FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 26

Size: px
Start display at page:

Download "FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 26"

Transcription

1 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 26 Wavelength Division Multiplexed (WDM) Systems Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical Engineering, IIT Bombay Page 1

2 One of the major developments that need to be emphatically mentioned among the modern advancements in fiber optic communication technology is the Wavelength Division Multiplexed (WDM) systems. As the name suggests, multiple wavelengths use the same channel for transfer of data from source to destination. ORIGIN OF WDM SYSTEMS The origin of WDM systems is based on the realisation of underutilization of the full channel capacity of an optical fiber. The figure 26.1 below, shows the two windows of optical communication (already discussed in Transcript 2). Figure 26.1: 2 nd and 3 rd generation windows of Optical communications. The 2 nd and the 3 rd windows of optical communication, put together, provide a total communication bandwidth of about 30THz. With proper technologies, optical fibers have been manufactured which provide such large bandwidths for optical communication. But the optical sources and receivers that are used in an optical system have bandwidth limitations which restrict their maximum modulating frequency to a few GHz only, which is much smaller compared to the enormously large bandwidth provided by the optical fiber. This means that, when an optical fiber is used in a system like the single point-to-point optical communication link, only due to the bandwidth limitation of the transmitter and receiver circuitry, the full channel capacity (bandwidth) of the optical fiber is not utilized and the optical fiber capability remains underutilized. Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical Engineering, IIT Bombay Page 2

3 This realisation led the scientists to use the property of multiplexing, in the optical domain too. The concept was to transmit dissimilar wavelengths carrying information through the same optical fiber. The new optical communication systems possessing this capability, that emerged thereafter, came to be known as wavelength division multiplexed (WDM) systems. Some facts related to WDM systems are bulleted below: WDM systems provide a communication bandwidth ranging from 1.2µm to 1.6µm wherein the optical fiber has a low-loss profile. This bandwidth, in terms of frequency, is equivalent to about 30THz. In terms of channel capacity, the above bandwidth is capable of providing about 300,000 channels, each of speed 10 Mb/s. The reason for using the speed of 10Mb/s is that, even a good quality video transmission would require a speed of about 10Mb/s. That means, if one were to use the entire bandwidth of 30THz of the optical fiber effectively, one could transmit 300,000 video channels simultaneously on the same optical fiber. The above available bandwidth of 30THz may be efficiently utilized in two waystime domain and wavelength domain. However, employment of time domain multiplexing to utilize the entire bandwidth of the optical fiber would rather be impracticable due to the fact that even the most modern pulse generation technology would not be able to generate pulses of width of about a femto-second (10-15 s) which are required to realize a time division multiplexed optical system. The promising option, now left, is the wavelength domain multiplexing which is better known as wavelength division multiplexing, and the systems that possess this feature are called wavelength division multiplexed (WDM) systems. In WDM, the total low-loss bandwidth of the optical fiber ( µm) is sub-divided into multiple channels and each channel having respective carrier signal. Each carrier signal is then modulated at the maximum modulating frequency by the data signal and then these modulated carriers are simultaneously transmitted on the optical fiber. In initial WDM systems, the transmitted channels belonged to two different windows i.e. if one wavelength of transmission was from the 2 nd window, the other was from the 3 rd window of optical communication and vice versa. This was done in order to prevent any possibility of interference among the transmitted channels. However, with time the LASER technology improved tremendously and very precise high performance LASERs with very narrow spectral widths were manufactured. This advancement enabled the simultaneous transmission of two channels belonging to the same window with negligible possibility of interference. This capability of the WDM system caused the optical carriers to be closely spaced in wavelength domain. Due to this dense packing of carrier signals, the new WDM systems came to be known as Dense Wavelength Division Multiplexed (DWDM) systems. The International Telecommunication Union (ITU) has specified standard guidelines for placement of the carrier signal wavelengths within a single communication window. The International Telecommunication Union (ITU) standard (ITU G.692) specifies the inter carrier spacing between two subsequent carrier signals in terms of frequency. Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical Engineering, IIT Bombay Page 3

