SGN Audio and Speech Processing

Size: px
Start display at page:

Download "SGN Audio and Speech Processing"

Transcription

1 Introduction 1 Course goals Introduction 2 SGN Audio and Speech Processing Lectures, Fall 2014 Anssi Klapuri Tampere University of Technology! Learn basics of audio signal processing Basic operations and their underlying ideas and principles Give basic skills although all the latest cutting edge algorithms cannot be covered! Learn fundamentals of speech processing Speech production and its computational modeling Acoustic features to represent speech signals Some applications: speech coding, synthesis! Learn the basics of acoustics and human hearing These form the foundation for technical applications Introduction 3 Introduction 4 Lecture timeline (some changes may still take place) What is not covered by this course! Sound, audio signals, acoustics! Hearing! Basic audio signal processing operations AD/DA-conversion, filters and filter banks, dynamic control, etc.! Sound synthesis! Audio coding! Speech recognition, audio content analysis, and acoustic pattern recognition " Course SGN Analysis of Audio, Speech and Music Signals (period 4)! Analog audio Electroacoustics, microphone and loudspeaker design " See the course Akustiikan mittaukset! Speech production anatomy, phonetics! Linear prediction and cepstrum! Speech coding! Speech synthesis! Hardware implementations

2 Introduction 5 Introduction 6 Practical arrangements Exercises! Course homepage: Lectures Mondays in TB219 Thursdays in TB219 Anssi Klapuri, tut.fi! Lecture slides will be available as pdf on the course page Course is not based on any individual textbook. Lectures, lecture notes and exercises will be sufficient to take the exam. Some recommended textbooks are mentioned at the end of this introduction! Requirements: exam and project work! 5 cr! Exercises start one week after the lectures ( )! Assistants: Aleksandr Diment! Contents: math and Matlab exercises related to the lectures! Two alternative groups Tuesday in TC407 Friday in TC303 Register to either group on-line at Math problems are to be solved in advance, Matlab exercises are done during the exercises! Active completion of the exercises and participation in the exercises is credited up to 3 points in the exam (equivalent to one mark)! Project work will be discussed at the exercises too Introduction 7 Introduction 8 Project work Reference material! Implementing an audio signal processing algorithm in Matlab In two-person groups! Topic(s) will be introduced later during the lectures! Requirements: Choosing the topic Implementing the algorithm Final report by ! More detailed instructions will appear on the course home page! If you do not have a user account to Birdland Unix / Linux environment (domain *.cs.tut.fi), please apply for one! Gold, Morgan, Ellis, Speech and audio signal processing, Wiley, 2011.! Zölzer. Digital audio signal processing, Wiley&Sons, 2nd ed Including AD/DA-conversion, dynamic control, equalization, filter banks! T.F. Quatieri: "Discrete-Time Speech Signal Processing: Principles and Practice", Prentice Hall PTR, 2002.! Rossing. The science of sound, Addison-Wesley, Acoustics, hearing! Brandenburg, Kahrs. (1998). Applications of digital signal processing to audio and acoustics, Kluwer Academic Publishers Chapter on Perceptual audio coding

3 Introduction 9 Audio signals Introduction 10 Introduction to audio signals and their representation! Audio = related to sound or hearing! The word sound may mean 1. a sensation perceived by the auditory system, or 2. longitudinal pressure waves in a material medium (such as air) that may cause a hearing sensation Due to human hearing, we usually consider the frequency range 20 Hz 20 khz and air as the medium (although hearing works also underwater for example)! Sound signal audio signal Numerical representation of sound Sound pressure level as a function of time, measured using a microphone for example! Note: audio signal is often understood as non-speech audio signal, although speech signals are audio too Audio and speech processing Introduction 11 Audio signal representations Introduction 12! Where is audio and speech processing needed?! Examples: Convert a musical piece into compressed mp3 format and store it on a hard disc for playback later (audio coding) Encode a speech signal on a mobile phone before transmission Add reverberation to a sound, correct the pitch of a singer (studio technology) Enhance the quality of a speech signal (denoising, echo cancell.) Compensate for loudspeaker non-idealities by digital equalization! Typical digital signal processing system: 1. Digitize a signal (sampling, quantization) 2. Process in digital form (store, manipulate, etc) -digital representation enables a variety of algorithms 3. Convert back to an analog signal! Different applications employ different representations Time domain representation Frequency domain representation Time-frequency domain representation! On this course we consider mainly music and speech Music signals involve a wide variety of sounds, billions of people listen to music worldwide Speech signals are an important special category of sound signals due to their importance for communication

4 Time domain signal Introduction 13 Time domain signal (1) Introduction 14! Air pressure level as a function of time (zero level = normal air pressure) is a natural representation for audio An analog signal is easy to record using a microphone and play back using a loudspeaker! For music, typical sampling rates are 44.1 or 48 khz Allows for representing the frequency range of human hearing (approximately 20 Hz 20 khz)! For speech 8 khz is the conventional telephone rate (sibilants /s/, /f/ distorted) 16 khz: wideband speech (voice over IP, bandwidth extension)! Other rates are also widely used: 96, 32, khz etc.! Most of the energy (and information) of natural sounds is at low frequencies (around 200 Hz 5 khz)! Analog signal (solid line) can be represented with discrete samples (dots) without loss of information, if the sampling frequency 2 * highest frequency component in the signal Remember from introductory signal processing courses Time domain signal (2) Introduction 15 Time domain signal (3) Introduction 16! Large time scale illustrates the sound amplitude envelope! Example signal: one note from the oboe Amplitude is zero before the sound starts The oboe has continuous excitation, therefore the sound s amplitude envelope remains nearly constant throught it duration! Zoom-in of the same oboe signal at time t = 0.45 s! 90 ms frame illustrates the periodic waveform Many sounds are periodic, for example most musical instrument sounds and vowels in speech

