JRA1 T2, Photonic Services What has been done

Size: px
Start display at page:

Download "JRA1 T2, Photonic Services What has been done"

Transcription

1 JRA1 T2, Photonic Services What has been done SKALAT MAÐR RÚNAR RÍSTA NEMA RÁÐA VEL KUNNI. Joint JRA1 T1 & T2 workshop København, Denmark 2012, November Jan Radil, Josef Vojtěch, Pavel Škoda, Stanislav Šíma CESNET

2 Outline 1. Laboratory and Field Tests of Alcatel-Lucent100G Solution (Based on results DJ1.2.2) 2. Power Consumption (Based on results DJ1.2.2) (SA1, not JRA1) based on my NA4 T1 presentation from Jerusalem 4. NEAT-FT 5. PMD emulator for 10G (100G future) 6. PSs optical reach - in progress 7. New PSs subtasks

3 1. Laboratory and Field Tests of Alcatel-Lucent 100G Solution First verification of 100G coherent technology in CESNET Testing: lab, EF, CESNET2 ALU1830PSS together with Cisco MSTP and CzechLight Effects of filtration, non linearities 600km of different fibres in lab, 1063km in CESNET2 error free operation 100G coherent working with different fibres (G.652/G.655+/G.655-) and with DCFs and FBGs and with 10G NRZ wavelengths Works over single fibre bidirectional transmission too

4 2. Power Consumption,Green networking Analysis of power consumption (access, edges, core) Consumption Indicator Estimations to compare different equipment Comparison of CL, Ciena May be useful for future decisions

5 New types of applications with new requirements Not only fat 10/40/100G pipes but minimal/constant delays, jitter best effort principle not acceptable End-to-end connection between two or more places in network (OOO, OEO in special cases) - AWs Advantages (transparency, latency) and Challenges (reach, interoperability, ITU Black Link) Time/frequency tranfer (NEAT-FT) Real time apps (collaboration, C2C, remote control) Already tested/deployed, comparison of atomic clocks (CZ/AU), ultrastable frequency (FR, DE)

6 Photonic Service End-to-end connection between two or more places in network Described by Photonic-path and allocated bandwidth Photonic-path is a physical route that light travels from the one end point to the other or to multiple other end points respectively Allocated bandwidth is a part of system spectrum that is reserved for user of Photonic Service all along the Photonic-path. Minimal impact of network (no processing) on transmitted data Path is all-optical, no OEO except special cases.

7 Photonics vs Optics The word 'optics 'comes from the ancient Greek word ὀπτική, meaning appearance or look. Rather old word, a book by certain I.Newton called Opticks, 1704 The word 'photonics' is derived from the Greek word 'photos' meaning light Phos Φῶς (genitive: photos Φῶτῶς) means light appeared in the late 1960s to describe a new research field (invention of laser, laser diode, fibre etc).

8 Photonics vs Optics Photonics a new hot word

9 Advantages Transparency to modulation formats Low transmission latency as the shortest photonic path is formed Constant latency (i.e. negligible jitter), because non or only specially tailored electrical processing is present Stable service availability (due allocated bandwidth) with some exception for protection switching Future-proof design thanks to grid-less bandwidth allocation

10 Disadvantages Service reach in general is limited due to missing universal all-optical regeneration, but it can be extended by specialized OOO and/or OEO regenerators suitable just for limited number of applications. Potential waste of bandwidth. All-optical nodes should be grid-less and direction-less. In multi-domain scenario - absence of global management and operation system or communication between separate management systems. Multi-vendor network interoperability with AWs, although first tests were already successful, e.g. concurrent 100G and accurate time transmission and ITU-T also has produced recommendation G Black link.

11 Interactive human collaboration Latency jitter limit: ms (adaptive play-out delay buffer) End-to-end latency: ms Penalty: mild (user disappointment). Climate Refugee Opera?:-) What is minimum latency, considerable bandwidth and reliability? Always isuues... High definition video and Cave-to-cave Latency jitter limit: 20 ms (buffer dependent) End-to-end latency: 150 ms Penalty: mild (user disappointment).

12 Remote instrument control Latency jitter limit: 20 ms End-to-end latency: 100 ms Penalty: depends on application (can be severe in case of telesurgery) Remote control of vehicles Latency jitter limit: 50 ms End-to-end latency: TBD Penalty: not acceptable (vehicle crash).

13 Comparison of atomic clocks (time transfer) Latency jitter limit: 50 ps (short time, typ. over 1000 s) and 1 ns (long time fluctuation, typ. over days) End-to-end latency: should be minimized to the optical signal propagation delay Penalty: mild (experiment failure) - principal (service impossible) Ultra-stable frequency transfer Latency jitter limit*: NA End-to-end latency: should be minimized to the optical signal propagation delay Penalty: mild (experiment failure) - principal (service impossible) *The term jitter is not appropriate here. The phenomenon is rather expressed as a stability that should correspond to the stability of primary frequency standard, e.g in ultimate case of optical clocks.

14 Comparison of atomic clock scales on live network : CESNET (CZ) + ACONET (AT) Transmission of time marks (pulses modulated on optical carrier) Started by loop tests and GPS assisted transmission over standard DWDM systems, in 2010 Comparison of time scales between Czech and Austrian national time and frequency laboratories in Praha and Wien (IPE-BEV) over operational DWDM since Aug RUNNING

15 Comparison of atomic clock scales cont. Photonic path dedicated lambda over operational DWDM network: Mixture of fibre types (G.652/655) Mixture of transmission systems Cisco/Open DWDM Czechlight Mixture of CD compensation types (DCF, FBG) One way distance 550km, including 220km Noting-In-Line, total attenuation 137 db

16 Ultra-stable frequency transfers on live network: RENATER (FR) Transmission of ultra-stable CW optical frequency itself (in region 1550nm) Needs same path for both directions noise correction and propagation delay fluctuation compensation Datacom bidirectional devices must be bypassed (e.g. EDFAs) Source: G. Santarelli at al Transmitting ultra-stable optical signals over public telecommunication networks

