may be handled with the maximum slope rule. When the maximum slope rule is hard to apply, there are some times cases (especially between two adjacent vowels from different words as in three inch) talkers will produce some glottal fry to mark the word boundary and this is then the inter vowel boundary as well. If all else fails, or even just to check yourself, try listening to the segments and see if you can find the best location for the boundary marker. 2) Flaps can range from being things like short /d/ s with an identifiable closure interval, to cases where there are clear transitions into and out of the flap, but no steady-state closure interval, to cases where there is just a slight disturbance in the spectrum. In the first case, use the higher formants rule if possible. If that s not possible, use the maximum slope rule as it applies to the /d/ transitions. Sometimes, we label the flap as consisting of only the one pitch period wherein the spectral disturbance is seen. 9

10 Obstruent - Vowel This is a very clear cut case. The final /t/ even has a release burst. 10

11 Approximant - Vowel In this case, the boundary between the /b/ and /l/ is located at the onset of voicing and the /l/ to vowel boundary at the point of abrupt spectral change. Note that there is a very brief moment of voicing at the release of the final /b/. This can be weak enough that it is simply marked as part of the /b/ release as in this case. It can also be strong enough to sound like a true schwa vowel. In that case, the schwa is called an epenthetic vowel and should be marked with a special symbol. The TIMIT database has such markings, we do not generally use them in the SRL symbol set, but we do have a diacritic for marking this: we would label the vowel as AX-e with the appended -e indication that it is an epenthetic insertion. 11

12 Approximants 1) Boundary from AA to RX is marked per maximum slope rule. 2) Boundary from RX to WW is marked per maximum slope rule. 3) Boundary from WW to AH appears to be using the higher formant rule. It s a judgment call in this case whether to use the maximum slope or highest formant rule. 12

13 Fricative - Affricate 1) The AH to SS boundary is placed slightly later than the point at which F2 & F3 appear to loose voicing information, but F1 was still very strong and the boundary coincides exactly with the offset of voicing. 2) the SS to CH boundary is placed at the onset of what appears to be the closure for the affricate. 13

14 Nasal or Liquid in coda Main points of interest here are the EH to LX boundary (using maximum slope rule) and the LX to VV boundary (using higher formant rule). 14

15 Dark /l/ The person who labeled this looked for (1) the change in formant slope from the steady-state vowel AO to the fairly constant slope transition, and (b) probably did a lot of listening to the different regions of the word to help decide where the best boundary point was. 15

16 Nasal - Nasal 1) Notice the glottalized onset of the AH which is considered part of the vowel. 2) Note the abrupt change in the spectrum of the nasal segment when the NN changes to an MM. It is also possible here to see the shift in the oral cavity zero from the frequency for NN to the lower frequency we expect for MM 16

Source-filter Analysis of Consonants: Nasals and Laterals

Source-filter Analysis of Consonants: Nasals and Laterals L105/205 Phonetics Scarborough Handout 11 Nov. 3, 2005 reading: Johnson Ch. 9 (today); Pickett Ch. 5 (Tues.) Source-filter Analysis of Consonants: Nasals and Laterals 1. Both nasals and laterals have voicing

More information

Acoustic Phonetics. Chapter 8

Acoustic Phonetics. Chapter 8 Acoustic Phonetics Chapter 8 1 1. Sound waves Vocal folds/cords: Frequency: 300 Hz 0 0 0.01 0.02 0.03 2 1.1 Sound waves: The parts of waves We will be considering the parts of a wave with the wave represented

More information

SPEECH AND SPECTRAL ANALYSIS

SPEECH AND SPECTRAL ANALYSIS SPEECH AND SPECTRAL ANALYSIS 1 Sound waves: production in general: acoustic interference vibration (carried by some propagation medium) variations in air pressure speech: actions of the articulatory organs

More information

Structure of Speech. Physical acoustics Time-domain representation Frequency domain representation Sound shaping

Structure of Speech. Physical acoustics Time-domain representation Frequency domain representation Sound shaping Structure of Speech Physical acoustics Time-domain representation Frequency domain representation Sound shaping Speech acoustics Source-Filter Theory Speech Source characteristics Speech Filter characteristics

More information

Lab 8. ANALYSIS OF COMPLEX SOUNDS AND SPEECH ANALYSIS Amplitude, loudness, and decibels

Lab 8. ANALYSIS OF COMPLEX SOUNDS AND SPEECH ANALYSIS Amplitude, loudness, and decibels Lab 8. ANALYSIS OF COMPLEX SOUNDS AND SPEECH ANALYSIS Amplitude, loudness, and decibels A complex sound with particular frequency can be analyzed and quantified by its Fourier spectrum: the relative amplitudes

More information

Laboratory Assignment 2 Signal Sampling, Manipulation, and Playback

Laboratory Assignment 2 Signal Sampling, Manipulation, and Playback Laboratory Assignment 2 Signal Sampling, Manipulation, and Playback PURPOSE This lab will introduce you to the laboratory equipment and the software that allows you to link your computer to the hardware.

