White Rabbit to disseminate time on an active telecom network?

Size: px
Start display at page:

Download "White Rabbit to disseminate time on an active telecom network?"

Transcription

1 White Rabbit to disseminate time on an active telecom network? Namneet Kaur, Florian Frank, Philip Tuckey and Paul-Eric Pottie some slides contents data thanks to courtesy of Anders Wallin & Mikko Merimaa

2 Outline 1. Introduction LNE-SYRTE : the french National metrology institutes Time and frequency transfer at LNE-SYRTE New needs and new methods Optical frequency domain: recent achievements 3. Time dissemination Point to point vs multi-user White Rabbit for time dissemination on an active network Motivations and goals Just get started...only some preliminary tests presented

3 LNE-SYRTE operational facilities Microwave satellite links Timescale Microwave clocks Optical oscillators Optical combs Optical clocks Microwave oscillators Optical links

4 Atomic clocks performances over 70 years 1x x x10-12 Essen & Parry H Optical Clocks Optical Frequency Combs Ca H 1x10-13 H Accuracy 1x x Redefinition of SI second Cs Clocks (microwave) Atomic fountains H Hg +,Yb +,Ca Sr +,Yb + Sr Hg +,Yb + Sr Hg + Al + Sr Year

5 Means to compare clocks Satellite Link (1s) 2x10-16 (1d) NMI in Europe NMI A Atomic clock 1 800< distance <1500 km B Atomic clock 2 Stability(1s) <10-13 Accuracy <10-16 Transportable clock (FOM) (1s) 4x10-16 (1d)

6 Means to compare clocks Satellite Link (1s) 2x10-16 (1d) NMI Optical Fiber Link in Europe NMI A Atomic clock 1 800< distance <1500 km B Atomic clock 2 Stability(1s) <10-13 Accuracy <10-16 Transportable clock (FOM) (1s) 4x10-16 (1d)

7 Optical fiber links Seminal works: Primas et al, Proc 20 th PTTI, 1988, Ma et al., OL 1994 Active noise compensation after one round-trip Strong hypothesis : noises forth and back are the same 2 ends at the same place (for link stability measurement) Local end %&" #" Remote end Ultrastable µm laser Atomic optical clocks OC!$" Noise Correction #"! " Accumulated Phase noise!" OC %&" #"!" Link instability measurement OC OC Optical coupler

8 Frequency transfer : the optical way Satellite links don t meet optical optical clocks comparisons requirements μw clocks Modified Allan Deviation optical clocks TW-CP GPS GPS IPP Optical links Integration time (s) O. Lopez et al., «F&T transfer for metrology and beyond (...)», Comptes Rendus Physique, In press (2015)

9 Part II : optical frequency transfer recent achievements

10 A story started a decade ago Gesine Grosche Anne Amy-Klein Christian Chardonnet Harald Schnatz Giorgio Santarelli Olivier Lopez

11 Range increase for fiber links in Europe Fiber links range (km) Threshold to enable clock comparisons in Europe LKB-SYRTE Year

12 Range increase for fiber links in Europe Fiber links range (km) Threshold to enable clock comparisons in Europe LKB-SYRTE over internet network Year

13 Range increase for fiber links in Europe Brillouin amplifiers Fiber links range (km) Threshold to enable clock comparisons in Europe LKB-SYRTE over internet network Year

14 Range increase for fiber links in Europe Brillouin amplifiers Fiber links range (km) Threshold to enable clock comparisons in Europe LKB-SYRTE over internet network Regeneration Year

15 Range increase for fiber links in Europe Fiber links range (km) Threshold to enable clock comparisons in Europe LKB-SYRTE Brillouin amplifiers over internet network Regeneration Two-way Year

16 Range increase for fiber links in Europe Fiber links range (km) Threshold to enable clock comparisons in Europe LKB-SYRTE Brillouin amplifiers over internet network Regeneration World record Two-way Year

17 Range increase for fiber links in Europe Fiber links range (km) Threshold to enable clock comparisons in Europe LKB-SYRTE Brillouin amplifiers over internet network Regeneration World record Two-way FBA remote Year

18 Range increase for fiber links in Europe Fiber links range (km) Threshold to enable clock comparisons in Europe LKB-SYRTE Brillouin amplifiers over internet network Regeneration World record Two-way FBA remote Year

19 Frequency transfer : the optical way Only CW Optical frequency dissemination / comparison represented ICOF PTB/MPQ (GéANT) 500 km MODANE MEDICINA LIFT 2 «big» link projects in 2012 : REFIMEVE+, LIFT target optical frequency dissemination > 4000 km

20 Time and Frequency transfer with fiber links in Europe Time &/or Frequency transfer : Combs RF + pps SONET, SDH, WR SP-MIKES : 1000 km MIKES-Kajaani : 1000 km UFE-BEV : 540 km GUM-AOS : 420 km VSL-VUA : 208 km NPL : 118 km Review article O. Lopez et al., Comptes Rendus Physique, 16 (5), pp (2015) Suggested focus on : P. Krehlik, et al.; Metrologia, 52, pp , (2015) Parker et al., 53,(35), (2014) G. Marra et al., 20 (2), (2012) NEAT FT 700 km NPL SYRTE VSL INRIM PTB MIKES SP AOS UFE BEV GUM

21 The 1st Sr-Sr comparison by long haul fiber links PTB Team, LPL Team, SYRTE Team, RENATER, Université de Strasbourg, LP2N are : M. Abgrall, A. Al-Masoudi, A. Amy-Klein, E. Bookjans, S. Bilicki, E. Camisard, C. Chardonnet, N. Chiodo, S. Dörscher, C. Grebing, G. Grosche, S. Häfner, A. Koczwara, S. Koke, A. Kuhl, Y. Le Coq, T. Legero, R. Le Targat, C. Lisdat, J. Lodewyck, M. Lours, O. Lopez, F. Meynadier, B. Moya, D. Nicolodi, P.-E. Pottie, N. Quintin, S. Raupach, J.-L. Robyr, G. Santarelli, C. Shi, H. Schnatz, F. Stefani, U. Sterr, F. Wiotte

22 An optical methodology Paris Strasbourg Braunschweig Counting the RF of the beat notes with the fs combs Sr F1 Comb 194,4 THz F3 optical Two-way F4 F5 Comb Sr F2 UTC(OP) GPS time UTC(PTB) Absolute frequency difference without SI-Hz

23 Sr-clocks comparison SYRTE-PTB C. Lisdat et al «A clock network for geodesy and fundamental science» : arxiv:

24 Sr-clocks comparison SYRTE-PTB

25 Sr-clocks comparison SYRTE-PTB Frequency instability Sr PTB -Sr SYRTE 2x10-17 (5000 to s) Accuracy : Sr PTB -Sr SYRTE agreement (4.7±5)x10-17 Two fully independent system in agreement within the statistical error bars. Black body shift, light shift, AC Stark shift and collisions well controled on two different setups Optical links demonstrates their ability to compare clock with superior abilities to any other methods Gravitational redshift is taken into account. Confirm the proper correction of relativistic effects Precise levelling of the clocks thanks to the ITOC campaign