5 Frequency domain representation spectrum Introduction 17 Consider log-frequency and db-magnitude Introduction 18! Obtained by computing discrete Fourier transform (for example) of the time-domain signal, usually in a short frame! Many perceptually important properties are more clearly visible in the frequency domain! Decibel scale for amplitude is useful from the viewpoint of the human hearing and the dynamics of natural sounds! Phases are perceptually less important often omitted! Linear scale usually hard to see anything! Log-frequency each octave is approximately equally important perceptually! Log-magnitude perceived change from 50dB to 60dB about the same as from 60dB to 70dB Time-frequency representation spectrogram Introduction 19 Example audio signals: guitar Introduction 20! Shows sound intensity as a function of time and frequency! Obtained by blocking the signal into short analysis frames and by computing their spectra! For audio, the frame size is typically ms: sound spectra are often nearly stationary at that time scale! Sound decays gradually after the onset! Instantaneous excitation: string is plucked at onset! Periodic sound (vibrating string, covered on Acoustics lecture)

6 Introduction 21 Introduction 22 Example audio signal: snare drum Example audio signals: snare drum (2)! Instantaneous excitation, exponentially decaying amplitude envelope! Zoom-in of the snare drum waveform! The signal contains also non-periodic components Introduction 23 Introduction 24 Example audio signals: snare drum (3) Example audio signals: snare drum (4)! Spectrum is noise-like too: not as clear structure as that in oboe s spectrum! Spectrogram

7 Polyphonic music (1) Introduction 25 Polyphonic music (2) Introduction 26! Polyphonic music consists of a mix of several sound sources (linear superposition)! Spectrogram reveals e.g. the rhythmic structure Speech: time domain signal (1) Introduction 27 Speech: time domain (2) Introduction 28! One sentence ( He knew what taboos he was violating. )! Speech can be viewed as a sequence of phonemes! Zooming in to different phonemes Left: vowel e in He (voiced: periodic) Right: t in taboos (unvoiced: noisy )

8 Speech spectrogram Introduction 29! Each phoneme has its characteristic spectral shape! Transitions between phonemes are continuous rather than step-like

SGN Audio and Speech Processing

SGN Audio and Speech Processing SGN 14006 Audio and Speech Processing Introduction 1 Course goals Introduction 2! Learn basics of audio signal processing Basic operations and their underlying ideas and principles Give basic skills although

More information

Speech Processing. Undergraduate course code: LASC10061 Postgraduate course code: LASC11065

Speech Processing. Undergraduate course code: LASC10061 Postgraduate course code: LASC11065 Speech Processing Undergraduate course code: LASC10061 Postgraduate course code: LASC11065 All course materials and handouts are the same for both versions. Differences: credits (20 for UG, 10 for PG);

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 12 Speech Signal Processing 14/03/25 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Final Exam Study Guide: Introduction to Computer Music Course Staff April 24, 2015

Final Exam Study Guide: Introduction to Computer Music Course Staff April 24, 2015 Final Exam Study Guide: 15-322 Introduction to Computer Music Course Staff April 24, 2015 This document is intended to help you identify and master the main concepts of 15-322, which is also what we intend

More information

Reading: Johnson Ch , Ch.5.5 (today); Liljencrants & Lindblom; Stevens (Tues) reminder: no class on Thursday.

Reading: Johnson Ch , Ch.5.5 (today); Liljencrants & Lindblom; Stevens (Tues) reminder: no class on Thursday. L105/205 Phonetics Scarborough Handout 7 10/18/05 Reading: Johnson Ch.2.3.3-2.3.6, Ch.5.5 (today); Liljencrants & Lindblom; Stevens (Tues) reminder: no class on Thursday Spectral Analysis 1. There are

More information

Aspiration Noise during Phonation: Synthesis, Analysis, and Pitch-Scale Modification. Daryush Mehta

Aspiration Noise during Phonation: Synthesis, Analysis, and Pitch-Scale Modification. Daryush Mehta Aspiration Noise during Phonation: Synthesis, Analysis, and Pitch-Scale Modification Daryush Mehta SHBT 03 Research Advisor: Thomas F. Quatieri Speech and Hearing Biosciences and Technology 1 Summary Studied

More information

Mel Spectrum Analysis of Speech Recognition using Single Microphone

Mel Spectrum Analysis of Speech Recognition using Single Microphone International Journal of Engineering Research in Electronics and Communication Mel Spectrum Analysis of Speech Recognition using Single Microphone [1] Lakshmi S.A, [2] Cholavendan M [1] PG Scholar, Sree

More information

Complex Sounds. Reading: Yost Ch. 4

Complex Sounds. Reading: Yost Ch. 4 Complex Sounds Reading: Yost Ch. 4 Natural Sounds Most sounds in our everyday lives are not simple sinusoidal sounds, but are complex sounds, consisting of a sum of many sinusoids. The amplitude and frequency

More information

Fundamentals of Music Technology

Fundamentals of Music Technology Fundamentals of Music Technology Juan P. Bello Office: 409, 4th floor, 383 LaFayette Street (ext. 85736) Office Hours: Wednesdays 2-5pm Email: jpbello@nyu.edu URL: http://homepages.nyu.edu/~jb2843/ Course-info:

More information

MUS 302 ENGINEERING SECTION

MUS 302 ENGINEERING SECTION MUS 302 ENGINEERING SECTION Wiley Ross: Recording Studio Coordinator Email =>ross@email.arizona.edu Twitter=> https://twitter.com/ssor Web page => http://www.arts.arizona.edu/studio Youtube Channel=>http://www.youtube.com/user/wileyross

More information

Speech Enhancement Based On Spectral Subtraction For Speech Recognition System With Dpcm

Speech Enhancement Based On Spectral Subtraction For Speech Recognition System With Dpcm International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Speech Enhancement Based On Spectral Subtraction For Speech Recognition System With Dpcm A.T. Rajamanickam, N.P.Subiramaniyam, A.Balamurugan*,

More information

Structure of Speech. Physical acoustics Time-domain representation Frequency domain representation Sound shaping

Structure of Speech. Physical acoustics Time-domain representation Frequency domain representation Sound shaping Structure of Speech Physical acoustics Time-domain representation Frequency domain representation Sound shaping Speech acoustics Source-Filter Theory Speech Source characteristics Speech Filter characteristics

More information

Lab 8. ANALYSIS OF COMPLEX SOUNDS AND SPEECH ANALYSIS Amplitude, loudness, and decibels

Lab 8. ANALYSIS OF COMPLEX SOUNDS AND SPEECH ANALYSIS Amplitude, loudness, and decibels Lab 8. ANALYSIS OF COMPLEX SOUNDS AND SPEECH ANALYSIS Amplitude, loudness, and decibels A complex sound with particular frequency can be analyzed and quantified by its Fourier spectrum: the relative amplitudes

More information

MUSC 316 Sound & Digital Audio Basics Worksheet

MUSC 316 Sound & Digital Audio Basics Worksheet MUSC 316 Sound & Digital Audio Basics Worksheet updated September 2, 2011 Name: An Aggie does not lie, cheat, or steal, or tolerate those who do. By submitting responses for this test you verify, on your

More information

CS 591 S1 Midterm Exam

CS 591 S1 Midterm Exam Name: CS 591 S1 Midterm Exam Spring 2017 You must complete 3 of problems 1 4, and then problem 5 is mandatory. Each problem is worth 25 points. Please leave blank, or draw an X through, or write Do Not

More information

Audio Content Analysis. Juan Pablo Bello EL9173 Selected Topics in Signal Processing: Audio Content Analysis NYU Poly

Audio Content Analysis. Juan Pablo Bello EL9173 Selected Topics in Signal Processing: Audio Content Analysis NYU Poly Audio Content Analysis Juan Pablo Bello EL9173 Selected Topics in Signal Processing: Audio Content Analysis NYU Poly Juan Pablo Bello Office: Room 626, 6th floor, 35 W 4th Street (ext. 85736) Office Hours:

More information

speech signal S(n). This involves a transformation of S(n) into another signal or a set of signals

speech signal S(n). This involves a transformation of S(n) into another signal or a set of signals 16 3. SPEECH ANALYSIS 3.1 INTRODUCTION TO SPEECH ANALYSIS Many speech processing [22] applications exploits speech production and perception to accomplish speech analysis. By speech analysis we extract

More information

Principles of Musical Acoustics

Principles of Musical Acoustics William M. Hartmann Principles of Musical Acoustics ^Spr inger Contents 1 Sound, Music, and Science 1 1.1 The Source 2 1.2 Transmission 3 1.3 Receiver 3 2 Vibrations 1 9 2.1 Mass and Spring 9 2.1.1 Definitions

More information

ECE 556 BASICS OF DIGITAL SPEECH PROCESSING. Assıst.Prof.Dr. Selma ÖZAYDIN Spring Term-2017 Lecture 2

ECE 556 BASICS OF DIGITAL SPEECH PROCESSING. Assıst.Prof.Dr. Selma ÖZAYDIN Spring Term-2017 Lecture 2 ECE 556 BASICS OF DIGITAL SPEECH PROCESSING Assıst.Prof.Dr. Selma ÖZAYDIN Spring Term-2017 Lecture 2 Analog Sound to Digital Sound Characteristics of Sound Amplitude Wavelength (w) Frequency ( ) Timbre

More information

8.3 Basic Parameters for Audio

8.3 Basic Parameters for Audio 8.3 Basic Parameters for Audio Analysis Physical audio signal: simple one-dimensional amplitude = loudness frequency = pitch Psycho-acoustic features: complex A real-life tone arises from a complex superposition

More information

Computer Audio. An Overview. (Material freely adapted from sources far too numerous to mention )

Computer Audio. An Overview. (Material freely adapted from sources far too numerous to mention ) Computer Audio An Overview (Material freely adapted from sources far too numerous to mention ) Computer Audio An interdisciplinary field including Music Computer Science Electrical Engineering (signal

More information

Speech Synthesis; Pitch Detection and Vocoders

Speech Synthesis; Pitch Detection and Vocoders Speech Synthesis; Pitch Detection and Vocoders Tai-Shih Chi ( 冀泰石 ) Department of Communication Engineering National Chiao Tung University May. 29, 2008 Speech Synthesis Basic components of the text-to-speech

More information

Reducing comb filtering on different musical instruments using time delay estimation

Reducing comb filtering on different musical instruments using time delay estimation Reducing comb filtering on different musical instruments using time delay estimation Alice Clifford and Josh Reiss Queen Mary, University of London alice.clifford@eecs.qmul.ac.uk Abstract Comb filtering

More information

Communications Theory and Engineering

Communications Theory and Engineering Communications Theory and Engineering Master's Degree in Electronic Engineering Sapienza University of Rome A.A. 2018-2019 Speech and telephone speech Based on a voice production model Parametric representation

More information

Linguistic Phonetics. Spectral Analysis

Linguistic Phonetics. Spectral Analysis 24.963 Linguistic Phonetics Spectral Analysis 4 4 Frequency (Hz) 1 Reading for next week: Liljencrants & Lindblom 1972. Assignment: Lip-rounding assignment, due 1/15. 2 Spectral analysis techniques There

More information

Sound, acoustics Slides based on: Rossing, The science of sound, 1990.