17 Ultra-stable frequency transfers on live network: RENATER + LNE- SYRTE (Système de Référence Temps Espace) + LPL (Laboratoire de Physique des Lasers) km DF loop test only LPL-Nogent l Artaud-LPL 300km loop (228km over DWDM system), 100dB attenuation, 4 bidirectional EDFAs LPL-Condé/Reims-LPL 470km loop (398km over DWDM system), 136dB attenuation, 5 bidirectional EDFAs 540km loop (470km over DWDM system), 6 bidirectional EDFAs

18 LPL-Nancy-LPL 1100km with one regenerator station LPL-Strasbourg-LPL1476km with three regenerator stations RENATER: REFIMEVE+ Project: RENATER, LNE-SYRTE and LPL laboratories applied for REFIMEVE for building of national infrastructure on RENATER fiber, able to disseminate ultrastable frequency Planned start in 2012 Interconnections on cross-border fibers would also be studied

19 Ultra-stable frequency transfers: MPQ-PTB germany Max-Planck-Institut für Quantenoptik (MPQ) in Garching and Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, 2009 dedicated fibre146km Dedicated fibre, 920km, 200 db attenuation, bidirectional transmission and active stabilization 9x low noise bidirectional EDFA and Fibre Brillouin amplification with distributed gain Achieved stability 5 10e 15 in a 1-second integration time, reaching 10e 18 in less than 1000 seconds. Ref: A. Predehl at al A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19 th Decimal Place, Science 2012

20 bidirectional EDFA and Fibre Brillouin amplification not very common equipment Picture taken from: A theoretical analysis of amplification characteristics of bi-directional erbium-doped fiber amplifiers with single erbium-doped fiber Qinghe Mao, Jingsong Wang, Xiaohan Sun, Mingde Zhang Optics Communications

21 Real-world implementation of Photonic Services optical tunnel going through different networks, equipment (ROADMs), CBFs,... Examples from AT, DE, CZ, FR mentioned it is possible PSs in GEANT, GLIF, NRENs, MANs, LANs,.

22 It is possible, depending on applications of course. All-optical regenerators not available so accurate frequency will be difficult (accurate time OK, real-time OK). But accurate time should be doable (special OEO conversion is not critical). Transatlantic links are all-optical (no OEO), or at least some of them (2005?). All-optical reach up to Photonic applications (time/frequency/remote control) are not usually high speed (no 10G or even 40/100G) so transmission over long distances is not so critical (no problems with dispersions etc). One part of spectra for 10/40/100G and one part for Photonic services/applications. C/L band, Trial now in CESNET (L-EDFAs, L-transceivers splitters, etc.) C/C band for majority players, only C-EDFAs C/C band dense grid 100/50/25GHz

23 4. NEAT-FT The new EU NEAT-FT (FP7 JRP-s11) realized under EMRP (European Metrology Research Programme): Accurate time/frequency comparison and dissemination through optical telecommunication networks fundamental limitations of optical fiber links to the attainable instability and accuracy of optical reference frequencies and timing signals satellite transfer techniques developed over the last 40 years do not reach the performance required for modern clocks optical links will become the standard transmission tool for time & frequency comparisons and mandatory for a redefinition of the SI-Second demonstration of frequency transfer with 17 digits accuracy 10 partners, lead by PTB, DE Implementation on global scale? All-optical/AWs solutions not blocked by equipment.

24 4. NEAT-FT First introductory meeting in Praha (with DANTE, NRENs) And more details available on CEF2012 workshop Few NEAT-FT participants with interesting results NEAT-FT is about time/frequency only but: this si important for telco applications, power networks (electricity), aviation, navigation, financial transactions, astrophysics and other science disciplines, redefinition of SI units (second everywhere), homeland security, military (GN3 NA4 meeting, Jeruzalem, Sep2012),... Interesting reading: Tom O Brian, NIST: Time, Timekeeping and Time Distribution

25 4. NEAT-FT

26 5. PMD emulator for 10G (100G future) Emulation of PMD Done for 10G Prepared for 40G (noncoherent) and 100G coherent Important for PSs too

27 6. PSs all optical reach - in progress Photonic Service all optical end to end connection All optical reach of Photonic Services is important But PSs may differ significantly from standard Ethernet/OTN services Estimation based on OSNR OSNR is the critical factor, PSs are usually low speed and CD/PMD is less critical but CD/PMD must be considered too Other theoretical AND practical verifications of influence of PSs on 1/10/100G production traffic ie mix of PSs, Ethernet, OTN in one fibre

28 7. A new subtask within JRA1 T2 JRA1 T2 subtask E2E photonic services between user premises Start 1/Apr/12, duration 12 months Objectives provide feasibility and demonstration study of e2e photonic services between user premises strengthen research collaboration with vendors experienced in photonic service deployment evaluate feedback from GN3 NRENs concerning innovative transmission services evaluate feedback from research projects interested in photonic services demonstrate e2e photonic services between user premises if feasible in Y4

29 7. A new subtask within JRA1 T2 PSs feasibility provided international connection AT-CZ for atomic clocks comparison This is a demonstration study which can be used for other users Other CZ institutions connected with DFs and PSs available (CEF2012) DE and FR have their own experience (CEF2012) Some vendors contacted and background for PSs discussed Not always easy because nature and background of PSs are not seen as standard, sometimes confusions exist There are some new network designs possible with new coherent equipment, some arguing just false, especially with so called DCM-free designs which may block PSs and other services NRENs contacted and their feedback evaluated Many of them expressed interests in PSs, more details required Feedback from research projects big candidate NEAT-FT Older fibre links from GN3 could be used for PSs, details now available and will be processed

30 7. A new subtask within NA4 T1 JRA1 T2 subtask E2E photonic services between user premises There is another PSs-related subtask, NA4 T1 (dissemination) Photonic services enable advance in research Objectives promote photonic services as a future trend of innovative networking in Europe and beyond support usage of photonic services in advanced research disciplines dissemination of JRA1 T2 results promote effective lighting of acquired dark fibres (also in less developed regions) strengthen liaison with world-wide partners in innovative networking 9 international presentations accepted including US, Japan, Brazil... So hopefully we are going in the right direction!