26 Need for F&T metrology : dissemination Frequency metrology: Geodesy Access to ultra precise reference frequencies for remote user. Applied dimensional measurements: Traceability of the unit of length for interferometric measurements. Astronomy: Phase traceable signals for the synchronization of radio telescopes Several projects are going on (REFIMEVE+, LIFT...) Broadband communication technology: Astronomy Provision of reference signals with low-jitter for synchronization Large research infrastructures (ESA, DESY, CERN, GSI): Time and frequency dissemination in ground stations Industry : wireless, optical telecom., Galileo GNSS ground segment 2013 : two experiments start with WR on long hauls 2015 : start of

27 Part III : Time dissemination over a national network Goal # 1 : high performance for next generation of optical time scale comparison, test of fundamental physics Goal # 2 : time dissemination to civil society Alternative to GNSS signal Towards a fiber based time service? Necessary renewed approach NTP, PTP WR lot of activities worldwide with «custom» solutions Collaboration with RENATER for proof of principle demonstrations

28 White LNE-SYRTE Multi user : Point-to-many Explore the wide scale approach : Comply with Telecom backbone architecture : 1 wavelength, 2 fibers Benefits from uni-directional amplification, no backbone adaptation Data traffic on other channels Differential chromatic dispersion is huge with 1310/1490 SFP pairs! DWDM channels to use lasers with smaller frequency instability Delay assymetry reduction from 2 ns to 70 ps over 1000 km Interoperability of networks : traceability, security Investigate the feasibility of calibrated time service on long haul LAN Achievable accuracy in time?

29 Experimental set up H-Maser signal 1GHz distribution SYRTE 10 MHz local reference & distribution 10MHz REF Grand Master (GM) 10 m Master (M) PPS generation & distribution PPS REF 25 km Time interval counter SR 620 SPEC (Slave) 10 MHz clock signal Phase noise analysis microsemi

30 Phase noise : Grand master clock signal Free SYRTE Free VTT SYRTE VTT VTT = ex-mikes, cf. A. Wallin

31 Phase noise : Grand master clock signal Free SYRTE Free VTT SYRTE VTT VTT = ex-mikes, cf. A. Wallin

32 Time intervals : GM & SPEC vs PPS REF GM board No fiber care to temperature! SPEC board after 25 km of fiber spools uni-directional, 2 fibers Wavelength = 1541 nm Time intervalle (ps) Time intervalle (ps) Measurement time (hours) Measurement time (hours)

33 Time deviation : GM, & SPEC board after 25 km (s) Time Deviation SYRTE GM vs REF (no fiber) VTT GM vs REF (no fiber) VTT SPEC+WRS+SPEC 1.2 km km SYRTE WRS+WRS+SPEC km + 25 km VTT = ex-mikes, cf. A. Wallin Integration time (s)

34 Allan deviation : GM, & SPEC board after 25 km GM board No fiber care to temperature! SPEC board after 25 km of fiber spools uni-directional, 2 fibers Wavelength = 1541 nm Overlapping Allan Deviation GM vs PPS REF SPEC board - 25 km uni-dir Active H-maser Fit 7E-11/tau M. Lipinski 2E-10 /tau A. Wallin 1.5E-10 /tau with improved LO? 86 km free running fiber 100 MHz Integration time (s) Modified Allan Deviation GM vs PPS REF SPEC board - 25 km uni-dir Fit 7E-11 /tau 3 / Integration time (s)

35 Work on calibration - test asymetry H-Maser signal 1GHz distribution SYRTE 10 MHz local reference & distribution PPS generation & distribution Time interval counter SR 620 PPS REF up Grand Master (GM) 10 m(+25 km) down Master (M) Time difference (ps) rtt compute rtt - TIC for 1 added spool on way up or on way down, with correction for SFPs asymetry AVG = -15 ps +/- 30 ps TIC Measurement #

36 Work on calibration - test asymetry H-Maser signal 1GHz distribution SYRTE 10 MHz local reference & distribution PPS generation & distribution Time interval counter SR 620 PPS REF up Grand Master (GM) 10 m(+25 km) down Master (M) Time difference (ps) rtt compute rtt - TIC for 1 added spool on way up or on way down, with correction for SFPs asymetry AVG = -15 ps +/- 30 ps TIC Measurement #

37 Work on calibration - test asymetry H-Maser signal 1GHz distribution SYRTE 10 MHz local reference & distribution PPS generation & distribution Time interval counter SR 620 PPS REF up Grand Master (GM) 10 m(+25 km) down Master (M) Time difference (ps) rtt compute rtt - TIC for 1 added spool on way up or on way down, with correction for SFPs asymetry AVG = -15 ps +/- 30 ps TIC Measurement #

38 Work on calibration - test asymetry H-Maser signal 1GHz distribution SYRTE 10 MHz local reference & distribution PPS generation & distribution Time interval counter SR 620 PPS REF up Grand Master (GM) 10 m(+25 km) down Master (M) Time difference (ps) rtt compute rtt - TIC for 1 added spool on way up or on way down, with correction for SFPs asymetry AVG = -15 ps +/- 30 ps TIC Measurement #

39 Work on calibration - test asymetry H-Maser signal 1GHz distribution SYRTE 10 MHz local reference & distribution PPS generation & distribution Time interval counter SR 620 PPS REF up Grand Master (GM) 10 m(+25 km) down Master (M) Time difference (ps) rtt compute rtt - TIC for 1 added spool on way up or on way down, with correction for SFPs asymetry AVG = -15 ps +/- 30 ps TIC Measurement #

40 Conclusions First remote optical clock comparison PTB-SYRTE achieved in 2015 Fortunately (?) no shift within the statistical uncertainty of the comparison (clock limited) entering a new era of T/F metrology White Rabbit experiment just OP long-haul WR, uni-directional configuration, DWDM active telecommunication network preliminary specifications, just start on calibration plans to deploy at a national scale

41 Thank you for attention Namneet Kaur Florian Frank Philip Tuckey Questions?

42 Some phase jumps sometimes? Time intervalle (ps) Measurement time (hours)

43 Joint T&F Transfer with Active Stabilization of the Propagation delay (bi directional) P. Krehlik, Ł. Śliwczyński, Ł. Buczek, M. Lipiński, AGH University of Science and Technology, Institute of Electronics, Kraków, Poland, IEEE Trans. on Instr. and Meas. (2012). 480-km fiber + 8 bi dir EDFAs 10-MHz + 1pps joint transfer through intensity modulation of the optical carrier; stabilized laser Roundtrip propagation in the same fiber for noise correction Active stabilization of the propagation delay through a variable delay module (DLL)