More information

CS 188: Artificial Intelligence Spring Speech in an Hour

CS 188: Artificial Intelligence Spring Speech in an Hour CS 188: Artificial Intelligence Spring 2006 Lecture 19: Speech Recognition 3/23/2006 Dan Klein UC Berkeley Many slides from Dan Jurafsky Speech in an Hour Speech input is an acoustic wave form s p ee ch

More information

WaveSurfer. Basic acoustics part 2 Spectrograms, resonance, vowels. Spectrogram. See Rogers chapter 7 8

WaveSurfer. Basic acoustics part 2 Spectrograms, resonance, vowels. Spectrogram. See Rogers chapter 7 8 WaveSurfer. Basic acoustics part 2 Spectrograms, resonance, vowels See Rogers chapter 7 8 Allows us to see Waveform Spectrogram (color or gray) Spectral section short-time spectrum = spectrum of a brief

More information

Reading: Johnson Ch , Ch.5.5 (today); Liljencrants & Lindblom; Stevens (Tues) reminder: no class on Thursday.

Reading: Johnson Ch , Ch.5.5 (today); Liljencrants & Lindblom; Stevens (Tues) reminder: no class on Thursday. L105/205 Phonetics Scarborough Handout 7 10/18/05 Reading: Johnson Ch.2.3.3-2.3.6, Ch.5.5 (today); Liljencrants & Lindblom; Stevens (Tues) reminder: no class on Thursday Spectral Analysis 1. There are

More information

About waves. Sounds of English. Different types of waves. Ever done the wave?? Why do we care? Tuning forks and pendulums

About waves. Sounds of English. Different types of waves. Ever done the wave?? Why do we care? Tuning forks and pendulums bout waves Sounds of English Topic 7 The acoustics of speech: Sound Waves Lots of examples in the world around us! an take all sorts of different forms Definition: disturbance that travels through a medium

More information

Statistical NLP Spring Unsupervised Tagging?

Statistical NLP Spring Unsupervised Tagging? Statistical NLP Spring 2008 Lecture 9: Speech Signal Dan Klein UC Berkeley Unsupervised Tagging? AKA part-of-speech induction Task: Raw sentences in Tagged sentences out Obvious thing to do: Start with

More information

INTRODUCTION TO ACOUSTIC PHONETICS 2 Hilary Term, week 6 22 February 2006

INTRODUCTION TO ACOUSTIC PHONETICS 2 Hilary Term, week 6 22 February 2006 1. Resonators and Filters INTRODUCTION TO ACOUSTIC PHONETICS 2 Hilary Term, week 6 22 February 2006 Different vibrating objects are tuned to specific frequencies; these frequencies at which a particular

More information

The source-filter model of speech production"

The source-filter model of speech production 24.915/24.963! Linguistic Phonetics! The source-filter model of speech production" Glottal airflow Output from lips 400 200 0.1 0.2 0.3 Time (in secs) 30 20 10 0 0 1000 2000 3000 Frequency (Hz) Source

More information

IMPROVING QUALITY OF SPEECH SYNTHESIS IN INDIAN LANGUAGES. P. K. Lehana and P. C. Pandey

IMPROVING QUALITY OF SPEECH SYNTHESIS IN INDIAN LANGUAGES. P. K. Lehana and P. C. Pandey Workshop on Spoken Language Processing - 2003, TIFR, Mumbai, India, January 9-11, 2003 149 IMPROVING QUALITY OF SPEECH SYNTHESIS IN INDIAN LANGUAGES P. K. Lehana and P. C. Pandey Department of Electrical

More information

Linguistic Phonetics. Spectral Analysis

Linguistic Phonetics. Spectral Analysis 24.963 Linguistic Phonetics Spectral Analysis 4 4 Frequency (Hz) 1 Reading for next week: Liljencrants & Lindblom 1972. Assignment: Lip-rounding assignment, due 1/15. 2 Spectral analysis techniques There

More information

COMP 546, Winter 2017 lecture 20 - sound 2

COMP 546, Winter 2017 lecture 20 - sound 2 Today we will examine two types of sounds that are of great interest: music and speech. We will see how a frequency domain analysis is fundamental to both. Musical sounds Let s begin by briefly considering

More information

Speech Processing. Undergraduate course code: LASC10061 Postgraduate course code: LASC11065

Speech Processing. Undergraduate course code: LASC10061 Postgraduate course code: LASC11065 Speech Processing Undergraduate course code: LASC10061 Postgraduate course code: LASC11065 All course materials and handouts are the same for both versions. Differences: credits (20 for UG, 10 for PG);

More information

Relative occurrences and difference of extrema for detection of transitions between broad phonetic classes