31 Q&A Thank you for your kind attention! Thanks to other colleagues from different projects.

Time & Frequency Transfer

Time & Frequency Transfer Cold Atoms and Molecules & Applications in Metrology 16-21 March 2015, Carthage, Tunisia Time & Frequency Transfer Noël Dimarcq SYRTE Systèmes de Référence Temps-Espace, Paris Thanks to Anne Amy-Klein

More information

Dark fibre networks and how to light them

Dark fibre networks and how to light them www.ces.net czechlight.cesnet.cz Jan Radil, Josef Vojtěch, Miroslav Karásek, Stanislav Šíma Outline Motivations and introduction Optical amplifiers (EDFA, PDFA, Raman, SOA) Deployment of OAs and other

More information

Analyses of 100 Gbps Coherent System Performances

Analyses of 100 Gbps Coherent System Performances 632 P. ŠKODA, J.RADIL, J.VOJTĚCH, M.HŮLA, ANALYSES OF 100 GBPS COHERENT SYSTEM PERFORMANCES Analyses of 100 Gbps Coherent System Performances Pavel ŠKODA 1,2, Jan RADIL 2, Josef VOJTĚCH 2, Miloslav HŮLA

More information

TITLE: 100G COHERENT SYSTEM INTEROPERABILITY

TITLE: 100G COHERENT SYSTEM INTEROPERABILITY TITLE: 100G COHERENT SYSTEM INTEROPERABILITY Pavel Škoda CESNET z.s.p.o. Zikova 4, Praha, Czech Republic Czech Technical University, Technická, Praha, Czech Republic e-mail: pavel.skoda@cesnet.cz Jan Radil

More information

OPTICAL LINK TIME TRANSFER BETWEEN IPE AND BEV

OPTICAL LINK TIME TRANSFER BETWEEN IPE AND BEV OPTICAL LINK TIME TRANSFER BETWEEN IPE AND BEV Vladimír Smotlacha CESNET, z.s.p.o Zikova 4, Prague 6, 160 00, The Czech Republic vs@cesnet.cz Alexander Kuna Institute of Photonics and Electronics AS CR,

More information

TIME TRANSFER IN OPTICAL NETWORK

TIME TRANSFER IN OPTICAL NETWORK TIME TRANSFER IN OPTICAL NETWORK Vladimir Smotlacha CESNET, z.s.p.o Zikova 4, Prague 6, 160 00, The Czech Republic E-mail: vs@cesnet.cz Alexender Kuna Institute of Photonics and Electronics, AS CR, v.v.i.

More information

Precise time transfer on the IPE VUGKT line a detailed analysis

Precise time transfer on the IPE VUGKT line a detailed analysis a detailed analysis Josef Vojtěch,, Pavel Škoda, Vladimír Smotlacha, Radek Velc, Petr Münster, Jan Kundrát, Ondřej Havliš, Lada Altmannová and Michal Altmann Department of Optical networks, CESNET z.s.p.o.,

More information

Experiments on optical layer and breakable research networks

Experiments on optical layer and breakable research networks Experiments on optical layer and breakable research networks www.cesnet.cz Jan Radil Amsterdam, Netherlands 1 Outline Motivations for our experiments Numerical simulations Practical results CzechLight

More information

Qualifying Fiber for 10G Deployment

Qualifying Fiber for 10G Deployment Qualifying Fiber for 10G Deployment Presented by: Bob Chomycz, P.Eng. Email: BChomycz@TelecomEngineering.com Tel: 1.888.250.1562 www.telecomengineering.com 2017, Slide 1 of 25 Telecom Engineering Introduction

More information

Optical Transport Tutorial

Optical Transport Tutorial Optical Transport Tutorial 4 February 2015 2015 OpticalCloudInfra Proprietary 1 Content Optical Transport Basics Assessment of Optical Communication Quality Bit Error Rate and Q Factor Wavelength Division

More information

WDM. Coarse WDM. Nortel's WDM System

WDM. Coarse WDM. Nortel's WDM System WDM wavelength-division multiplexing (WDM) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths (i.e. colors) of laser light.

More information

Development of advanced photonic services of e-infrastructure CESNET

Development of advanced photonic services of e-infrastructure CESNET Development of advanced photonic services of e-infrastructure CESNET Josef Vojtěch Lada Altmannová, Michal Altmann, Ondřej Havliš, Michal Hažlinský, Tomáš Horváth, Jan Kundrát, Martin Míchal, Jan Nejman,

More information

OFC SYSTEMS Performance & Simulations. BC Choudhary NITTTR, Sector 26, Chandigarh

OFC SYSTEMS Performance & Simulations. BC Choudhary NITTTR, Sector 26, Chandigarh OFC SYSTEMS Performance & Simulations BC Choudhary NITTTR, Sector 26, Chandigarh High Capacity DWDM OFC Link Capacity of carrying enormous rates of information in THz 1.1 Tb/s over 150 km ; 55 wavelengths

More information

Optical Networks emerging technologies and architectures

Optical Networks emerging technologies and architectures Optical Networks emerging technologies and architectures Faculty of Computer Science, Electronics and Telecommunications Department of Telecommunications Artur Lasoń 100 Gb/s PM-QPSK (DP-QPSK) module Hot

More information

Methods for data, time and ultrastable frequency transfer through long-haul fiber-optic links

Methods for data, time and ultrastable frequency transfer through long-haul fiber-optic links Methods for data, time and ultrastable frequency transfer through long-haul fiber-optic links Jeroen Koelemeij, Tjeerd Pinkert, Chantal van Tour (VU Amsterdam, NL) Erik Dierikx (VSL Delft, NL) Henk Peek,

More information

40Gb/s Coherent DP-PSK for Submarine Applications

40Gb/s Coherent DP-PSK for Submarine Applications 4Gb/s Coherent DP-PSK for Submarine Applications Jamie Gaudette, Elizabeth Rivera Hartling, Mark Hinds, John Sitch, Robert Hadaway Email: Nortel, 3 Carling Ave., Ottawa, ON, Canada

More information

Practical Aspects of Raman Amplifier

Practical Aspects of Raman Amplifier Practical Aspects of Raman Amplifier Contents Introduction Background Information Common Types of Raman Amplifiers Principle Theory of Raman Gain Noise Sources Related Information Introduction This document

More information

VePAL UX400 Universal Test Platform

VePAL UX400 Universal Test Platform CWDM and DWDM Testing VePAL UX400 Universal Test Platform Optical Spectrum/Channel Analyzer for CWDM and DWDM Networks Using superior micro-optic design and MEMS tuning technology, the UX400 OSA module

More information

White Rabbit to disseminate time on an active telecom network?