44 Delay-stabilized time transfer 420-km loop fiber (Polish Telecom -Krakow-Skawina and back) Accuracy 100 ps, Stability (1d) : 0.3 ps

Time transfer over a White Rabbit network

Time transfer over a White Rabbit network Time transfer over a White Rabbit network Namneet Kaur Florian Frank, Paul-Eric Pottie and Philip Tuckey 8 June 2017 FIRST-TF General Assembly, l'institut d'optique d'aquitaine, Talence. Outline A brief

More information

Time & Frequency Transfer

Time & Frequency Transfer Cold Atoms and Molecules & Applications in Metrology 16-21 March 2015, Carthage, Tunisia Time & Frequency Transfer Noël Dimarcq SYRTE Systèmes de Référence Temps-Espace, Paris Thanks to Anne Amy-Klein

More information

Methods for data, time and ultrastable frequency transfer through long-haul fiber-optic links

Methods for data, time and ultrastable frequency transfer through long-haul fiber-optic links Methods for data, time and ultrastable frequency transfer through long-haul fiber-optic links Jeroen Koelemeij, Tjeerd Pinkert, Chantal van Tour (VU Amsterdam, NL) Erik Dierikx (VSL Delft, NL) Henk Peek,

More information

Optical Time Transfer (OTT): PoC Results and Next Steps

Optical Time Transfer (OTT): PoC Results and Next Steps AGH University of Science and Technology Department of Electronics, Krakow, Poland Physikalisch-Technische Bundesanstalt (PTB) Braunschweig, Germany Deutsche Telekom Technik GmbH Bremen, Germany Deutsche

More information

Open Call Deliverable OCL-DS3.2 Final Report (ICOF)

Open Call Deliverable OCL-DS3.2 Final Report (ICOF) 16-02-2013 Open Call Deliverable OCL-DS3.2 Final Report (ICOF) Open Call Deliverable OCL-DS3.2 Grant Agreement No.: 605243 Activity: NA1 Task Item: 10 Nature of Deliverable: R (Report) Dissemination Level:

More information

Report of the TC Time and Frequency. Ramiz Hamid TC-TF Chair, TÜBİTAK UME, Turkey

Report of the TC Time and Frequency. Ramiz Hamid TC-TF Chair, TÜBİTAK UME, Turkey Report of the TC Time and Frequency Ramiz Hamid TC-TF Chair, TÜBİTAK UME, Turkey Contents TC-TF meeting and T&F strategy EMRP Projects and future optical redefinition of the second Time scale generation

More information

A hybrid solution for simultaneous transfer of ultrastable optical frequency, RF frequency and UTC time-tags over optical fiber

A hybrid solution for simultaneous transfer of ultrastable optical frequency, RF frequency and UTC time-tags over optical fiber 1 A hybrid solution for simultaneous transfer of ultrastable optical frequency, RF frequency and UTC time-tags over optical fiber Przemysław Krehlik, Harald Schnatz, and Łukasz Śliwczyński Abstract We

More information

EXTRACTION D UN SIGNAL MÉTROLOGIQUE SUR UN LIEN OPTIQUE FIBRÉ

EXTRACTION D UN SIGNAL MÉTROLOGIQUE SUR UN LIEN OPTIQUE FIBRÉ Assemblée Générale REFIMEVE 2014 02/06/2014 EXTRACTION D UN SIGNAL MÉTROLOGIQUE SUR UN LIEN OPTIQUE FIBRÉ Anthony Bercy LPL - Laboratoire de Physique des Lasers - Equipe MMTF SYRTE - Systèmes de Référence

More information

HIGH-PERFORMANCE RF OPTICAL LINKS

HIGH-PERFORMANCE RF OPTICAL LINKS HIGH-PERFORMANCE RF OPTICAL LINKS Scott Crane, Christopher R. Ekstrom, Paul A. Koppang, and Warren F. Walls U.S. Naval Observatory 3450 Massachusetts Ave., NW Washington, DC 20392, USA E-mail: scott.crane@usno.navy.mil

More information

Report to the 20th CCTF, September 2015

Report to the 20th CCTF, September 2015 Report to the 20th CCTF, September 2015 LNE-SYRTE Observatoire de Paris, LNE, CNRS, UPMC 61 avenue de l Observatoire 75014 Paris, France https://syrte.obspm.fr This report describes activities in Time

More information

Enhanced Primary Clocks and Time Transfer

Enhanced Primary Clocks and Time Transfer Deutsche Telekom Enhanced Primary Clocks and Time Transfer Helmut Imlau ITSF 2017, November 8 th ITSF 2017: Enhanced Primary Clocks and Time Transfer, Deutsche Telekom, Helmut Imlau 1 Agenda (a) Enhanced

More information

STABILIZATION OF THE PROPAGATION DELAY IN FIBER OPTIC IN FREQUENCY DISTRIBUTION LINK USING ELECTRONIC DELAY LINES: FIRST MEASUREMENT RESULTS

STABILIZATION OF THE PROPAGATION DELAY IN FIBER OPTIC IN FREQUENCY DISTRIBUTION LINK USING ELECTRONIC DELAY LINES: FIRST MEASUREMENT RESULTS STAILIZATION O THE PROPAGATION DELAY IN IER OPTIC IN REQUENCY DISTRIUTION LINK USING ELECTRONIC DELAY LINES: IRST MEASUREMENT RESULTS Albin Czubla Central Office of Measures (GUM) Laboratory of Time and

More information

Two-Way Time Transfer via Satellites and Optical Fibers. Physikalisch-Technische Bundesanstalt

Two-Way Time Transfer via Satellites and Optical Fibers. Physikalisch-Technische Bundesanstalt Two-Way Time Transfer via Satellites and Optical Fibers Dirk Piester Physikalisch-Technische Bundesanstalt Time Dissemination Group (4.42) 42) 1 Outline Two-way satellite time and frequency transfer (TWSTFT)

More information

Activity report from NICT

Activity report from NICT Activity report from NICT APMP 2013 / TCTF meeting 25-26 November, 2013 National Institute of Information and Communications Technology (NICT) Japan 1 1 Activities of our laboratory Atomic Frequency Standards

More information

Long-haul implementation of White Rabbit Ethernet for fiber-optic synchronization of VLBI stations

Long-haul implementation of White Rabbit Ethernet for fiber-optic synchronization of VLBI stations Long-haul implementation of White Rabbit Ethernet for fiber-optic synchronization of VLBI stations Jeroen Koelemeij 2nd ngvla workshop NRAO Socorro, NM, USA December 9, 2015 : Research aims at VU University

More information

Time and Frequency Transfer and Dissemination Methods Using Optical Fiber Network

Time and Frequency Transfer and Dissemination Methods Using Optical Fiber Network Time and Transfer and Dissemination Methods Using Fiber Network Masaki Amemiya, Michito Imae, Yasuhisa Fujii, Tomonari Suzuyama, and Shin-ichi Ohshima Measurement Systems Section, National Metrology Institute

More information

STUDY OF FREQUENCY TRANSFER VIA OPTICAL FIBER IN THE MICROWAVE DOMAIN

STUDY OF FREQUENCY TRANSFER VIA OPTICAL FIBER IN THE MICROWAVE DOMAIN 41 st Annual Precise Time and Time Interval (PTTI) Meeting STUDY OF FREQUENCY TRANSFER VIA OPTICAL FIBER IN THE MICROWAVE DOMAIN M. Amemiya, M. Imae, Y. Fujii, T. Suzuyama, K. Watabe, T. Ikegami, and H.