Relative occurrences and difference of extrema for detection of transitions between broad phonetic classes Sådhanå (218) 43:153 Ó Indian Academy of Sciences https://doi.org/1.17/s1246-18-923-xsadhana(123456789().,-volv)ft3 ](123456789().,-volV) Relative occurrences and difference of extrema for detection of

More information

SGN Audio and Speech Processing

SGN Audio and Speech Processing Introduction 1 Course goals Introduction 2 SGN 14006 Audio and Speech Processing Lectures, Fall 2014 Anssi Klapuri Tampere University of Technology! Learn basics of audio signal processing Basic operations

More information

MUSC 316 Sound & Digital Audio Basics Worksheet

MUSC 316 Sound & Digital Audio Basics Worksheet MUSC 316 Sound & Digital Audio Basics Worksheet updated September 2, 2011 Name: An Aggie does not lie, cheat, or steal, or tolerate those who do. By submitting responses for this test you verify, on your

More information

Acoustic Phonetics. How speech sounds are physically represented. Chapters 12 and 13

Acoustic Phonetics. How speech sounds are physically represented. Chapters 12 and 13 Acoustic Phonetics How speech sounds are physically represented Chapters 12 and 13 1 Sound Energy Travels through a medium to reach the ear Compression waves 2 Information from Phonetics for Dummies. William

More information

Block diagram of proposed general approach to automatic reduction of speech wave to lowinformation-rate signals.

Block diagram of proposed general approach to automatic reduction of speech wave to lowinformation-rate signals. XIV. SPEECH COMMUNICATION Prof. M. Halle G. W. Hughes J. M. Heinz Prof. K. N. Stevens Jane B. Arnold C. I. Malme Dr. T. T. Sandel P. T. Brady F. Poza C. G. Bell O. Fujimura G. Rosen A. AUTOMATIC RESOLUTION

More information

Nature of Noise source. soundsc (noise, 10000);

Nature of Noise source. soundsc (noise, 10000); Noise Sources Voiceless aspiration can be produced with a noise source at the glottis. (also for voiceless sonorants, including vowels) Noise source that is filtered through VT cascade, so some resonance

More information

Noise Power Ratio for the GSPS

Noise Power Ratio for the GSPS Noise Power Ratio for the GSPS ADC Marjorie Plisch 1 Noise Power Ratio (NPR) Overview Concept History Definition Method of Measurement Notch Considerations Theoretical Values RMS Noise Loading Level 2

More information

Chapter 2: Fundamentals of Data and Signals

Chapter 2: Fundamentals of Data and Signals Chapter 2: Fundamentals of Data and Signals TRUE/FALSE 1. The terms data and signal mean the same thing. F PTS: 1 REF: 30 2. By convention, the minimum and maximum values of analog data and signals are

More information

A LANDMARK-BASED APPROACH TO AUTOMATIC VOICE ONSET TIME ESTIMATION IN STOP-VOWEL SEQUENCES. Stephan R. Kuberski, Stephen J. Tobin, Adamantios I.

A LANDMARK-BASED APPROACH TO AUTOMATIC VOICE ONSET TIME ESTIMATION IN STOP-VOWEL SEQUENCES. Stephan R. Kuberski, Stephen J. Tobin, Adamantios I. A LANDMARK-BASED APPROACH TO AUTOMATIC VOICE ONSET TIME ESTIMATION IN STOP-VOWEL SEQUENCES Stephan R. Kuberski, Stephen J. Tobin, Adamantios I. Gafos University of Potsdam Linguistics Department Potsdam,

More information

Psychology of Language

Psychology of Language PSYCH 150 / LIN 155 UCI COGNITIVE SCIENCES syn lab Psychology of Language Prof. Jon Sprouse 01.10.13: The Mental Representation of Speech Sounds 1 A logical organization For clarity s sake, we ll organize

More information

Source-filter analysis of fricatives

Source-filter analysis of fricatives 24.915/24.963 Linguistic Phonetics Source-filter analysis of fricatives Figure removed due to copyright restrictions. Readings: Johnson chapter 5 (speech perception) 24.963: Fujimura et al (1978) Noise

More information

2. By convention, the minimum and maximum values of analog data and signals are presented as voltages.

2. By convention, the minimum and maximum values of analog data and signals are presented as voltages. Chapter 2: Fundamentals of Data and Signals Data Communications and Computer Networks A Business Users Approach 8th Edition White TEST BANK Full clear download (no formatting errors) at: https://testbankreal.com/download/data-communications-computer-networksbusiness-users-approach-8th-edition-white-test-bank/

More information

EEE 309 Communication Theory

EEE 309 Communication Theory EEE 309 Communication Theory Semester: January 2016 Dr. Md. Farhad Hossain Associate Professor Department of EEE, BUET Email: mfarhadhossain@eee.buet.ac.bd Office: ECE 331, ECE Building Part 05 Pulse Code