White Rabbit to disseminate time on an active telecom network? White Rabbit to disseminate time on an active telecom network? Namneet Kaur, Florian Frank, Philip Tuckey and Paul-Eric Pottie some slides contents data thanks to courtesy of Anders Wallin & Mikko Merimaa

More information

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER Progress In Electromagnetics Research Letters, Vol. 9, 9 18, 29 CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER H. Ahmad, M. Z. Zulkifli, S. F. Norizan,

More information

Emerging Subsea Networks

Emerging Subsea Networks Upgrading on the Longest Legacy Repeatered System with 100G DC-PDM- BPSK Jianping Li, Jiang Lin, Yanpu Wang (Huawei Marine Networks Co. Ltd) Email: Huawei Building, No.3 Shangdi

More information

SKA Activity Report. Domingos Barbosa Cláudia Camacho* Rogério Nogueira. Aveiro, 16 th of June, 2011

SKA Activity Report. Domingos Barbosa Cláudia Camacho* Rogério Nogueira. Aveiro, 16 th of June, 2011 Aveiro, 16 th of June, 2011 SKA Activity Report Domingos Barbosa Cláudia Camacho* Rogério Nogueira 2005, it - instituto de telecomunicações. Todos os direitos reservados. Signal Transport for SKA : from

More information

Optical DWDM Networks

Optical DWDM Networks Optical DWDM Networks ain The Oh Columbus, OH 43210 Jain@CIS.Ohio-State.Edu These slides are available at http://www.cis.ohio-state.edu/~jain/cis788-99/ 1 Overview Sparse and Dense WDM Recent WDM Records

More information

Optical Transport Technologies and Trends

Optical Transport Technologies and Trends Optical Transport Technologies and Trends A Network Planning Perspective Sept 1, 2014 Dion Leung, Director of Solutions and Sales Engineering dleung@btisystem.com About BTI Customers 380+ worldwide in

More information

Advanced Fibre Testing: Paving the Way for High-Speed Networks. Trevor Nord Application Specialist JDSU (UK) Ltd

Advanced Fibre Testing: Paving the Way for High-Speed Networks. Trevor Nord Application Specialist JDSU (UK) Ltd Advanced Fibre Testing: Paving the Way for High-Speed Networks Trevor Nord Application Specialist JDSU (UK) Ltd Fibre Review Singlemode Optical Fibre Elements of Loss Fibre Attenuation - Caused by scattering

More information

Multi-format all-optical-3r-regeneration technology

Multi-format all-optical-3r-regeneration technology Multi-format all-optical-3r-regeneration technology Masatoshi Kagawa Hitoshi Murai Amount of information flowing through the Internet is growing by about 40% per year. In Japan, the monthly average has

More information

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm Khaled O. Basulaim, Samah Ali Al-Azani Dept. of Information Technology Faculty of Engineering,

More information

EDFA Applications in Test & Measurement

EDFA Applications in Test & Measurement EDFA Applications in Test & Measurement White Paper PN 200-0600-00 Revision 1.1 September 2003 Calmar Optcom, Inc www.calamropt.com Overview Erbium doped fiber amplifiers (EDFAs) amplify optical pulses

More information

Thursday, April 17, 2008, 6:28:40

Thursday, April 17, 2008, 6:28:40 Wavelength Division Multiplexing By: Gurudatha Pai K gurudatha@gmail.com Thursday, April 17, 2008, 6:28:40 Overview Introduction Popular Multiplexing Techniques Optical Networking WDM An Analogy of Multiplexing

More information

Optical Time Transfer (OTT): PoC Results and Next Steps

Optical Time Transfer (OTT): PoC Results and Next Steps AGH University of Science and Technology Department of Electronics, Krakow, Poland Physikalisch-Technische Bundesanstalt (PTB) Braunschweig, Germany Deutsche Telekom Technik GmbH Bremen, Germany Deutsche

More information

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender Journal of the Optical Society of Korea Vol. 15, No. 3, September 2011, pp. 222-226 DOI: http://dx.doi.org/10.3807/josk.2011.15.3.222 An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources

More information

Exam : : Cisco Optical SONET Exam. Title. Ver :

Exam : : Cisco Optical SONET Exam. Title. Ver : Exam : 642-311 Title : Cisco Optical SONET Exam Ver : 10.05.07 QUESTION 1: The exhibit shows a 15454/15216 DWDM system and alarm indications. What are two possible sources of trouble shown in the system?

More information

Open Call Deliverable OCL-DS3.2 Final Report (ICOF)

Open Call Deliverable OCL-DS3.2 Final Report (ICOF) 16-02-2013 Open Call Deliverable OCL-DS3.2 Final Report (ICOF) Open Call Deliverable OCL-DS3.2 Grant Agreement No.: 605243 Activity: NA1 Task Item: 10 Nature of Deliverable: R (Report) Dissemination Level:

More information

Dr. Monir Hossen ECE, KUET

Dr. Monir Hossen ECE, KUET Dr. Monir Hossen ECE, KUET 1 Outlines of the Class Principles of WDM DWDM, CWDM, Bidirectional WDM Components of WDM AWG, filter Problems with WDM Four-wave mixing Stimulated Brillouin scattering WDM Network

More information

Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping

Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping Albert Töws and Alfred Kurtz Cologne University of Applied Sciences Steinmüllerallee 1, 51643 Gummersbach, Germany

More information

Development of Photonic Layer and its Services in CESNET2 network

Development of Photonic Layer and its Services in CESNET2 network Development of Photonic Layer and its Services in CESNET2 network Josef Vojtěch Optical Networks Department, CESNET a.l.e. Dedication Dr. Stanislav Šíma (*1944-2015) Author and promoter of many concepts

More information

Determination of ideal Fibre Bragg Grating (FBG) length for Optical Transmission System

Determination of ideal Fibre Bragg Grating (FBG) length for Optical Transmission System Determination of ideal Fibre Bragg Grating (FBG) length for Optical Transmission System Aastha Singhal SENSE school, VIT University Vellore, India Akanksha Singh SENSE school, VIT University Vellore, India

More information

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian m.karbassian@arizona.edu Contents Optical Communications: Review Optical Communications and Photonics Why Photonics?