More information

DEVELOPMENT OF FREQUENCY TRANSFER VIA OPTICAL FIBER LINK AT NICT

DEVELOPMENT OF FREQUENCY TRANSFER VIA OPTICAL FIBER LINK AT NICT DEVELOPMENT OF FREQUENCY TRANSFER VIA OPTICAL FIBER LINK AT NICT Motohiro Kumagai, Miho Fujieda, Tadahiro Gotoh, and Mizuhiko Hosokawa National Institute of Information and Communications Technology, 4-2-1

More information

Using GNSS for optical frequency and wavelength measurements

Using GNSS for optical frequency and wavelength measurements Using GNSS for optical frequency and wavelength measurements Stephen Lea, Guilong Huang, Helen Margolis, and Patrick Gill National Physical Laboratory Teddington, Middlesex TW11 0LW, UK outline of talk

More information

TIME TRANSFER IN OPTICAL NETWORK

TIME TRANSFER IN OPTICAL NETWORK TIME TRANSFER IN OPTICAL NETWORK Vladimir Smotlacha CESNET, z.s.p.o Zikova 4, Prague 6, 160 00, The Czech Republic E-mail: vs@cesnet.cz Alexender Kuna Institute of Photonics and Electronics, AS CR, v.v.i.

More information

Cascaded optical fiber link using the Internet network for remote clocks comparison

Cascaded optical fiber link using the Internet network for remote clocks comparison Cascaded optical fiber link using the Internet network for remote clocks comparison Nicola Chiodo, Nicolas Quintin, Fabio Stefani, Fabrice Wiotte, Emilie Camisard, Christian Chardonnet, Giorgio Santarelli,

More information

Research Activities on Time and Frequency National Metrology Institute of Japan (NMIJ)/AIST

Research Activities on Time and Frequency National Metrology Institute of Japan (NMIJ)/AIST CCTF/12-13 Report to the 19th Meeting of CCTF Research Activities on Time and Frequency National Metrology Institute of Japan (NMIJ)/AIST The National Metrology Institute of Japan (NMIJ) is responsible

More information

White Rabbit in Time & Frequency Metrology

White Rabbit in Time & Frequency Metrology VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD White Rabbit in Time & Frequency Metrology Anders Wallin White Rabbit Workshop 2016-03-15, Amsterdam Long(est?) WR link Fiber asymmetry and calibration Stability

More information

A transportable optical frequency comb based on a mode-locked fibre laser

A transportable optical frequency comb based on a mode-locked fibre laser A transportable optical frequency comb based on a mode-locked fibre laser B. R. Walton, H. S. Margolis, V. Tsatourian and P. Gill National Physical Laboratory Joint meeting for Time and Frequency Club

More information

Time and Frequency Activities at KRISS

Time and Frequency Activities at KRISS Time and Frequency Activities at KRISS Dai-Hyuk Yu Center for Time and Frequency Metrology, Division of Physical Metrology Korea Research Institute of Standards and Science (KRISS) dhyu@kriss.re.kr Time

More information

Status Report on Time and Frequency Activities at National Physical Laboratory India

Status Report on Time and Frequency Activities at National Physical Laboratory India Status Report on Time and Frequency Activities at National Physical Laboratory India (TCTF 2015) Ashish Agarwal *, S. Panja. P. Arora, P. Thorat, S. De, S. Yadav, P. Kandpal, M. P. Olaniya, S S Rajput,

More information

Clock Comparisons: Present and Future Approaches

Clock Comparisons: Present and Future Approaches Clock Comparisons: Present and Future Approaches Introduction I. Dissemination of Legal Time II. Comparisons of Time Scales III. Comparisons of Primary Clocks MicrowaveTime & Frequency Comparisons GPS

More information

CURRENT ACTIVITIES OF THE NATIONAL STANDARD TIME AND FREQUENCY LABORATORY OF THE TELECOMMUNICATION LABORATORIES, CHT TELECOM CO., LTD.

CURRENT ACTIVITIES OF THE NATIONAL STANDARD TIME AND FREQUENCY LABORATORY OF THE TELECOMMUNICATION LABORATORIES, CHT TELECOM CO., LTD. CURRENT ACTIVITIES OF THE NATIONAL STANDARD TIME AND FREQUENCY LABORATORY OF THE TELECOMMUNICATION LABORATORIES, CHT TELECOM CO., LTD., TAIWAN C. S. Liao, P. C. Chang, and S. S. Chen National Standard

More information

A phase coherent optical link through the turbulent atmosphere

A phase coherent optical link through the turbulent atmosphere A phase coherent optical link through the turbulent atmosphere Mini-DOLL : Deep Space Optical Laser Link Presented by : Khelifa DJERROUD people involved : Acef Ouali (SYRTE) Clairon André(SYRTE) Lemonde

More information

Report to the 20th Meeting of CCTF Research Activities on Time and Frequency National Metrology Institute of Japan (NMIJ)/AIST

Report to the 20th Meeting of CCTF Research Activities on Time and Frequency National Metrology Institute of Japan (NMIJ)/AIST Report to the 20th Meeting of CCTF Research Activities on Time and Frequency National Metrology Institute of Japan (NMIJ)/AIST The National Metrology Institute of Japan (NMIJ) is responsible for almost

More information

TIME AND FREQUENCY ACTIVITIES AT THE CSIR NATIONAL METROLOGY LABORATORY

TIME AND FREQUENCY ACTIVITIES AT THE CSIR NATIONAL METROLOGY LABORATORY TIME AND FREQUENCY ACTIVITIES AT THE CSIR NATIONAL METROLOGY LABORATORY E. L. Marais and B. Theron CSIR National Metrology Laboratory PO Box 395, Pretoria, 0001, South Africa Tel: +27 12 841 3013; Fax:

More information

Towards Accurate Optical Fiber Time Transfer for UTC GenerationV3

Towards Accurate Optical Fiber Time Transfer for UTC GenerationV3 Towards Accurate Optical Fiber Time Transfer for UTC GenerationV3 Z. Jiang and E.F. Arias Time Department Bureau International des Poids et Mesures Outline 1/2 Recommendation ATFT (draft) to CCTF2015 the

More information

Report of the CCTF WG on TWSTFT. Dirk Piester

Report of the CCTF WG on TWSTFT. Dirk Piester Report of the CCTF WG on TWSTFT Dirk Piester Two-way satellite time and frequency transfer (TWSTFT) How does it work? Phase coherent to a local clock pseudo random noise phaseshift keying spread spectrum

More information

86-km optical link with a resolution of for RF. frequency transfer.