Sound, acoustics Slides based on: Rossing, The science of sound, 1990. Sound, acoustics Slides based on: Rossing, The science of sound, 1990. Acoustics 1 1 Introduction Acoustics 2! The word acoustics refers to the science of sound and is a subcategory of physics! Room acoustics

More information

Signal Processing for Speech Applications - Part 2-1. Signal Processing For Speech Applications - Part 2

Signal Processing for Speech Applications - Part 2-1. Signal Processing For Speech Applications - Part 2 Signal Processing for Speech Applications - Part 2-1 Signal Processing For Speech Applications - Part 2 May 14, 2013 Signal Processing for Speech Applications - Part 2-2 References Huang et al., Chapter

More information

Topic. Spectrogram Chromagram Cesptrogram. Bryan Pardo, 2008, Northwestern University EECS 352: Machine Perception of Music and Audio

Topic. Spectrogram Chromagram Cesptrogram. Bryan Pardo, 2008, Northwestern University EECS 352: Machine Perception of Music and Audio Topic Spectrogram Chromagram Cesptrogram Short time Fourier Transform Break signal into windows Calculate DFT of each window The Spectrogram spectrogram(y,1024,512,1024,fs,'yaxis'); A series of short term

More information

Sound waves. septembre 2014 Audio signals and systems 1

Sound waves. septembre 2014 Audio signals and systems 1 Sound waves Sound is created by elastic vibrations or oscillations of particles in a particular medium. The vibrations are transmitted from particles to (neighbouring) particles: sound wave. Sound waves

More information

CS101 Lecture 18: Audio Encoding. What You ll Learn Today

CS101 Lecture 18: Audio Encoding. What You ll Learn Today CS101 Lecture 18: Audio Encoding Sampling Quantizing Aaron Stevens (azs@bu.edu) with special guest Wayne Snyder (snyder@bu.edu) 16 October 2012 What You ll Learn Today How do we hear sounds? How can audio

More information

Preeti Rao 2 nd CompMusicWorkshop, Istanbul 2012

Preeti Rao 2 nd CompMusicWorkshop, Istanbul 2012 Preeti Rao 2 nd CompMusicWorkshop, Istanbul 2012 o Music signal characteristics o Perceptual attributes and acoustic properties o Signal representations for pitch detection o STFT o Sinusoidal model o

More information

Fundamentals of Digital Audio *

Fundamentals of Digital Audio * Digital Media The material in this handout is excerpted from Digital Media Curriculum Primer a work written by Dr. Yue-Ling Wong (ylwong@wfu.edu), Department of Computer Science and Department of Art,

More information

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 5: 12 Feb A. Faulkner.

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 5: 12 Feb A. Faulkner. Perception of pitch BSc Audiology/MSc SHS Psychoacoustics wk 5: 12 Feb 2009. A. Faulkner. See Moore, BCJ Introduction to the Psychology of Hearing, Chapter 5. Or Plack CJ The Sense of Hearing Lawrence

More information

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: 2-4 July, 2015

International Journal of Modern Trends in Engineering and Research   e-issn No.: , Date: 2-4 July, 2015 International Journal of Modern Trends in Engineering and Research www.ijmter.com e-issn No.:2349-9745, Date: 2-4 July, 2015 Analysis of Speech Signal Using Graphic User Interface Solly Joy 1, Savitha

More information

Announcements. Today. Speech and Language. State Path Trellis. HMMs: MLE Queries. Introduction to Artificial Intelligence. V22.

Announcements. Today. Speech and Language. State Path Trellis. HMMs: MLE Queries. Introduction to Artificial Intelligence. V22. Introduction to Artificial Intelligence Announcements V22.0472-001 Fall 2009 Lecture 19: Speech Recognition & Viterbi Decoding Rob Fergus Dept of Computer Science, Courant Institute, NYU Slides from John

More information

Advanced Audiovisual Processing Expected Background

Advanced Audiovisual Processing Expected Background Advanced Audiovisual Processing Expected Background As an advanced module, we will not cover introductory topics in lecture. You are expected to already be proficient with all of the following topics,

More information

What is Sound? Part II

What is Sound? Part II What is Sound? Part II Timbre & Noise 1 Prayouandi (2010) - OneOhtrix Point Never PSYCHOACOUSTICS ACOUSTICS LOUDNESS AMPLITUDE PITCH FREQUENCY QUALITY TIMBRE 2 Timbre / Quality everything that is not frequency

More information

CS 188: Artificial Intelligence Spring Speech in an Hour

CS 188: Artificial Intelligence Spring Speech in an Hour CS 188: Artificial Intelligence Spring 2006 Lecture 19: Speech Recognition 3/23/2006 Dan Klein UC Berkeley Many slides from Dan Jurafsky Speech in an Hour Speech input is an acoustic wave form s p ee ch

More information

Chapter 4. Digital Audio Representation CS 3570

Chapter 4. Digital Audio Representation CS 3570 Chapter 4. Digital Audio Representation CS 3570 1 Objectives Be able to apply the Nyquist theorem to understand digital audio aliasing. Understand how dithering and noise shaping are done. Understand the

More information

Laboratory Assignment 2 Signal Sampling, Manipulation, and Playback

Laboratory Assignment 2 Signal Sampling, Manipulation, and Playback Laboratory Assignment 2 Signal Sampling, Manipulation, and Playback PURPOSE This lab will introduce you to the laboratory equipment and the software that allows you to link your computer to the hardware.