More information

40Gb/s alien-wavelength experiment over 1000km TWRS fiber between Amsterdam and Copenhagen

40Gb/s alien-wavelength experiment over 1000km TWRS fiber between Amsterdam and Copenhagen 40Gb/s alien-wavelength experiment over 000km TR fiber between Amsterdam and Copenhagen Roeland Nuijts, URFnet, roeland.nuijts@surfnet.nl Lars Lange Bjørn, NORDUnet, longbear@nordu.net Terena Networking

More information

Transient Control in Dynamically Reconfigured Networks with Cascaded Erbium Doped Fiber Amplifiers

Transient Control in Dynamically Reconfigured Networks with Cascaded Erbium Doped Fiber Amplifiers Transient Control in Dynamically Reconfigured Networks with Cascaded Erbium Doped Fiber Amplifiers Lei Zong, Ting Wang lanezong@nec-labs.com NEC Laboratories America, Princeton, New Jersey, USA WOCC 2007

More information

CWDM Cisco CWDM wavelengths (nm)

CWDM Cisco CWDM wavelengths (nm) Cisco Enhanced Wavelength Division Multiplexing Product Line The Cisco enhanced wavelength-division multiplexing (EWDM) product line allows users to scale the speed and capacity of the services offered

More information

RXT-1200 Modular Test Platform

RXT-1200 Modular Test Platform CWDM and DWDM Testing RXT-1200 Modular Test Platform Optical Spectrum/Channel Analyzer for CWDM and DWDM Networks Using superior micro-optic design and MEMS tuning technology, the RXT-4500 OSA module measures

More information

Computer Networks

Computer Networks 15-441 Computer Networks Physical Layer Professor Hui Zhang hzhang@cs.cmu.edu 1 Communication & Physical Medium There were communications before computers There were communication networks before computer

More information

Good Things Come in Small Cubes. Cube Optics 100G Metro Evolution TREX14 01/06/14

Good Things Come in Small Cubes. Cube Optics 100G Metro Evolution TREX14 01/06/14 Good Things Come in Small Cubes Cube Optics 100G Metro Evolution TREX14 01/06/14 VO0030_5.0 01.06.2014 Page 2 Before we start talking about 100Gig Lets go back to basics and understand what we mean by

More information

Pass Cisco Exam

Pass Cisco Exam Pass Cisco 642-321 Exam Number: 642-321 Passing Score: 800 Time Limit: 120 min File Version: 38.8 http://www.gratisexam.com/ Pass Cisco 642-321 Exam Exam Name : Cisco Optical SDH Exam (SDH) Braindumps

More information

30 Gbaud Opto-Electronics and Raman Technologies for New Subsea Optical Communications

30 Gbaud Opto-Electronics and Raman Technologies for New Subsea Optical Communications 30 Gbaud Opto-Electronics and Raman Technologies for New Subsea Optical Communications 30 Gbaud opto-electronics and Raman technologies have quickly become the new standards for terrestrial backbone networks.

More information

Photonics and Optical Communication Spring 2005

Photonics and Optical Communication Spring 2005 Photonics and Optical Communication Spring 2005 Final Exam Instructor: Dr. Dietmar Knipp, Assistant Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Final Exam: 2 hour You

More information

Spectral-Efficient 100G Parallel PHY in Metro/regional Networks

Spectral-Efficient 100G Parallel PHY in Metro/regional Networks Spectral-Efficient 100G Parallel PHY in Metro/regional Networks IEEE 802.3 HSSG January 2007 Winston I. Way wway@opvista.com OUTLINE Why spectral efficient DWDM for 100G? DWDM spectral efficiency advancement

More information

DWDM Link with Multiple Backward Pumped Raman Amplification

DWDM Link with Multiple Backward Pumped Raman Amplification International Journal of Computational Engineering Research Vol, 03 Issue, 11 DWDM Link with Multiple Backward Pumped Raman Amplification Awab Fakih 1, Santosh Jagtap 2, Shraddha Panbude 3 1,2,3 Vidyalankar

More information

Optical Measurements in 100 and 400 Gb/s Networks: Will Coherent Receivers Take Over? Fred Heismann

Optical Measurements in 100 and 400 Gb/s Networks: Will Coherent Receivers Take Over? Fred Heismann Optical Measurements in 100 and 400 Gb/s Networks: Will Coherent Receivers Take Over? Fred Heismann Chief Scientist Fiberoptic Test & Measurement Key Trends in DWDM and Impact on Test & Measurement Complex

More information

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian m.karbassian@arizona.edu Contents Optical Communications: Review Optical Communications and Photonics Why Photonics?