86-km optical link with a resolution of for RF. frequency transfer. 86-km optical link with a resolution of 2 10-18 for RF frequency transfer. O. Lopez 1, A. Amy-Klein 1a, C. Daussy 1, Ch. Chardonnet 1, F. Narbonneau 2, M. Lours 2, and G. Santarelli 2 1 Laboratoire de

More information

90-km optical link with a resolution of for RF. frequency transfer.

90-km optical link with a resolution of for RF. frequency transfer. 9-km optical link with a resolution of 2 1-18 for RF frequency transfer. O. Lopez 1, A. Amy-Klein 1a, C. Daussy 1, Ch. Chardonnet 1, F. Narbonneau 2, M. Lours 2, and G. Santarelli 2 1 Laboratoire de Physique

More information

TIME TRANSFER THROUGH OPTICAL FIBERS (TTTOF): FIRST RESULTS OF CALIBRATED CLOCK COMPARISONS

TIME TRANSFER THROUGH OPTICAL FIBERS (TTTOF): FIRST RESULTS OF CALIBRATED CLOCK COMPARISONS TIME TRANSFER THROUGH OPTICAL FIBERS (TTTOF): FIRST RESULTS OF CALIBRATED CLOCK COMPARISONS Dirk Piester 1, Miho Fujieda 2, Michael Rost 1, and Andreas Bauch 1 1 Physikalisch-Technische Bundesanstalt (PTB)

More information

Status Report on Time and Frequency Activities at CSIR-NPL India

Status Report on Time and Frequency Activities at CSIR-NPL India Status Report on Time and Frequency Activities at CSIR-NPL India (APMP -TCTF 2016) S. Panja, A. Agarwal, D. Chadha, P. Arora, P. Thorat, S. De, S. Yadav, P. Kandpal, M. P. Olaniya and V. N. Ojha (Da Nang,

More information

Status Report on Time and Frequency Activities at NPL India

Status Report on Time and Frequency Activities at NPL India Status Report on Time and Frequency Activities at NPL India (APMP TCTF 2013) A. Sen Gupta, A. Chatterjee, A. K. Suri, A. Agarwal, S. Panja P. Arora, S. De, P. Thorat, S. Yadav, P. Kandpal, M. P. Olaniya

More information

White Rabbit for long-haul fiber-optic distribution of high-precision clocks for VLBI

White Rabbit for long-haul fiber-optic distribution of high-precision clocks for VLBI White Rabbit for long-haul fiber-optic distribution of high-precision clocks for VLBI Tjeerd J. Pinkert (VU) Henk Peek (Nikhef) Peter Janswijer (Nikhef) Paul Boven (JIVE) Arpad Szomoru (JIVE) Erik Dierikx

More information

TIME TRANSFER BETWEEN UTC(SP) AND UTC(MIKE) USING FRAME DETECTION IN FIBER- OPTICAL COMMUNICATION NETWORKS

TIME TRANSFER BETWEEN UTC(SP) AND UTC(MIKE) USING FRAME DETECTION IN FIBER- OPTICAL COMMUNICATION NETWORKS TIME TRANSFER BETWEEN UTC(SP) AND UTC(MIKE) USING FRAME DETECTION IN FIBER- OPTICAL COMMUNICATION NETWORKS S.-C. Ebenhag 1, K. Jaldehag, C. Rieck 1, P. Jarlemark, P.O. Hedekvist 1, P. Löthberg 2, T. Fordell

More information

arxiv: v2 [physics.optics] 21 Jul 2014

arxiv: v2 [physics.optics] 21 Jul 2014 Optical frequency transfer via a 660 km underground fiber link using a remote Brillouin amplifier arxiv:1407.4907v2 [physics.optics] 21 Jul 2014 S. M. F. Raupach, A. Koczwara, and G. Grosche Physikalisch-Technische

More information

Time and Frequency Activities at NICT, Japan

Time and Frequency Activities at NICT, Japan Time and Frequency Activities at NICT, Japan Yasuhiro Koyama, Kuniyasu Imamura, Tsukasa Iwama, Shin'ichi Hama, Jun Amagai, Ryuichi Ichikawa, and Mizuhiko Hosokawa National Institute of Information and

More information

Long range time transfer using optical fiber links and cross comparison with satellite based methods

Long range time transfer using optical fiber links and cross comparison with satellite based methods Long range time transfer using optical fiber links and cross comparison with satellite based methods Namneet Kaur To cite this version: Namneet Kaur. Long range time transfer using optical fiber links

More information

Optical clocks and combs at NMIJ

Optical clocks and combs at NMIJ APMP 2013, TCTF Workshop, Taipei 23 Nov. 2013 Optical clocks and combs at NMIJ F.-L. Hong, D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, S. Okubo, T. Tanabe, T. Kohno, Y. Nakajima, K. Iwakuni, T. Suzuyama,

More information

White Rabbit in Radio Astronomy

White Rabbit in Radio Astronomy White Rabbit in Radio Astronomy Paul Boven boven@jive.eu ICALEPCS 2017, Barcelona, 2017-10-10 White Rabbit in a Nutshell WR: 1ns accuracy for distances up to 10 km Standardized on 1000base-BX10 SFPs (10km

More information

Activity report from NICT

Activity report from NICT Activity report from NICT APMP 2015 / TCTF meeting 2-3 November, 2015 National Institute of Information and Communications Technology (NICT) Japan 1 1 Space time standards laboratory Atomic Frequency Standards

More information

First results of a high performance optically-pumped cesium beam clock

First results of a high performance optically-pumped cesium beam clock First results of a high performance optically-pumped cesium beam clock Berthoud Patrick, Chief Scientist Time & Frequency Workshop on Synchronization and Timing Systems, WSTS 2016, San Jose CA, USA, June

More information

GPS CARRIER-PHASE TIME AND FREQUENCY TRANSFER WITH DIFFERENT VERSIONS OF PRECISE POINT POSITIONING SOFTWARE

GPS CARRIER-PHASE TIME AND FREQUENCY TRANSFER WITH DIFFERENT VERSIONS OF PRECISE POINT POSITIONING SOFTWARE GPS CARRIER-PHASE TIME AND FREQUENCY TRANSFER WITH DIFFERENT VERSIONS OF PRECISE POINT POSITIONING SOFTWARE T. Feldmann, D. Piester, A. Bauch Physikalisch-Technische Bundesanstalt (PTB) Braunschweig, Germany