More information

Speech Synthesis using Mel-Cepstral Coefficient Feature

Speech Synthesis using Mel-Cepstral Coefficient Feature Speech Synthesis using Mel-Cepstral Coefficient Feature By Lu Wang Senior Thesis in Electrical Engineering University of Illinois at Urbana-Champaign Advisor: Professor Mark Hasegawa-Johnson May 2018 Abstract

More information

ECEn 487 Digital Signal Processing Laboratory. Lab 3 FFT-based Spectrum Analyzer

ECEn 487 Digital Signal Processing Laboratory. Lab 3 FFT-based Spectrum Analyzer ECEn 487 Digital Signal Processing Laboratory Lab 3 FFT-based Spectrum Analyzer Due Dates This is a three week lab. All TA check off must be completed by Friday, March 14, at 3 PM or the lab will be marked

More information

Chapter 2: Digitization of Sound

Chapter 2: Digitization of Sound Chapter 2: Digitization of Sound Acoustics pressure waves are converted to electrical signals by use of a microphone. The output signal from the microphone is an analog signal, i.e., a continuous-valued

More information

Project 0: Part 2 A second hands-on lab on Speech Processing Frequency-domain processing

Project 0: Part 2 A second hands-on lab on Speech Processing Frequency-domain processing Project : Part 2 A second hands-on lab on Speech Processing Frequency-domain processing February 24, 217 During this lab, you will have a first contact on frequency domain analysis of speech signals. You

More information

Chapter 2. Meeting 2, Measures and Visualizations of Sounds and Signals

Chapter 2. Meeting 2, Measures and Visualizations of Sounds and Signals Chapter 2. Meeting 2, Measures and Visualizations of Sounds and Signals 2.1. Announcements Be sure to completely read the syllabus Recording opportunities for small ensembles Due Wednesday, 15 February:

More information

Sound Synthesis Methods

Sound Synthesis Methods Sound Synthesis Methods Matti Vihola, mvihola@cs.tut.fi 23rd August 2001 1 Objectives The objective of sound synthesis is to create sounds that are Musically interesting Preferably realistic (sounds like

More information

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 4: 7 Feb A. Faulkner.

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 4: 7 Feb A. Faulkner. Perception of pitch BSc Audiology/MSc SHS Psychoacoustics wk 4: 7 Feb 2008. A. Faulkner. See Moore, BCJ Introduction to the Psychology of Hearing, Chapter 5. Or Plack CJ The Sense of Hearing Lawrence Erlbaum,

More information

Perception of pitch. Importance of pitch: 2. mother hemp horse. scold. Definitions. Why is pitch important? AUDL4007: 11 Feb A. Faulkner.

Perception of pitch. Importance of pitch: 2. mother hemp horse. scold. Definitions. Why is pitch important? AUDL4007: 11 Feb A. Faulkner. Perception of pitch AUDL4007: 11 Feb 2010. A. Faulkner. See Moore, BCJ Introduction to the Psychology of Hearing, Chapter 5. Or Plack CJ The Sense of Hearing Lawrence Erlbaum, 2005 Chapter 7 1 Definitions

More information

Equalizers. Contents: IIR or FIR for audio filtering? Shelving equalizers Peak equalizers

Equalizers. Contents: IIR or FIR for audio filtering? Shelving equalizers Peak equalizers Equalizers 1 Equalizers Sources: Zölzer. Digital audio signal processing. Wiley & Sons. Spanias,Painter,Atti. Audio signal processing and coding, Wiley Eargle, Handbook of recording engineering, Springer

More information

Lab 3 FFT based Spectrum Analyzer

Lab 3 FFT based Spectrum Analyzer ECEn 487 Digital Signal Processing Laboratory Lab 3 FFT based Spectrum Analyzer Due Dates This is a three week lab. All TA check off must be completed prior to the beginning of class on the lab book submission

More information

COMP 546, Winter 2017 lecture 20 - sound 2

COMP 546, Winter 2017 lecture 20 - sound 2 Today we will examine two types of sounds that are of great interest: music and speech. We will see how a frequency domain analysis is fundamental to both. Musical sounds Let s begin by briefly considering

More information

SPEECH AND SPECTRAL ANALYSIS

SPEECH AND SPECTRAL ANALYSIS SPEECH AND SPECTRAL ANALYSIS 1 Sound waves: production in general: acoustic interference vibration (carried by some propagation medium) variations in air pressure speech: actions of the articulatory organs

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 14 Quiz 04 Review 14/04/07 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Chapter 1: Introduction to audio signal processing

Chapter 1: Introduction to audio signal processing Chapter 1: Introduction to audio signal processing KH WONG, Rm 907, SHB, CSE Dept. CUHK, Email: khwong@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~khwong/cmsc5707 Audio signal proce ssing Ch1, v.3c 1 Reference