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 26

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 26 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 26 Wavelength Division Multiplexed (WDM) Systems Fiber Optics, Prof. R.K. Shevgaonkar,

More information

ADVANCED OPTICAL FIBER FOR LONG DISTANCE TELECOMMUNICATION NETWORKS

ADVANCED OPTICAL FIBER FOR LONG DISTANCE TELECOMMUNICATION NETWORKS Presented at AMTC 2000 ADVANCED OPTICAL FIBER FOR LONG DISTANCE TELECOMMUNICATION NETWORKS Christopher Towery North American Market Development Manager towerycr@corning.com & E. Alan Dowdell European Market

More information

Model 6944 and 6940 Node bdr Digital Reverse 4:1 Multiplexing System designed for Prisma II Platform

Model 6944 and 6940 Node bdr Digital Reverse 4:1 Multiplexing System designed for Prisma II Platform Optoelectronics Model 6944 and 6940 Node bdr Digital Reverse 4:1 Multiplexing System designed for Prisma II Platform Description The bdr Digital Reverse 4:1 Multiplexing System expands the functionality

More information

Wavelength Multiplexing. The Target

Wavelength Multiplexing. The Target The Target Design a MAN* like fiber network for high data transmission rates. The network is partial below sea level and difficult to install and to maintain. Such a fiber network demands an optimized

More information

Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks

Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks 363 Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks CHAOUI Fahd 3, HAJAJI Anas 1, AGHZOUT Otman 2,4, CHAKKOUR Mounia 3, EL YAKHLOUFI Mounir

More information

Emerging Subsea Networks

Emerging Subsea Networks Transoceanic Transmission over 11,450km of Installed 10G System by Using Commercial 100G Dual-Carrier PDM-BPSK Ling Zhao, Hao Liu, Jiping Wen, Jiang Lin, Yanpu Wang, Xiaoyan Fan, Jing Ning Email: zhaoling0618@huaweimarine.com

More information

a 1550nm telemeter for outdoor application based on off-the-shelf components

a 1550nm telemeter for outdoor application based on off-the-shelf components a 155nm telemeter for outdoor application based on off-the-shelf components Joffray Guillory, Jean-Pierre Wallerand, Jorge Garcia Marquez, Daniel Truong (mechanical engineering), Christophe Alexandre (digital

More information

Time and Frequency Transfer and Dissemination Methods Using Optical Fiber Network

Time and Frequency Transfer and Dissemination Methods Using Optical Fiber Network Time and Transfer and Dissemination Methods Using Fiber Network Masaki Amemiya, Michito Imae, Yasuhisa Fujii, Tomonari Suzuyama, and Shin-ichi Ohshima Measurement Systems Section, National Metrology Institute

More information

Optimized Flattened Gain Spectrum in C Band WDM using Automatic Gain Control in Bi-Directionally Pumped EDFA

Optimized Flattened Gain Spectrum in C Band WDM using Automatic Gain Control in Bi-Directionally Pumped EDFA Optimized Flattened Gain Spectrum in C Band WDM using Automatic Gain Control in Bi-Directionally Pumped EDFA 1 V. S. Lavanya*, 2 V. K. Vaidyan 1,2 Department of Physics, Mar Ivanios College, Thiruvananthapuram,

More information

Photonics (OPTI 510R 2017) - Final exam. (May 8, 10:30am-12:30pm, R307)

Photonics (OPTI 510R 2017) - Final exam. (May 8, 10:30am-12:30pm, R307) Photonics (OPTI 510R 2017) - Final exam (May 8, 10:30am-12:30pm, R307) Problem 1: (30pts) You are tasked with building a high speed fiber communication link between San Francisco and Tokyo (Japan) which

More information

Design and OAM&P aspects of a DWDM system. wavelength and adjacent 10Gb/s channels

Design and OAM&P aspects of a DWDM system. wavelength and adjacent 10Gb/s channels Design and OAM&P aspects of a DWDM system equipped with a 40Gb/s PM-QPSK alien wavelength and adjacent 10Gb/s channels Lars Lange Bjørn, NORDUnet Roeland Nuijts, SURFnet Martin Nordal Petersen, DTU Fotonik

More information

A review on optical time division multiplexing (OTDM)

A review on optical time division multiplexing (OTDM) International Journal of Academic Research and Development ISSN: 2455-4197 Impact Factor: RJIF 5.22 www.academicsjournal.com Volume 3; Issue 1; January 2018; Page No. 520-524 A review on optical time division

More information

11.1 Gbit/s Pluggable Small Form Factor DWDM Optical Transceiver Module

11.1 Gbit/s Pluggable Small Form Factor DWDM Optical Transceiver Module INFORMATION & COMMUNICATIONS 11.1 Gbit/s Pluggable Small Form Factor DWDM Transceiver Module Yoji SHIMADA*, Shingo INOUE, Shimako ANZAI, Hiroshi KAWAMURA, Shogo AMARI and Kenji OTOBE We have developed

More information

UNREPEATERED SYSTEMS: STATE OF THE ART

UNREPEATERED SYSTEMS: STATE OF THE ART UNREPEATERED SYSTEMS: STATE OF THE ART Hans Bissessur, Isabelle Brylski, Dominique Mongardien (Alcatel-Lucent Submarine Networks), Philippe Bousselet (Alcatel-Lucent Bell Labs) Email: < hans.bissessur@alcatel-lucent.com

More information

Contents for this Presentation. Multi-Service Transport

Contents for this Presentation. Multi-Service Transport Contents for this Presentation SDH/DWDM based Multi-Service Transport Platform by Khurram Shahzad ad Brief Contents Description for this of Presentation the Project Development of a Unified Transport Platform

More information

Optical Fibre Amplifiers Continued

Optical Fibre Amplifiers Continued 1 Optical Fibre Amplifiers Continued Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus ECE 445 Lecture 09 Fall Semester 2016 2 ERBIUM-DOPED FIBRE AMPLIFIERS BASIC

More information

FIBER OPTIC COMMUNICATION LINK LOSS, OSNR AND FEC PERFORMANCE

FIBER OPTIC COMMUNICATION LINK LOSS, OSNR AND FEC PERFORMANCE Tallinn University of Technology Laboratory exercise 2 of Fiber Optical Communication course FIBER OPTIC COMMUNICATION LINK LOSS, OSNR AND FEC PERFORMANCE Tallinn 2016 Please note that the OSA (Optical

More information

Lecture 12 Building Components

Lecture 12 Building Components Optical Fibres and Telecommunications Lecture 12 Building Components Introduction Where are we? Turning individual elements into components Transmitters Receivers Modulation formats Repeaters and 3-R Regeneration

More information

Introduction Fundamental of optical amplifiers Types of optical amplifiers

Introduction Fundamental of optical amplifiers Types of optical amplifiers ECE 6323 Introduction Fundamental of optical amplifiers Types of optical amplifiers Erbium-doped fiber amplifiers Semiconductor optical amplifier Others: stimulated Raman, optical parametric Advanced application:

More information

TIMING DISTRIBUTION AND SYNCHRONIZATION COMPLETE SOLUTIONS FROM ONE SINGLE SOURCE

TIMING DISTRIBUTION AND SYNCHRONIZATION COMPLETE SOLUTIONS FROM ONE SINGLE SOURCE TIMING DISTRIBUTION AND SYNCHRONIZATION COMPLETE SOLUTIONS FROM ONE SINGLE SOURCE link stabilization FEMTOSECOND SYNCHRONIZATION FOR LARGE-SCALE FACILITIES TAILOR-MADE FULLY INTEGRATED SOLUTIONS The Timing

More information

Lecture 1: Introduction

Lecture 1: Introduction Optical Fibre Communication Systems Lecture 1: Introduction Professor Z Ghassemlooy Electronics & It Division School of Engineering Sheffield Hallam University U.K. www.shu.ac.uk/ocr 1 Contents Reading

More information

40Gb/s & 100Gb/s Transport in the WAN Dr. Olga Vassilieva Fujitsu Laboratories of America, Inc. Richardson, Texas

40Gb/s & 100Gb/s Transport in the WAN Dr. Olga Vassilieva Fujitsu Laboratories of America, Inc. Richardson, Texas 40Gb/s & 100Gb/s Transport in the WAN Dr. Olga Vassilieva Fujitsu Laboratories of America, Inc. Richardson, Texas All Rights Reserved, 2007 Fujitsu Laboratories of America, Inc. Outline Introduction Challenges

More information

WDM Alternatives for 100Gb SMF Applications

WDM Alternatives for 100Gb SMF Applications WDM Alternatives for 100Gb SMF Applications IEEE HSSG Presentation Chris Cole chris.cole@finisar.com Outline Data rate target proposal Signal rate alternatives 40km/80km cooled 1550nm alternatives and

More information

Network Challenges for Coherent Systems. Mike Harrop Technical Sales Engineering, EXFO

Network Challenges for Coherent Systems. Mike Harrop Technical Sales Engineering, EXFO Network Challenges for Coherent Systems Mike Harrop Technical Sales Engineering, EXFO Agenda 1. 100G Transmission Technology 2. Non Linear effects 3. RAMAN Amplification 1. Optimsing gain 2. Keeping It

More information

Towards an objective for 400 Gb/s for DCI applications

Towards an objective for 400 Gb/s for DCI applications Towards an objective for 400 Gb/s for DCI applications Markus Weber, Tom Williams - Acacia Gary Nicholl, Mark Nowell - Cisco Tad Hofmeister - Google Ilya Lyubomirsky - Inphi Jeffrey Maki - Juniper Rich

More information

Performance Analysis of dispersion compensation using Fiber Bragg Grating (FBG) in Optical Communication

Performance Analysis of dispersion compensation using Fiber Bragg Grating (FBG) in Optical Communication Research Article International Journal of Current Engineering and Technology E-ISSN 2277 416, P-ISSN 2347-5161 214 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Performance

More information

Reference Distribution

Reference Distribution EPAC 08, Genoa, Italy RF Reference Signal Distribution System for FAIR M. Bousonville, GSI, Darmstadt, Germany P. Meissner, Technical University Darmstadt, Germany Dipl.-Ing. Michael Bousonville Page 1

More information

100G Coherent Transceiver Technologies for DWDM Metro Applications: Key Requirements and Design Trends

100G Coherent Transceiver Technologies for DWDM Metro Applications: Key Requirements and Design Trends 100G Coherent Transceiver Technologies for DWDM Metro Applications: Key Requirements and Design Trends Benny Mikkelsen benny.mikkelsen@acacia-inc.com ECOC, 2012 Market Focus Optical Networks Advances Outline

More information

A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF

A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF Research Manuscript Title A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF Dr.Punal M.Arabi, Nija.P.S PG Scholar, Professor, Department of ECE, SNS College of Technology,

More information

UNREPEATERED SYSTEMS: STATE OF THE ART CAPABILITY

UNREPEATERED SYSTEMS: STATE OF THE ART CAPABILITY UNREPEATERED SYSTEMS: STATE OF THE ART CAPABILITY Nicolas Tranvouez, Eric Brandon, Marc Fullenbaum, Philippe Bousselet, Isabelle Brylski Nicolas.tranvouez@alcaltel.lucent.fr Alcatel-Lucent, Centre de Villarceaux,

More information

Implementing of High Capacity Tbps DWDM System Optical Network

Implementing of High Capacity Tbps DWDM System Optical Network , pp. 211-218 http://dx.doi.org/10.14257/ijfgcn.2016.9.6.20 Implementing of High Capacity Tbps DWDM System Optical Network Daleep Singh Sekhon *, Harmandar Kaur Deptt.of ECE, GNDU Regional Campus, Jalandhar,Punjab,India

More information

EXTRACTION D UN SIGNAL MÉTROLOGIQUE SUR UN LIEN OPTIQUE FIBRÉ

EXTRACTION D UN SIGNAL MÉTROLOGIQUE SUR UN LIEN OPTIQUE FIBRÉ Assemblée Générale REFIMEVE 2014 02/06/2014 EXTRACTION D UN SIGNAL MÉTROLOGIQUE SUR UN LIEN OPTIQUE FIBRÉ Anthony Bercy LPL - Laboratoire de Physique des Lasers - Equipe MMTF SYRTE - Systèmes de Référence

More information

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs)

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Prof. Dr. Yaocheng SHI ( 时尧成 ) yaocheng@zju.edu.cn http://mypage.zju.edu.cn/yaocheng 1 Traditional Optical Communication System Loss

More information

Configuring the MAX3861 AGC Amp as an SFP Limiting Amplifier with RSSI

Configuring the MAX3861 AGC Amp as an SFP Limiting Amplifier with RSSI Design Note: HFDN-22. Rev.1; 4/8 Configuring the MAX3861 AGC Amp as an SFP Limiting Amplifier with RSSI AVAILABLE Configuring the MAX3861 AGC Amp as an SFP Limiting Amplifier with RSSI 1 Introduction As