More information

Characterization of a 450 km baseline GPS carrier-phase link using an optical fiber link

Characterization of a 450 km baseline GPS carrier-phase link using an optical fiber link PAPER OPEN ACCESS Characterization of a 450 km baseline GPS carrier-phase link using an optical fiber link To cite this article: Stefan Droste et al 2015 New J. Phys. 17 083044 Related content - Comparison

More information

1x10-16 frequency transfer by GPS IPPP. G. Petit Bureau International des Poids et Mesures

1x10-16 frequency transfer by GPS IPPP. G. Petit Bureau International des Poids et Mesures 1x10-16 frequency transfer by GPS IPPP G. Petit Bureau International des Poids et Mesures This follows from past work by! CNES to develop basis of the technique D. Laurichesse & F. Mercier, Proc 20 th

More information

NPLI Report. for. Technical workshop and inter-laboratory comparison exercise for GPS time-transfer and calibration techniques under MEDEA

NPLI Report. for. Technical workshop and inter-laboratory comparison exercise for GPS time-transfer and calibration techniques under MEDEA NPLI Report for Technical workshop and inter-laboratory comparison exercise for GPS time-transfer and calibration techniques under MEDEA Dr. V. N. Ojha, Dr. A. Agarwal, Mrs. D. Chaddha, Dr. S. Panja, Dr.

More information

FREQUENCY TRANSFER SYSTEM USING AN URBAN FIBER LINK FOR DIRECT COMPARISON OF SR OPTICAL LATTICE CLOCKS

FREQUENCY TRANSFER SYSTEM USING AN URBAN FIBER LINK FOR DIRECT COMPARISON OF SR OPTICAL LATTICE CLOCKS FREQUENCY TRANSFER SYSTEM USING AN URBAN FIBER LINK FOR DIRECT COMPARISON OF SR OPTICAL LATTICE CLOCKS Motohiro Kumagai, Miho Fujieda, Hirokazu Hachisu, Shigeo Nagano, A. Yamaguchi, Clayton R. Locke, and

More information

Time and Frequency Activities at NICT, Japan

Time and Frequency Activities at NICT, Japan Time and Frequency Activities at NICT, Japan Yasuhiro Koyama, Kuniyasu Imamura, Tsukasa Iwama, Shin'ichi Hama, Jun Amagai, Ryuichi Ichikawa, Yuko Hanado, and Mizuhiko Hosokawa National Institute of Information

More information

First step in the industry-based development of an ultra-stable optical cavity for space applications

First step in the industry-based development of an ultra-stable optical cavity for space applications First step in the industry-based development of an ultra-stable optical cavity for space applications B. Argence, E. Prevost, T. Levêque, R. Le Goff, S. Bize, P. Lemonde and G. Santarelli LNE-SYRTE,Observatoire

More information

Recent Time and Frequency Transfer Activities at the Observatoire de Paris

Recent Time and Frequency Transfer Activities at the Observatoire de Paris Recent Time and Frequency Transfer Activities at the Observatoire de Paris J. Achkar, P. Uhrich, P. Merck, and D. Valat LNE-SYRTE Observatoire de Paris 61 avenue de l Observatoire, F-75014 Paris, France

More information

Ultra-low noise microwave extraction from fiber-based. optical frequency comb.

Ultra-low noise microwave extraction from fiber-based. optical frequency comb. Ultra-low noise microwave extraction from fiber-based optical frequency comb. J. Millo 1, R. Boudot 2, M. Lours 1, P. Y. Bourgeois 2, A. N. Luiten 3, Y. Le Coq 1, Y. Kersalé 2, and G. Santarelli *1 1 LNE-SYRTE,

More information

Fiber Optic Time Transfer for UTC-Traceable Synchronization for Telecom Networks

Fiber Optic Time Transfer for UTC-Traceable Synchronization for Telecom Networks SYNCHRONIZATION STANDARDS TOWARDS 5G Fiber Optic Time Transfer for UTC-Traceable Synchronization for Telecom Networks Łukasz Śliwczyński, Przemysław Krehlik, Jacek Kołodziej, Helmut Imlau, Horst Ender,

More information

STABILITY OF GEODETIC GPS TIME LINKS AND THEIR COMPARISON TO TWO-WAY TIME TRANSFER

STABILITY OF GEODETIC GPS TIME LINKS AND THEIR COMPARISON TO TWO-WAY TIME TRANSFER STABILITY OF GEODETIC GPS TIME LINKS AND THEIR COMPARISON TO TWO-WAY TIME TRANSFER G. Petit and Z. Jiang BIPM Pavillon de Breteuil, 92312 Sèvres Cedex, France E-mail: gpetit@bipm.org Abstract We quantify

More information

Time and Frequency Research Activity in NIM

Time and Frequency Research Activity in NIM Time and Frequency Research Activity in NIM Gao Xiaoxun National Institute of Metrology Bei San Huan Dong Lu No.18 Beijing P.R.China Abstract This paper will introduce scientific research activities in

More information

OSA grants to the Author(s) (or their employers, in the case of works made for hire) the following rights:

OSA grants to the Author(s) (or their employers, in the case of works made for hire) the following rights: PUBLISHED VERSION He, Yabai; Orr, Brian J.; Baldwin, Kenneth G. H.; Wouters, Michael J.; Luiten, Andre Nicholas; Aben, Guido; Warrington, R. Bruce Stable radio-frequency transfer over optical fiber by

More information

OPTICAL LINK TIME TRANSFER BETWEEN IPE AND BEV

OPTICAL LINK TIME TRANSFER BETWEEN IPE AND BEV OPTICAL LINK TIME TRANSFER BETWEEN IPE AND BEV Vladimír Smotlacha CESNET, z.s.p.o Zikova 4, Prague 6, 160 00, The Czech Republic vs@cesnet.cz Alexander Kuna Institute of Photonics and Electronics AS CR,

More information

Report of Time and Frequency Activities at NICT

Report of Time and Frequency Activities at NICT Report of Time and Frequency Activities at NICT National Institute of Information and Communications Technology Koganei, Tokyo, Japan 1. Introduction At National Institute of Information and Communications

More information

Optical cesium beam clock for eprtc telecom applications

Optical cesium beam clock for eprtc telecom applications Optical cesium beam clock for eprtc telecom applications Michaud Alain, Director R&D and PLM Time & Frequency, Oscilloquartz Dr. Patrick Berthoud, Chief Scientist Time & Frequency, Oscilloquartz Workshop

More information

JRA1 T2, Photonic Services What has been done

JRA1 T2, Photonic Services What has been done JRA1 T2, Photonic Services What has been done SKALAT MAÐR RÚNAR RÍSTA NEMA RÁÐA VEL KUNNI. Joint JRA1 T1 & T2 workshop København, Denmark 2012, November 20-21 Jan Radil, Josef Vojtěch, Pavel Škoda, Stanislav