More information

ECMA TR/105. A Shaped Noise File Representative of Speech. 1 st Edition / December Reference number ECMA TR/12:2009

ECMA TR/105. A Shaped Noise File Representative of Speech. 1 st Edition / December Reference number ECMA TR/12:2009 ECMA TR/105 1 st Edition / December 2012 A Shaped Noise File Representative of Speech Reference number ECMA TR/12:2009 Ecma International 2009 COPYRIGHT PROTECTED DOCUMENT Ecma International 2012 Contents

More information

CHAPTER 5. Digitized Audio Telemetry Standard. Table of Contents

CHAPTER 5. Digitized Audio Telemetry Standard. Table of Contents CHAPTER 5 Digitized Audio Telemetry Standard Table of Contents Chapter 5. Digitized Audio Telemetry Standard... 5-1 5.1 General... 5-1 5.2 Definitions... 5-1 5.3 Signal Source... 5-1 5.4 Encoding/Decoding

More information

Improving Sound Quality by Bandwidth Extension

Improving Sound Quality by Bandwidth Extension International Journal of Scientific & Engineering Research, Volume 3, Issue 9, September-212 Improving Sound Quality by Bandwidth Extension M. Pradeepa, M.Tech, Assistant Professor Abstract - In recent

More information

Experiment 8: Sampling

Experiment 8: Sampling Prepared By: 1 Experiment 8: Sampling Objective The objective of this Lab is to understand concepts and observe the effects of periodically sampling a continuous signal at different sampling rates, changing

More information

Speech Perception Speech Analysis Project. Record 3 tokens of each of the 15 vowels of American English in bvd or hvd context.

Speech Perception Speech Analysis Project. Record 3 tokens of each of the 15 vowels of American English in bvd or hvd context. Speech Perception Map your vowel space. Record tokens of the 15 vowels of English. Using LPC and measurements on the waveform and spectrum, determine F0, F1, F2, F3, and F4 at 3 points in each token plus

More information

Modulation. Digital Data Transmission. COMP476 Networked Computer Systems. Analog and Digital Signals. Analog and Digital Examples.

Modulation. Digital Data Transmission. COMP476 Networked Computer Systems. Analog and Digital Signals. Analog and Digital Examples. Digital Data Transmission Modulation Digital data is usually considered a series of binary digits. RS-232-C transmits data as square waves. COMP476 Networked Computer Systems Analog and Digital Signals

More information

LAB 2 Machine Perception of Music Computer Science 395, Winter Quarter 2005

LAB 2 Machine Perception of Music Computer Science 395, Winter Quarter 2005 1.0 Lab overview and objectives This lab will introduce you to displaying and analyzing sounds with spectrograms, with an emphasis on getting a feel for the relationship between harmonicity, pitch, and

More information

Signal Processing for Speech Applications - Part 2-1. Signal Processing For Speech Applications - Part 2

Signal Processing for Speech Applications - Part 2-1. Signal Processing For Speech Applications - Part 2 Signal Processing for Speech Applications - Part 2-1 Signal Processing For Speech Applications - Part 2 May 14, 2013 Signal Processing for Speech Applications - Part 2-2 References Huang et al., Chapter

More information

Chapter Two. Fundamentals of Data and Signals. Data Communications and Computer Networks: A Business User's Approach Seventh Edition

Chapter Two. Fundamentals of Data and Signals. Data Communications and Computer Networks: A Business User's Approach Seventh Edition Chapter Two Fundamentals of Data and Signals Data Communications and Computer Networks: A Business User's Approach Seventh Edition After reading this chapter, you should be able to: Distinguish between

More information

INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET)

INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) Proceedings of the 2 nd International Conference on Current Trends in Engineering and Management ICCTEM -214 ISSN

More information

X. SPEECH ANALYSIS. Prof. M. Halle G. W. Hughes H. J. Jacobsen A. I. Engel F. Poza A. VOWEL IDENTIFIER

X. SPEECH ANALYSIS. Prof. M. Halle G. W. Hughes H. J. Jacobsen A. I. Engel F. Poza A. VOWEL IDENTIFIER X. SPEECH ANALYSIS Prof. M. Halle G. W. Hughes H. J. Jacobsen A. I. Engel F. Poza A. VOWEL IDENTIFIER Most vowel identifiers constructed in the past were designed on the principle of "pattern matching";

More information

EC 6501 DIGITAL COMMUNICATION UNIT - II PART A

EC 6501 DIGITAL COMMUNICATION UNIT - II PART A EC 6501 DIGITAL COMMUNICATION 1.What is the need of prediction filtering? UNIT - II PART A [N/D-16] Prediction filtering is used mostly in audio signal processing and speech processing for representing