More information

Music Signal Processing

Music Signal Processing Tutorial Music Signal Processing Meinard Müller Saarland University and MPI Informatik meinard@mpi-inf.mpg.de Anssi Klapuri Queen Mary University of London anssi.klapuri@elec.qmul.ac.uk Overview Part I:

More information

Lab 4: Using the CODEC

Lab 4: Using the CODEC Lab 4: Using the CODEC ECE 2060 Spring, 2016 Haocheng Zhu Gregory Ochs Monday 12:40 15:40 Date of Experiment: 03/28/16 Date of Submission: 04/08/16 Abstract This lab covers the use of the CODEC that is

More information

Speech Coding using Linear Prediction

Speech Coding using Linear Prediction Speech Coding using Linear Prediction Jesper Kjær Nielsen Aalborg University and Bang & Olufsen jkn@es.aau.dk September 10, 2015 1 Background Speech is generated when air is pushed from the lungs through

More information

Overview of Digital Signal Processing

Overview of Digital Signal Processing Overview of Digital Signal Processing Chapter Intended Learning Outcomes: (i) Understand basic terminology in digital signal processing (ii) Differentiate digital signal processing and analog signal processing

More information

Digital Speech Processing and Coding

Digital Speech Processing and Coding ENEE408G Spring 2006 Lecture-2 Digital Speech Processing and Coding Spring 06 Instructor: Shihab Shamma Electrical & Computer Engineering University of Maryland, College Park http://www.ece.umd.edu/class/enee408g/

More information

Overview of Signal Processing

Overview of Signal Processing Overview of Signal Processing Chapter Intended Learning Outcomes: (i) Understand basic terminology in signal processing (ii) Differentiate digital signal processing and analog signal processing (iii) Describe

More information

Sound PSY 310 Greg Francis. Lecture 28. Other senses

Sound PSY 310 Greg Francis. Lecture 28. Other senses Sound PSY 310 Greg Francis Lecture 28 Why doesn t a clarinet sound like a flute? Other senses Most of this course has been about visual perception Most advanced science of perception Perhaps the most important

More information

Lab S-8: Spectrograms: Harmonic Lines & Chirp Aliasing

Lab S-8: Spectrograms: Harmonic Lines & Chirp Aliasing DSP First, 2e Signal Processing First Lab S-8: Spectrograms: Harmonic Lines & Chirp Aliasing Pre-Lab: Read the Pre-Lab and do all the exercises in the Pre-Lab section prior to attending lab. Verification:

More information

Continuous vs. Discrete signals. Sampling. Analog to Digital Conversion. CMPT 368: Lecture 4 Fundamentals of Digital Audio, Discrete-Time Signals

Continuous vs. Discrete signals. Sampling. Analog to Digital Conversion. CMPT 368: Lecture 4 Fundamentals of Digital Audio, Discrete-Time Signals Continuous vs. Discrete signals CMPT 368: Lecture 4 Fundamentals of Digital Audio, Discrete-Time Signals Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 22,

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #27 Tuesday, November 11, 23 6. SPECTRAL ANALYSIS AND ESTIMATION 6.1 Introduction to Spectral Analysis and Estimation The discrete-time Fourier

More information

BEAT DETECTION BY DYNAMIC PROGRAMMING. Racquel Ivy Awuor

BEAT DETECTION BY DYNAMIC PROGRAMMING. Racquel Ivy Awuor BEAT DETECTION BY DYNAMIC PROGRAMMING Racquel Ivy Awuor University of Rochester Department of Electrical and Computer Engineering Rochester, NY 14627 rawuor@ur.rochester.edu ABSTRACT A beat is a salient

More information

CONTENTS. Preface...vii. Acknowledgments...ix. Chapter 1: Behavior of Sound...1. Chapter 2: The Ear and Hearing...11

CONTENTS. Preface...vii. Acknowledgments...ix. Chapter 1: Behavior of Sound...1. Chapter 2: The Ear and Hearing...11 CONTENTS Preface...vii Acknowledgments...ix Chapter 1: Behavior of Sound...1 The Sound Wave...1 Frequency...2 Amplitude...3 Velocity...4 Wavelength...4 Acoustical Phase...4 Sound Envelope...7 Direct, Early,

More information

Multimedia Signal Processing: Theory and Applications in Speech, Music and Communications

Multimedia Signal Processing: Theory and Applications in Speech, Music and Communications Brochure More information from http://www.researchandmarkets.com/reports/569388/ Multimedia Signal Processing: Theory and Applications in Speech, Music and Communications Description: Multimedia Signal

More information

8A. ANALYSIS OF COMPLEX SOUNDS. Amplitude, loudness, and decibels

8A. ANALYSIS OF COMPLEX SOUNDS. Amplitude, loudness, and decibels 8A. ANALYSIS OF COMPLEX SOUNDS Amplitude, loudness, and decibels Last week we found that we could synthesize complex sounds with a particular frequency, f, by adding together sine waves from the harmonic

More information

Tempo and Beat Tracking

Tempo and Beat Tracking Lecture Music Processing Tempo and Beat Tracking Meinard Müller International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de Introduction Basic beat tracking task: Given an audio recording

More information

Speech Signal Analysis

Speech Signal Analysis Speech Signal Analysis Hiroshi Shimodaira and Steve Renals Automatic Speech Recognition ASR Lectures 2&3 14,18 January 216 ASR Lectures 2&3 Speech Signal Analysis 1 Overview Speech Signal Analysis for