More information

Simultaneous fiber-optical delivery of picosecond time and 10 Gb/s data over 75 km distance

Simultaneous fiber-optical delivery of picosecond time and 10 Gb/s data over 75 km distance Simultaneous fiber-optical delivery of picosecond time and 10 Gb/s data over 75 km distance Jeroen Koelemeij LaserLaB VU University, Amsterdam, The Netherlands Nikolaos Sotiropoulos Chigo Okonkwo Huug

More information

Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber

Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber O. Terra 1, 2, G. Grosche and H. Schnatz Physikalisch- Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig,

More information

Advanced Ranging. and. Time & Frequency Transfer Techniques. for LISA. Noordwijk, The Netherlands, Jul 2004

Advanced Ranging. and. Time & Frequency Transfer Techniques. for LISA. Noordwijk, The Netherlands, Jul 2004 Advanced Ranging and Time & Frequency Transfer Techniques for LISA Noordwijk, The Netherlands, 12 15 Jul 2004 Page 1 of 47 Wolfgang Schäfer TimeTech GmbH Phone: 0049-711-678 08-0 Curiestrasse 2 Fax: 0049-711-678

More information

Business Opportunity. The wave is coming. The Opportunity. Time Synchronization as a first-order concept You take care of it, or you will pay for it!

Business Opportunity. The wave is coming. The Opportunity. Time Synchronization as a first-order concept You take care of it, or you will pay for it! Business Opportunity. The wave is coming. The Opportunity Time Synchronization as a first-order concept You take care of it, or you will pay for it! www.sevensols.com Seven Solutions - When every nanosecond

More information

arxiv: v1 [physics.ins-det] 6 May 2015

arxiv: v1 [physics.ins-det] 6 May 2015 Characterization of a 450-km Baseline GPS Carrier-Phase Link using an Optical Fiber Link arxiv:1505.02144v1 [physics.ins-det] 6 May 2015 Stefan Droste 1, Christian Grebing 2, Julia Leute 2, Sebastian M.F.

More information

BIPM TIME ACTIVITIES UPDATE

BIPM TIME ACTIVITIES UPDATE BIPM TIME ACTIVITIES UPDATE A. Harmegnies, G. Panfilo, and E. F. Arias 1 International Bureau of Weights and Measures (BIPM) Pavillon de Breteuil F-92312 Sèvres Cedex, France 1 Associated astronomer at

More information

CHAPTER 5 SPECTRAL EFFICIENCY IN DWDM

CHAPTER 5 SPECTRAL EFFICIENCY IN DWDM 61 CHAPTER 5 SPECTRAL EFFICIENCY IN DWDM 5.1 SPECTRAL EFFICIENCY IN DWDM Due to the ever-expanding Internet data traffic, telecommunication networks are witnessing a demand for high-speed data transfer.

More information

Haruo Saito. National Institute of Information and Communications Technology

Haruo Saito. National Institute of Information and Communications Technology Calibration system at NICT Haruo Saito National Institute of Information and Communications Technology Organization of NICT Content Calibration system Calibration system Carried in system and remote system

More information

High-resolution microwave frequency dissemination on an 86-km urban optical link

High-resolution microwave frequency dissemination on an 86-km urban optical link High-resolution microwave frequency dissemination on an 86-km urban optical link Olivier Lopez, Anne Amy-Klein, Michel Lours, Christian Chardonnet, Georgio Santarelli To cite this version: Olivier Lopez,

More information

National time scale UTC(SU) and GLONASS system time scale: current status and perspectives

National time scale UTC(SU) and GLONASS system time scale: current status and perspectives State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements National time scale UTC(SU) and GLONASS system time scale: current

More information

STEERING UTC (AOS) AND UTC (PL) BY TA (PL)

STEERING UTC (AOS) AND UTC (PL) BY TA (PL) STEERING UTC (AOS) AND UTC (PL) BY TA (PL) J. Nawrocki 1, Z. Rau 2, W. Lewandowski 3, M. Małkowski 1, M. Marszalec 2, and D. Nerkowski 2 1 Astrogeodynamical Observatory (AOS), Borowiec, Poland, nawrocki@cbk.poznan.pl

More information

Source: CERN, ÖAW

Source: CERN,   ÖAW 23.06.2010 Source: CERN, www.directindustry.de, ÖAW Real Time for Real-Time Networks Georg Gaderer Fachbereichskolloquium Hochschule Ostwestfalen-Lippe, Centrum Industrial IT Course of Talk Introduction

More information

Air index compensation for absolute distance measurements

Air index compensation for absolute distance measurements JRP IND53 Metrology for large volume measurements LUMINAR Air index compensation for absolute distance measurements Jean-Pierre Wallerand, Joffray Guillory, Daniel Truong, Christophe Alexandre Conservatoire

More information

Comparison of Cesium Fountain Clocks in Europe and Asia

Comparison of Cesium Fountain Clocks in Europe and Asia APMP/TCTF workshop 214,Daejeon, Korea Comparison of Cesium Fountain Clocks in Europe and Asia Aimin Zhang National Institute of Metrology(NIM) Sep.2,214 Outline Introduction Setup of PFS comparison Comparison

More information

Time and Frequency Laboratory Measurement Units, Standards and Services Department (National Metrology Institute) MUSSD- Sri Lanka

Time and Frequency Laboratory Measurement Units, Standards and Services Department (National Metrology Institute) MUSSD- Sri Lanka Time and Frequency Laboratory Measurement Units, Standards and Services Department (National Metrology Institute) MUSSD- Sri Lanka Introduction Measurement Units, Standards and Services Department (MUSSD

More information

Wide-Area Time Distribution with PTP Using Commercial Telecom Optical Fiber

Wide-Area Time Distribution with PTP Using Commercial Telecom Optical Fiber Wide-Area Time Distribution with Using Commercial Telecom Optical Fiber NASPI Work Group Meeting March 22, 2017 Lee Cosart, lee.cosart@microsemi.com Microsemi Corporation Presenter, Co-author Marc Weiss,

More information

Experimental Demonstration of High-Precision Multi-access Time Transfer via Optical- Electrical-Optical Repeater Stations

Experimental Demonstration of High-Precision Multi-access Time Transfer via Optical- Electrical-Optical Repeater Stations Experimental Demonstration of High-Precision ulti-access ime ransfer via Optical- Electrical-Optical epeater Stations Hao Zhang 1, Guiling Wu 1,2,*, Xinwan Li 1 and Jianping Chen 1,2 1 State Key Laboratory

More information

Long-term Absolute Wavelength Stability of Acetylene-stabilized Reference Laser at 1533 nm

Long-term Absolute Wavelength Stability of Acetylene-stabilized Reference Laser at 1533 nm Paper Long-term Absolute Wavelength Stability of Acetylene-stabilized Reference Laser at 1533 nm Tomasz Kossek 1, Dariusz Czułek 2, and Marcin Koba 1 1 National Institute of Telecommunications, Warsaw,