More information

Identification of stop consonants for acoustic keyword spotting in continuous speech

Identification of stop consonants for acoustic keyword spotting in continuous speech Proc. of Wireless Personal Multimedia Communications (WPMC), September 7, Jaipur, India Identification of stop consonants for acoustic keyword spotting in continuous speech Veena Karjigi, Bhavik Patel,

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 12 Speech Signal Processing 14/03/25 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Figure 0 No Magnetic Field

Figure 0 No Magnetic Field Figure 0 No Magnetic Field This is the normal mode sweep for the Spectra-Physics 088 HeNe laser tube. The red waveform (P- Polarization) is the horizontally polarized mode while the blue waveform (S-Polarization)

More information

SGN Audio and Speech Processing

SGN Audio and Speech Processing SGN 14006 Audio and Speech Processing Introduction 1 Course goals Introduction 2! Learn basics of audio signal processing Basic operations and their underlying ideas and principles Give basic skills although

More information

Lecture 7 Frequency Modulation

Lecture 7 Frequency Modulation Lecture 7 Frequency Modulation Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/3/15 1 Time-Frequency Spectrum We have seen that a wide range of interesting waveforms can be synthesized

More information

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 10 Single Sideband Modulation We will discuss, now we will continue

More information

Announcements : Wireless Networks Lecture 3: Physical Layer. Bird s Eye View. Outline. Page 1

Announcements : Wireless Networks Lecture 3: Physical Layer. Bird s Eye View. Outline. Page 1 Announcements 18-759: Wireless Networks Lecture 3: Physical Layer Please start to form project teams» Updated project handout is available on the web site Also start to form teams for surveys» Send mail

More information

Enhancing Analog Signal Generation by Digital Channel Using Pulse-Width Modulation

Enhancing Analog Signal Generation by Digital Channel Using Pulse-Width Modulation Enhancing Analog Signal Generation by Digital Channel Using Pulse-Width Modulation Angelo Zucchetti Advantest angelo.zucchetti@advantest.com Introduction Presented in this article is a technique for generating

More information

Chapter 5 Window Functions. periodic with a period of N (number of samples). This is observed in table (3.1).

Chapter 5 Window Functions. periodic with a period of N (number of samples). This is observed in table (3.1). Chapter 5 Window Functions 5.1 Introduction As discussed in section (3.7.5), the DTFS assumes that the input waveform is periodic with a period of N (number of samples). This is observed in table (3.1).

More information

Islamic University of Gaza. Faculty of Engineering Electrical Engineering Department Spring-2011

Islamic University of Gaza. Faculty of Engineering Electrical Engineering Department Spring-2011 Islamic University of Gaza Faculty of Engineering Electrical Engineering Department Spring-2011 DSP Laboratory (EELE 4110) Lab#4 Sampling and Quantization OBJECTIVES: When you have completed this assignment,

More information

Speech Signal Analysis

Speech Signal Analysis Speech Signal Analysis Hiroshi Shimodaira and Steve Renals Automatic Speech Recognition ASR Lectures 2&3 14,18 January 216 ASR Lectures 2&3 Speech Signal Analysis 1 Overview Speech Signal Analysis for

More information

Acoustics and Fourier Transform Physics Advanced Physics Lab - Summer 2018 Don Heiman, Northeastern University, 1/12/2018

Acoustics and Fourier Transform Physics Advanced Physics Lab - Summer 2018 Don Heiman, Northeastern University, 1/12/2018 1 Acoustics and Fourier Transform Physics 3600 - Advanced Physics Lab - Summer 2018 Don Heiman, Northeastern University, 1/12/2018 I. INTRODUCTION Time is fundamental in our everyday life in the 4-dimensional

More information

CHAPTER 4. PULSE MODULATION Part 2

CHAPTER 4. PULSE MODULATION Part 2 CHAPTER 4 PULSE MODULATION Part 2 Pulse Modulation Analog pulse modulation: Sampling, i.e., information is transmitted only at discrete time instants. e.g. PAM, PPM and PDM Digital pulse modulation: Sampling

More information

Voiced/nonvoiced detection based on robustness of voiced epochs

Voiced/nonvoiced detection based on robustness of voiced epochs Voiced/nonvoiced detection based on robustness of voiced epochs by N. Dhananjaya, B.Yegnanarayana in IEEE Signal Processing Letters, 17, 3 : 273-276 Report No: IIIT/TR/2010/50 Centre for Language Technologies

More information

speech signal S(n). This involves a transformation of S(n) into another signal or a set of signals

speech signal S(n). This involves a transformation of S(n) into another signal or a set of signals 16 3. SPEECH ANALYSIS 3.1 INTRODUCTION TO SPEECH ANALYSIS Many speech processing [22] applications exploits speech production and perception to accomplish speech analysis. By speech analysis we extract