More information

Loop Mirror Multi-wavelength Brillouin Fiber Laser Utilizing Semiconductor Optical Amplifier and Fiber Bragg Grating

Loop Mirror Multi-wavelength Brillouin Fiber Laser Utilizing Semiconductor Optical Amplifier and Fiber Bragg Grating Loop Mirror Multi-wavelength Brillouin Fiber Laser Utilizing Semiconductor Optical Amplifier and Fiber Bragg Grating N. A. Idris 1,2,*, N. A. M. Ahmad Hambali 1,2, M.H.A. Wahid 1,2, N. A. Ariffin 1,2,

More information

White Paper. 100G beyond 10km A global study coherent and PAM4 Technology. Date: By Ambroise Thirion

White Paper. 100G beyond 10km A global study coherent and PAM4 Technology. Date: By Ambroise Thirion White Paper Date: 100G beyond 10km A global study coherent and PAM4 Technology By Ambroise Thirion Contents I. II. III. IV. The challenge of going beyond 10km on 100G links...3 Long reach technologies

More information

XWDM Solution for 64 Terabit Optical Networking

XWDM Solution for 64 Terabit Optical Networking XWDM Solution for 64 Terabit Optical Networking XWDM maximizes spectral efficiency AND spectrum without compromising reach, by bringing together field-proven technologies, namely Raman amplification and

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 3, Issue 4, April 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Design and Performance

More information

Filling the fiber: Factors involved in absolute fiber capacity Geoff Bennett, Infinera UKNOF September 2007

Filling the fiber: Factors involved in absolute fiber capacity Geoff Bennett, Infinera UKNOF September 2007 Filling the fiber: Factors involved in absolute fiber capacity Geoff Bennett, Infinera UKNOF September 2007 Initial assumption We are aiming to achieve the highest possible capacity from an individual

More information

Time transfer over a White Rabbit network

Time transfer over a White Rabbit network Time transfer over a White Rabbit network Namneet Kaur Florian Frank, Paul-Eric Pottie and Philip Tuckey 8 June 2017 FIRST-TF General Assembly, l'institut d'optique d'aquitaine, Talence. Outline A brief

More information

AC : FIBER OPTICS COURSE FOR UNDERGRADUATE ELECTRICAL ENGINEERING STUDENTS

AC : FIBER OPTICS COURSE FOR UNDERGRADUATE ELECTRICAL ENGINEERING STUDENTS AC 2009-385: FIBER OPTICS COURSE FOR UNDERGRADUATE ELECTRICAL ENGINEERING STUDENTS Lihong (Heidi) Jiao, Grand Valley State University American Society for Engineering Education, 2009 Page 14.630.1 Fiber

More information

OPTICAL NETWORKS. Building Blocks. A. Gençata İTÜ, Dept. Computer Engineering 2005

OPTICAL NETWORKS. Building Blocks. A. Gençata İTÜ, Dept. Computer Engineering 2005 OPTICAL NETWORKS Building Blocks A. Gençata İTÜ, Dept. Computer Engineering 2005 Introduction An introduction to WDM devices. optical fiber optical couplers optical receivers optical filters optical amplifiers

More information

Report of the TC Time and Frequency. Ramiz Hamid TC-TF Chair, TÜBİTAK UME, Turkey

Report of the TC Time and Frequency. Ramiz Hamid TC-TF Chair, TÜBİTAK UME, Turkey Report of the TC Time and Frequency Ramiz Hamid TC-TF Chair, TÜBİTAK UME, Turkey Contents TC-TF meeting and T&F strategy EMRP Projects and future optical redefinition of the second Time scale generation

More information

A transportable optical frequency comb based on a mode-locked fibre laser

A transportable optical frequency comb based on a mode-locked fibre laser A transportable optical frequency comb based on a mode-locked fibre laser B. R. Walton, H. S. Margolis, V. Tsatourian and P. Gill National Physical Laboratory Joint meeting for Time and Frequency Club

More information

DISPERSION COMPENSATION IN OFC USING FBG

DISPERSION COMPENSATION IN OFC USING FBG DISPERSION COMPENSATION IN OFC USING FBG 1 B.GEETHA RANI, 2 CH.PRANAVI 1 Asst. Professor, Dept. of Electronics and Communication Engineering G.Pullaiah College of Engineering Kurnool, Andhra Pradesh billakantigeetha@gmail.com

More information

Design of an Optical Submarine Network With Longer Range And Higher Bandwidth

Design of an Optical Submarine Network With Longer Range And Higher Bandwidth Design of an Optical Submarine Network With Longer Range And Higher Bandwidth Yashas Joshi 1, Smridh Malhotra 2 1,2School of Electronics Engineering (SENSE) Vellore Institute of Technology Vellore, India

More information

HFTA-08.0: Receivers and Transmitters in DWDM Systems

HFTA-08.0: Receivers and Transmitters in DWDM Systems HFTA-08.0: Receivers and Transmitters in DWDM Systems The rapidly growing internet traffic demands a near-continuous expansion of data-transmission capacity. To avoid traffic jams on the data highways,

More information

Physical Layer Modelling of Semiconductor Optical Amplifier Based Terabit/second Switch Fabrics

Physical Layer Modelling of Semiconductor Optical Amplifier Based Terabit/second Switch Fabrics Physical Layer Modelling of Semiconductor Optical Amplifier Based Terabit/second Switch Fabrics K.A. Williams, E.T. Aw*, H. Wang*, R.V. Penty*, I.H. White* COBRA Research Institute Eindhoven University

More information

Microwave and Optical Technology Letters. Minhui Yan, Qing-Yang Xu 1, Chih-Hung Chen, Wei-Ping Huang, and Xiaobin Hong

Microwave and Optical Technology Letters. Minhui Yan, Qing-Yang Xu 1, Chih-Hung Chen, Wei-Ping Huang, and Xiaobin Hong Page of 0 0 0 0 0 0 Schemes of Optical Power Splitter Nodes for Direct ONU-ONU Intercommunication Minhui Yan, Qing-Yang Xu, Chih-Hung Chen, Wei-Ping Huang, and Xiaobin Hong Department of Electrical and

More information