More information

FIBER-BASED FREQUENCY DISTRIBUTION BASED ON LONG-HAUL COMMUNICATION LASERS

FIBER-BASED FREQUENCY DISTRIBUTION BASED ON LONG-HAUL COMMUNICATION LASERS FIBER-BASED FREQUENCY DISTRIBUTION BASED ON LONG-HAUL COMMUNICATION LASERS Sven-Christian Ebenhag, Per Olof Hedekvist, and Kenneth Jaldehag SP Technical Research Institute of Sweden Box 857, SE 505 Borås,

More information

ANALYSIS OF ONE YEAR OF ZERO-BASELINE GPS COMMON-VIEW TIME TRANSFER AND DIRECT MEASUREMENT USING TWO CO-LOCATED CLOCKS

ANALYSIS OF ONE YEAR OF ZERO-BASELINE GPS COMMON-VIEW TIME TRANSFER AND DIRECT MEASUREMENT USING TWO CO-LOCATED CLOCKS ANALYSIS OF ONE YEAR OF ZERO-BASELINE GPS COMMON-VIEW TIME TRANSFER AND DIRECT MEASUREMENT USING TWO CO-LOCATED CLOCKS Gerrit de Jong and Erik Kroon NMi Van Swinden Laboratorium P.O. Box 654, 2600 AR Delft,

More information

Reference Distribution

Reference Distribution EPAC 08, Genoa, Italy RF Reference Signal Distribution System for FAIR M. Bousonville, GSI, Darmstadt, Germany P. Meissner, Technical University Darmstadt, Germany Dipl.-Ing. Michael Bousonville Page 1

More information

A Multiwavelength Interferometer for Geodetic Lengths

A Multiwavelength Interferometer for Geodetic Lengths A Multiwavelength Interferometer for Geodetic Lengths K. Meiners-Hagen, P. Köchert, A. Abou-Zeid, Physikalisch-Technische Bundesanstalt, Braunschweig Abstract: Within the EURAMET joint research project

More information

Time and Frequency Activities at KRISS

Time and Frequency Activities at KRISS Time and Frequency Activities at KRISS Dai-Hyuk Yu Center for Time and Frequency, Division of Physical Metrology Korea Research Institute of Standards and Science (KRISS) dhyu@kriss.re.kr Time and Frequency

More information

PRELIMINARY RESULTS OF THE TTS4 TIME TRANSFER RECEIVER INVESTIGATION

PRELIMINARY RESULTS OF THE TTS4 TIME TRANSFER RECEIVER INVESTIGATION PRELIMINARY RESULTS OF THE TTS4 TIME TRANSFER RECEIVER INVESTIGATION N. Koshelyaevsky and I. Mazur Department of Metrology for Time and Space FGUP VNIIFTRI, MLB, 141570, Mendeleevo, Moscow Region, Russia

More information

Time and Frequency Distribution Overview and Issues Rob Selina

Time and Frequency Distribution Overview and Issues Rob Selina Time and Frequency Distribution Overview and Issues Rob Selina Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

More information

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Keisuke Kasai a), Jumpei Hongo, Masato Yoshida, and Masataka Nakazawa Research Institute of

More information

Measurements and Distribution: PNT and Other Applications

Measurements and Distribution: PNT and Other Applications NIST Time and Frequency Metrology Precision Time and Frequency Measurements and Distribution: PNT and Other Applications Tom O Brian Chief, NIST Time and Frequency Division and NIST Quantum Physics Division

More information

Performance of the Reference and Timing Systems at SPring-8

Performance of the Reference and Timing Systems at SPring-8 Performance of the Reference and Timing Systems at SPring-8 Outline Yuji Ohashi SPring-8 1. Introduction 2. Tools 3. Performances 4. New synchronization scheme between 508 and 2856 MHz 5. Summary Y.Kawashima

More information

Planar External Cavity Low Noise Narrow Linewidth Lasers

Planar External Cavity Low Noise Narrow Linewidth Lasers Planar External Cavity Low Noise Narrow Linewidth Lasers Lew Stolpner Redfern Integrated Optics Inc. Santa Clara, CA 95054, USA 1 Outline 1550 nm narrow linewidth lasers for fiber optic sensing Planar

More information

Longer baselines and how it impacts the ALMA Central LO

Longer baselines and how it impacts the ALMA Central LO Longer baselines and how it impacts the ALMA Central LO 1 C. Jacques - NRAO October 3-4-5 2017 ALMA LBW Quick overview of current system Getting the data back is not the problem (digital transmission),

More information

A New Microwave Synthesis Chain for the Primary Frequency Standard NIST-F1

A New Microwave Synthesis Chain for the Primary Frequency Standard NIST-F1 A New Microwave Synthesis Chain for the Primary Frequency Standard NIST-F1 T.P. Heavner, S.R. Jefferts, E.A. Donley, T.E. Parker Time and Frequency Division National Institute of Standards and Technology

More information

Thursday, April 17, 2008, 6:28:40

Thursday, April 17, 2008, 6:28:40 Wavelength Division Multiplexing By: Gurudatha Pai K gurudatha@gmail.com Thursday, April 17, 2008, 6:28:40 Overview Introduction Popular Multiplexing Techniques Optical Networking WDM An Analogy of Multiplexing

More information

Optical Transport Tutorial

Optical Transport Tutorial Optical Transport Tutorial 4 February 2015 2015 OpticalCloudInfra Proprietary 1 Content Optical Transport Basics Assessment of Optical Communication Quality Bit Error Rate and Q Factor Wavelength Division

More information

a 1550nm telemeter for outdoor application based on off-the-shelf components

a 1550nm telemeter for outdoor application based on off-the-shelf components a 155nm telemeter for outdoor application based on off-the-shelf components Joffray Guillory, Jean-Pierre Wallerand, Jorge Garcia Marquez, Daniel Truong (mechanical engineering), Christophe Alexandre (digital

More information

TIMING DISTRIBUTION AND SYNCHRONIZATION COMPLETE SOLUTIONS FROM ONE SINGLE SOURCE

TIMING DISTRIBUTION AND SYNCHRONIZATION COMPLETE SOLUTIONS FROM ONE SINGLE SOURCE TIMING DISTRIBUTION AND SYNCHRONIZATION COMPLETE SOLUTIONS FROM ONE SINGLE SOURCE link stabilization FEMTOSECOND SYNCHRONIZATION FOR LARGE-SCALE FACILITIES TAILOR-MADE FULLY INTEGRATED SOLUTIONS The Timing

More information

Sylvère Froidevaux.

Sylvère Froidevaux. Sylvère Froidevaux Froidevaux@t4science.com About Us Founded in 2006 in Neuchatel, Switzerland, T4Science is a leading designer and manufacturer of a full range of advanced, cost-effective and high-performance

More information