More information

Introduction to Lab Instruments

Introduction to Lab Instruments ECE316, Experiment 00, 2017 Communications Lab, University of Toronto Introduction to Lab Instruments Bruno Korst - bkf@comm.utoronto.ca Abstract This experiment will review the use of three lab instruments

More information

Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Objectives:

Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Objectives: Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Pentium PC with National Instruments PCI-MIO-16E-4 data-acquisition board (12-bit resolution; software-controlled

More information

Complex Sounds. Reading: Yost Ch. 4

Complex Sounds. Reading: Yost Ch. 4 Complex Sounds Reading: Yost Ch. 4 Natural Sounds Most sounds in our everyday lives are not simple sinusoidal sounds, but are complex sounds, consisting of a sum of many sinusoids. The amplitude and frequency

More information

Voice Activity Detection

Voice Activity Detection Voice Activity Detection Speech Processing Tom Bäckström Aalto University October 2015 Introduction Voice activity detection (VAD) (or speech activity detection, or speech detection) refers to a class

More information

Music 270a: Fundamentals of Digital Audio and Discrete-Time Signals

Music 270a: Fundamentals of Digital Audio and Discrete-Time Signals Music 270a: Fundamentals of Digital Audio and Discrete-Time Signals Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego October 3, 2016 1 Continuous vs. Discrete signals

More information

Sound is the human ear s perceived effect of pressure changes in the ambient air. Sound can be modeled as a function of time.

Sound is the human ear s perceived effect of pressure changes in the ambient air. Sound can be modeled as a function of time. 2. Physical sound 2.1 What is sound? Sound is the human ear s perceived effect of pressure changes in the ambient air. Sound can be modeled as a function of time. Figure 2.1: A 0.56-second audio clip of

More information

EEE 309 Communication Theory

EEE 309 Communication Theory EEE 309 Communication Theory Semester: January 2017 Dr. Md. Farhad Hossain Associate Professor Department of EEE, BUET Email: mfarhadhossain@eee.buet.ac.bd Office: ECE 331, ECE Building Types of Modulation

More information

SOUND SOURCE RECOGNITION AND MODELING

SOUND SOURCE RECOGNITION AND MODELING SOUND SOURCE RECOGNITION AND MODELING CASA seminar, summer 2000 Antti Eronen antti.eronen@tut.fi Contents: Basics of human sound source recognition Timbre Voice recognition Recognition of environmental

More information

Aspiration Noise during Phonation: Synthesis, Analysis, and Pitch-Scale Modification. Daryush Mehta

Aspiration Noise during Phonation: Synthesis, Analysis, and Pitch-Scale Modification. Daryush Mehta Aspiration Noise during Phonation: Synthesis, Analysis, and Pitch-Scale Modification Daryush Mehta SHBT 03 Research Advisor: Thomas F. Quatieri Speech and Hearing Biosciences and Technology 1 Summary Studied

More information

System on a Chip. Prof. Dr. Michael Kraft

System on a Chip. Prof. Dr. Michael Kraft System on a Chip Prof. Dr. Michael Kraft Lecture 5: Data Conversion ADC Background/Theory Examples Background Physical systems are typically analogue To apply digital signal processing, the analogue signal

More information

8A. ANALYSIS OF COMPLEX SOUNDS. Amplitude, loudness, and decibels

8A. ANALYSIS OF COMPLEX SOUNDS. Amplitude, loudness, and decibels 8A. ANALYSIS OF COMPLEX SOUNDS Amplitude, loudness, and decibels Last week we found that we could synthesize complex sounds with a particular frequency, f, by adding together sine waves from the harmonic

More information

Terminology (1) Chapter 3. Terminology (3) Terminology (2) Transmitter Receiver Medium. Data Transmission. Direct link. Point-to-point.

Terminology (1) Chapter 3. Terminology (3) Terminology (2) Transmitter Receiver Medium. Data Transmission. Direct link. Point-to-point. Terminology (1) Chapter 3 Data Transmission Transmitter Receiver Medium Guided medium e.g. twisted pair, optical fiber Unguided medium e.g. air, water, vacuum Spring 2012 03-1 Spring 2012 03-2 Terminology

More information

II. LAB. * Open the LabVIEW program (Start > All Programs > National Instruments > LabVIEW 2012 > LabVIEW 2012)

II. LAB. * Open the LabVIEW program (Start > All Programs > National Instruments > LabVIEW 2012 > LabVIEW 2012) II. LAB Software Required: NI LabVIEW 2012, NI LabVIEW 4.3 Modulation Toolkit. Functions and VI (Virtual Instrument) from the LabVIEW software to be used in this lab: niusrp Open Tx Session (VI), niusrp

More information

CHAPTER 3. ACOUSTIC MEASURES OF GLOTTAL CHARACTERISTICS 39 and from periodic glottal sources (Shadle, 1985; Stevens, 1993). The ratio of the amplitude of the harmonics at 3 khz to the noise amplitude in