More information

COMPUTATIONAL RHYTHM AND BEAT ANALYSIS Nicholas Berkner. University of Rochester

COMPUTATIONAL RHYTHM AND BEAT ANALYSIS Nicholas Berkner. University of Rochester COMPUTATIONAL RHYTHM AND BEAT ANALYSIS Nicholas Berkner University of Rochester ABSTRACT One of the most important applications in the field of music information processing is beat finding. Humans have

More information

Class Overview. tracking mixing mastering encoding. Figure 1: Audio Production Process

Class Overview. tracking mixing mastering encoding. Figure 1: Audio Production Process MUS424: Signal Processing Techniques for Digital Audio Effects Handout #2 Jonathan Abel, David Berners April 3, 2017 Class Overview Introduction There are typically four steps in producing a CD or movie

More information

Speech Coding in the Frequency Domain

Speech Coding in the Frequency Domain Speech Coding in the Frequency Domain Speech Processing Advanced Topics Tom Bäckström Aalto University October 215 Introduction The speech production model can be used to efficiently encode speech signals.

More information

CG401 Advanced Signal Processing. Dr Stuart Lawson Room A330 Tel: January 2003

CG401 Advanced Signal Processing. Dr Stuart Lawson Room A330 Tel: January 2003 CG40 Advanced Dr Stuart Lawson Room A330 Tel: 23780 e-mail: ssl@eng.warwick.ac.uk 03 January 2003 Lecture : Overview INTRODUCTION What is a signal? An information-bearing quantity. Examples of -D and 2-D

More information

EE 351M Digital Signal Processing

EE 351M Digital Signal Processing EE 351M Digital Signal Processing Course Details Objective Establish a background in Digital Signal Processing Theory Required Text Discrete-Time Signal Processing, Prentice Hall, 2 nd Edition Alan Oppenheim,

More information

Spring 2018 EE 445S Real-Time Digital Signal Processing Laboratory Prof. Evans. Homework #1 Sinusoids, Transforms and Transfer Functions

Spring 2018 EE 445S Real-Time Digital Signal Processing Laboratory Prof. Evans. Homework #1 Sinusoids, Transforms and Transfer Functions Spring 2018 EE 445S Real-Time Digital Signal Processing Laboratory Prof. Homework #1 Sinusoids, Transforms and Transfer Functions Assigned on Friday, February 2, 2018 Due on Friday, February 9, 2018, by

More information

Enhanced Waveform Interpolative Coding at 4 kbps

Enhanced Waveform Interpolative Coding at 4 kbps Enhanced Waveform Interpolative Coding at 4 kbps Oded Gottesman, and Allen Gersho Signal Compression Lab. University of California, Santa Barbara E-mail: [oded, gersho]@scl.ece.ucsb.edu Signal Compression

More information

Music 270a: Fundamentals of Digital Audio and Discrete-Time Signals

Music 270a: Fundamentals of Digital Audio and Discrete-Time Signals Music 270a: Fundamentals of Digital Audio and Discrete-Time Signals Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego October 3, 2016 1 Continuous vs. Discrete signals

More information

COM325 Computer Speech and Hearing

COM325 Computer Speech and Hearing COM325 Computer Speech and Hearing Part III : Theories and Models of Pitch Perception Dr. Guy Brown Room 145 Regent Court Department of Computer Science University of Sheffield Email: g.brown@dcs.shef.ac.uk

More information

Physics 101. Lecture 21 Doppler Effect Loudness Human Hearing Interference of Sound Waves Reflection & Refraction of Sound

Physics 101. Lecture 21 Doppler Effect Loudness Human Hearing Interference of Sound Waves Reflection & Refraction of Sound Physics 101 Lecture 21 Doppler Effect Loudness Human Hearing Interference of Sound Waves Reflection & Refraction of Sound Quiz: Monday Oct. 18; Chaps. 16,17,18(as covered in class),19 CR/NC Deadline Oct.

More information

FIR/Convolution. Visulalizing the convolution sum. Convolution

FIR/Convolution. Visulalizing the convolution sum. Convolution FIR/Convolution CMPT 368: Lecture Delay Effects Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University April 2, 27 Since the feedforward coefficient s of the FIR filter are

More information

Musical Acoustics, C. Bertulani. Musical Acoustics. Lecture 14 Timbre / Tone quality II

Musical Acoustics, C. Bertulani. Musical Acoustics. Lecture 14 Timbre / Tone quality II 1 Musical Acoustics Lecture 14 Timbre / Tone quality II Odd vs Even Harmonics and Symmetry Sines are Anti-symmetric about mid-point If you mirror around the middle you get the same shape but upside down

More information

Mel- frequency cepstral coefficients (MFCCs) and gammatone filter banks

Mel- frequency cepstral coefficients (MFCCs) and gammatone filter banks SGN- 14006 Audio and Speech Processing Pasi PerQlä SGN- 14006 2015 Mel- frequency cepstral coefficients (MFCCs) and gammatone filter banks Slides for this lecture are based on those created by Katariina

More information

Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2

Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2 Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2 The Fourier transform of single pulse is the sinc function. EE 442 Signal Preliminaries 1 Communication Systems and

More information

ADDITIVE SYNTHESIS BASED ON THE CONTINUOUS WAVELET TRANSFORM: A SINUSOIDAL PLUS TRANSIENT MODEL

ADDITIVE SYNTHESIS BASED ON THE CONTINUOUS WAVELET TRANSFORM: A SINUSOIDAL PLUS TRANSIENT MODEL ADDITIVE SYNTHESIS BASED ON THE CONTINUOUS WAVELET TRANSFORM: A SINUSOIDAL PLUS TRANSIENT MODEL José R. Beltrán and Fernando Beltrán Department of Electronic Engineering and Communications University of

More information

ECE Digital Signal Processing

ECE Digital Signal Processing University of Louisville Instructor:Professor Aly A. Farag Department of Electrical and Computer Engineering Spring 2006 ECE 520 - Digital Signal Processing Catalog Data: Office hours: Objectives: ECE

More information

AUDL Final exam page 1/7 Please answer all of the following questions.