More information

The information carrying capacity of a channel

The information carrying capacity of a channel Chapter 8 The information carrying capacity of a channel 8.1 Signals look like noise! One of the most important practical questions which arises when we are designing and using an information transmission

More information

Laboratory Experiment #1 Introduction to Spectral Analysis

Laboratory Experiment #1 Introduction to Spectral Analysis J.B.Francis College of Engineering Mechanical Engineering Department 22-403 Laboratory Experiment #1 Introduction to Spectral Analysis Introduction The quantification of electrical energy can be accomplished

More information

Data Communications & Computer Networks

Data Communications & Computer Networks Data Communications & Computer Networks Chapter 3 Data Transmission Fall 2008 Agenda Terminology and basic concepts Analog and Digital Data Transmission Transmission impairments Channel capacity Home Exercises

More information

Terminology (1) Chapter 3. Terminology (3) Terminology (2) Transmitter Receiver Medium. Data Transmission. Simplex. Direct link.

Terminology (1) Chapter 3. Terminology (3) Terminology (2) Transmitter Receiver Medium. Data Transmission. Simplex. Direct link. Chapter 3 Data Transmission Terminology (1) Transmitter Receiver Medium Guided medium e.g. twisted pair, optical fiber Unguided medium e.g. air, water, vacuum Corneliu Zaharia 2 Corneliu Zaharia Terminology

More information

Quarterly Progress and Status Report. Synthesis of selected VCV-syllables in singing

Quarterly Progress and Status Report. Synthesis of selected VCV-syllables in singing Dept. for Speech, Music and Hearing Quarterly Progress and Status Report Synthesis of selected VCV-syllables in singing Zera, J. and Gauffin, J. and Sundberg, J. journal: STL-QPSR volume: 25 number: 2-3

More information

Fundamentals of Digital Audio *

Fundamentals of Digital Audio * Digital Media The material in this handout is excerpted from Digital Media Curriculum Primer a work written by Dr. Yue-Ling Wong (ylwong@wfu.edu), Department of Computer Science and Department of Art,

More information

Lecture Fundamentals of Data and signals

Lecture Fundamentals of Data and signals IT-5301-3 Data Communications and Computer Networks Lecture 05-07 Fundamentals of Data and signals Lecture 05 - Roadmap Analog and Digital Data Analog Signals, Digital Signals Periodic and Aperiodic Signals

More information

Review: Frequency Response Graph. Introduction to Speech and Science. Review: Vowels. Response Graph. Review: Acoustic tube models

Review: Frequency Response Graph. Introduction to Speech and Science. Review: Vowels. Response Graph. Review: Acoustic tube models eview: requency esponse Graph Introduction to Speech and Science Lecture 5 ricatives and Spectrograms requency Domain Description Input Signal System Output Signal Output = Input esponse? eview: requency

More information

LAB #7: Digital Signal Processing

LAB #7: Digital Signal Processing LAB #7: Digital Signal Processing Equipment: Pentium PC with NI PCI-MIO-16E-4 data-acquisition board NI BNC 2120 Accessory Box VirtualBench Instrument Library version 2.6 Function Generator (Tektronix

More information

MAKE SOMETHING THAT TALKS?

MAKE SOMETHING THAT TALKS? MAKE SOMETHING THAT TALKS? Modeling the Human Vocal Tract pitch, timing, and formant control signals pitch, timing, and formant control signals lips, teeth, and tongue formant cavity 2 formant cavity 1

More information

PART II Practical problems in the spectral analysis of speech signals

PART II Practical problems in the spectral analysis of speech signals PART II Practical problems in the spectral analysis of speech signals We have now seen how the Fourier analysis recovers the amplitude and phase of an input signal consisting of a superposition of multiple

More information

EE 225D LECTURE ON SPEECH SYNTHESIS. University of California Berkeley

EE 225D LECTURE ON SPEECH SYNTHESIS. University of California Berkeley University of California Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences Professors : N.Morgan / B.Gold EE225D Speech Synthesis Spring,1999 Lecture 23 N.MORGAN

More information

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 5: 12 Feb A. Faulkner.

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 5: 12 Feb A. Faulkner. Perception of pitch BSc Audiology/MSc SHS Psychoacoustics wk 5: 12 Feb 2009. A. Faulkner. See Moore, BCJ Introduction to the Psychology of Hearing, Chapter 5. Or Plack CJ The Sense of Hearing Lawrence

More information

Introduction. Chapter Time-Varying Signals

Introduction. Chapter Time-Varying Signals Chapter 1 1.1 Time-Varying Signals Time-varying signals are commonly observed in the laboratory as well as many other applied settings. Consider, for example, the voltage level that is present at a specific

More information

The need for Data Converters

The need for Data Converters The need for Data Converters ANALOG SIGNAL (Speech, Images, Sensors, Radar, etc.) PRE-PROCESSING (Filtering and analog to digital conversion) DIGITAL PROCESSOR (Microprocessor) POST-PROCESSING (Digital

More information

A-D and D-A Converters

A-D and D-A Converters Chapter 5 A-D and D-A Converters (No mathematical derivations) 04 Hours 08 Marks When digital devices are to be interfaced with analog devices (or vice a versa), Digital to Analog converter and Analog

More information

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: 2-4 July, 2015

International Journal of Modern Trends in Engineering and Research   e-issn No.: , Date: 2-4 July, 2015 International Journal of Modern Trends in Engineering and Research www.ijmter.com e-issn No.:2349-9745, Date: 2-4 July, 2015 Analysis of Speech Signal Using Graphic User Interface Solly Joy 1, Savitha

More information

10 Speech and Audio Signals

10 Speech and Audio Signals 0 Speech and Audio Signals Introduction Speech and audio signals are normally converted into PCM, which can be stored or transmitted as a PCM code, or compressed to reduce the number of bits used to code

More information

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 4: 7 Feb A. Faulkner.

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 4: 7 Feb A. Faulkner. Perception of pitch BSc Audiology/MSc SHS Psychoacoustics wk 4: 7 Feb 2008. A. Faulkner. See Moore, BCJ Introduction to the Psychology of Hearing, Chapter 5. Or Plack CJ The Sense of Hearing Lawrence Erlbaum,

More information

Speech Coding in the Frequency Domain

Speech Coding in the Frequency Domain Speech Coding in the Frequency Domain Speech Processing Advanced Topics Tom Bäckström Aalto University October 215 Introduction The speech production model can be used to efficiently encode speech signals.

More information

What is Sound? Simple Harmonic Motion -- a Pendulum

What is Sound? Simple Harmonic Motion -- a Pendulum What is Sound? As the tines move back and forth they exert pressure on the air around them. (a) The first displacement of the tine compresses the air molecules causing high pressure. (b) Equal displacement

More information

Location of sound source and transfer functions

Location of sound source and transfer functions Location of sound source and transfer functions Sounds produced with source at the larynx either voiced or voiceless (aspiration) sound is filtered by entire vocal tract Transfer function is well modeled

More information

Musical Acoustics, C. Bertulani. Musical Acoustics. Lecture 14 Timbre / Tone quality II

Musical Acoustics, C. Bertulani. Musical Acoustics. Lecture 14 Timbre / Tone quality II 1 Musical Acoustics Lecture 14 Timbre / Tone quality II Odd vs Even Harmonics and Symmetry Sines are Anti-symmetric about mid-point If you mirror around the middle you get the same shape but upside down

More information

Speech Recognition. Mitch Marcus CIS 421/521 Artificial Intelligence

Speech Recognition. Mitch Marcus CIS 421/521 Artificial Intelligence Speech Recognition Mitch Marcus CIS 421/521 Artificial Intelligence A Sample of Speech Recognition Today's class is about: First, why speech recognition is difficult. As you'll see, the impression we have

More information

UNIT III -- DATA AND PULSE COMMUNICATION PART-A 1. State the sampling theorem for band-limited signals of finite energy. If a finite energy signal g(t) contains no frequency higher than W Hz, it is completely

More information

Data Communication. Chapter 3 Data Transmission

Data Communication. Chapter 3 Data Transmission Data Communication Chapter 3 Data Transmission ١ Terminology (1) Transmitter Receiver Medium Guided medium e.g. twisted pair, coaxial cable, optical fiber Unguided medium e.g. air, water, vacuum ٢ Terminology

More information

CMPT 318: Lecture 4 Fundamentals of Digital Audio, Discrete-Time Signals

CMPT 318: Lecture 4 Fundamentals of Digital Audio, Discrete-Time Signals CMPT 318: Lecture 4 Fundamentals of Digital Audio, Discrete-Time Signals Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 16, 2006 1 Continuous vs. Discrete

More information

Measuring 3rd order Intercept Point (IP3 / TOI) of an amplifier

Measuring 3rd order Intercept Point (IP3 / TOI) of an amplifier Measuring 3rd order Intercept Point (IP3 / TOI) of an amplifier Why measuring IP3 / TOI? IP3 is an important parameter for nonlinear systems like mixers or amplifiers which helps to verify the quality

More information

Linguistics 401 LECTURE #2. BASIC ACOUSTIC CONCEPTS (A review)

Linguistics 401 LECTURE #2. BASIC ACOUSTIC CONCEPTS (A review) Linguistics 401 LECTURE #2 BASIC ACOUSTIC CONCEPTS (A review) Unit of wave: CYCLE one complete wave (=one complete crest and trough) The number of cycles per second: FREQUENCY cycles per second (cps) =

More information