AUDL Final exam page 1/7 Please answer all of the following questions. AUDL 11 28 Final exam page 1/7 Please answer all of the following questions. 1) Consider 8 harmonics of a sawtooth wave which has a fundamental period of 1 ms and a fundamental component with a level of

More information

The psychoacoustics of reverberation

The psychoacoustics of reverberation The psychoacoustics of reverberation Steven van de Par Steven.van.de.Par@uni-oldenburg.de July 19, 2016 Thanks to Julian Grosse and Andreas Häußler 2016 AES International Conference on Sound Field Control

More information

Signals & Systems for Speech & Hearing. Week 6. Practical spectral analysis. Bandpass filters & filterbanks. Try this out on an old friend

Signals & Systems for Speech & Hearing. Week 6. Practical spectral analysis. Bandpass filters & filterbanks. Try this out on an old friend Signals & Systems for Speech & Hearing Week 6 Bandpass filters & filterbanks Practical spectral analysis Most analogue signals of interest are not easily mathematically specified so applying a Fourier

More information

Data Communications & Computer Networks

Data Communications & Computer Networks Data Communications & Computer Networks Chapter 3 Data Transmission Fall 2008 Agenda Terminology and basic concepts Analog and Digital Data Transmission Transmission impairments Channel capacity Home Exercises

More information

ALTERNATING CURRENT (AC)

ALTERNATING CURRENT (AC) ALL ABOUT NOISE ALTERNATING CURRENT (AC) Any type of electrical transmission where the current repeatedly changes direction, and the voltage varies between maxima and minima. Therefore, any electrical

More information

Rhythm Analysis in Music

Rhythm Analysis in Music Rhythm Analysis in Music EECS 352: Machine Perception of Music & Audio Zafar Rafii, Winter 24 Some Definitions Rhythm movement marked by the regulated succession of strong and weak elements, or of opposite

More information

MMSE STSA Based Techniques for Single channel Speech Enhancement Application Simit Shah 1, Roma Patel 2

MMSE STSA Based Techniques for Single channel Speech Enhancement Application Simit Shah 1, Roma Patel 2 MMSE STSA Based Techniques for Single channel Speech Enhancement Application Simit Shah 1, Roma Patel 2 1 Electronics and Communication Department, Parul institute of engineering and technology, Vadodara,

More information

Practical Limitations of Wideband Terminals

Practical Limitations of Wideband Terminals Practical Limitations of Wideband Terminals Dr.-Ing. Carsten Sydow Siemens AG ICM CP RD VD1 Grillparzerstr. 12a 8167 Munich, Germany E-Mail: sydow@siemens.com Workshop on Wideband Speech Quality in Terminals

More information

VIBRATO DETECTING ALGORITHM IN REAL TIME. Minhao Zhang, Xinzhao Liu. University of Rochester Department of Electrical and Computer Engineering

VIBRATO DETECTING ALGORITHM IN REAL TIME. Minhao Zhang, Xinzhao Liu. University of Rochester Department of Electrical and Computer Engineering VIBRATO DETECTING ALGORITHM IN REAL TIME Minhao Zhang, Xinzhao Liu University of Rochester Department of Electrical and Computer Engineering ABSTRACT Vibrato is a fundamental expressive attribute in music,

More information

Rhythm Analysis in Music

Rhythm Analysis in Music Rhythm Analysis in Music EECS 352: Machine Perception of Music & Audio Zafar RAFII, Spring 22 Some Definitions Rhythm movement marked by the regulated succession of strong and weak elements, or of opposite

More information

Single Channel Speaker Segregation using Sinusoidal Residual Modeling

Single Channel Speaker Segregation using Sinusoidal Residual Modeling NCC 2009, January 16-18, IIT Guwahati 294 Single Channel Speaker Segregation using Sinusoidal Residual Modeling Rajesh M Hegde and A. Srinivas Dept. of Electrical Engineering Indian Institute of Technology

More information

Sound/Audio. Slides courtesy of Tay Vaughan Making Multimedia Work

Sound/Audio. Slides courtesy of Tay Vaughan Making Multimedia Work Sound/Audio Slides courtesy of Tay Vaughan Making Multimedia Work How computers process sound How computers synthesize sound The differences between the two major kinds of audio, namely digitised sound

More information

Terminology (1) Chapter 3. Terminology (3) Terminology (2) Transmitter Receiver Medium. Data Transmission. Direct link. Point-to-point.

Terminology (1) Chapter 3. Terminology (3) Terminology (2) Transmitter Receiver Medium. Data Transmission. Direct link. Point-to-point. Terminology (1) Chapter 3 Data Transmission Transmitter Receiver Medium Guided medium e.g. twisted pair, optical fiber Unguided medium e.g. air, water, vacuum Spring 2012 03-1 Spring 2012 03-2 Terminology

More information

Speech Enhancement: Reduction of Additive Noise in the Digital Processing of Speech

Speech Enhancement: Reduction of Additive Noise in the Digital Processing of Speech Speech Enhancement: Reduction of Additive Noise in the Digital Processing of Speech Project Proposal Avner Halevy Department of Mathematics University of Maryland, College Park ahalevy at math.umd.edu

More information