4 This standard takes into account, all the possibilities of interference between adjacent channels and states that the frequency of the carrier signals must lie on a fixed grid called the ITU grid. ITU G.692 is specified below: ITU G.692 Standard: Reference Frequency: THz ( nm) Fixed Inter-carrier Spacing: 100GHz ( 0.8nm at 1552 nm) One may easily notice that the ITU grid is equi-spaced in the frequency domain but not in the wavelength domain. Also, with two adjacent carrier frequencies 100GHz apart, a 10-20GHz bandwidth signal would not cause any mentionable interference between two channels. With the different carrier wavelengths satisfying the ITU grid, a typical WDM network architecture looks like the one shown below: Figure 26.2: Typical WDM Network Architecture The transmitter (TX) blocks in the figure are the individual optical transmitters. This does not rule out the fact that the TX blocks, in themselves, may be multiplexed output of several other transmitter networks thereby forming some sort of a hierarchical multiplexed architectural system. Also, the transmitter block may consist of time division multiplexed type of system where the data signals to be transmitted is multiplexed in the time domain. The output signals from these transmitters at their corresponding wavelengths ( etc) are then multiplexed in the wavelength domain in accordance to the ITU G.692 standard by the Wavelength Multiplexer (shown in the above figure). The wavelength multiplexer combines all the output signals and combines them to be transmitted along the optical fiber to reach the receiving end. One should, however, note that although the above architecture consists of multiple transmitters and receivers, as far as the type of communication is concerned, it is still a point-to-point link. As per the different design criteria discussed earlier, periodic amplifiers and repeaters are installed along the optical link to establish a secure and satisfactory optical communication link with the minimum possible BER. At the receiver side, the multiplexed transmitted signal is received and then Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical Engineering, IIT Bombay Page 4

5 de-multiplexed by a wavelength de-multiplexer and the respective receivers receive their intended data signals and further processing takes place on these receivers before the signal is actually delivered to the end-user. The above, in principle, is the basic working process of a typical WDM system. However, pure WDM systems have become obsolete with the introduction of the DWDM systems due to a variety of advantages that render DWDM systems far superior over WDM systems. Some of the advantages of DWDM systems are discussed below: 1) Capacity Upgradeable: The significance of this advantage is lies in the fact that new channels can be multiplexed to the already existing (operating) system with only a few minor changes. This facility enables the setting up of new transmitterreceiver pairs as per requirement even after the optical fiber cables have been laid. 2) Transparency: In case of a time division multiplexed (TDM) system, a desired upgrade in the channel capacity can be brought about only after tedious and complicated modification in the manner in which the data flows through the channel. These modifications have to be also made in all of the repeaters installed along the link. For such modifications, precise and accurate timing information about the data has to be available in order to reduce errors. However in DWDM systems, due to the transmission of data via different optical carrier wavelengths, the actual timing information of the data is irrelevant to any up gradation in the channel capacity. Even in the optical repeater/amplifier stations, irrespective of the actual data rate carried by the individual wavelengths, the station just amplifies the signal and re-transmits it. This is the transparency characteristic of the DWDM systems. 3) Wavelength Routing: In packet-data transmission networks, the header bits of each data packet (which determines the address of the destination to the data packet) is read at each router of the network along the path of the data-packet in order to deliver the packet to the appropriate destination through the shortest path. This process uses up valuable transmission time and also there arises possibilities of information being delivered to the wrong destination. However, in DWDM systems, the wavelength itself can be used as the address of a destination and there is no need to read the actual transmission data to route it to the destination. Every destination may be assigned a particular wavelength and the data carried on the wavelength may be appropriately routed to the preassigned destination based on the carrier wavelength. This saves transmission time and also enhances performance of the system. 4) Wavelength Switching: Switching of information signal from one carrier wavelength to another carrier wavelength is also possible in DWDM systems. The need for a switching operation to be initiated occurs whenever there is a non-availability of the required wavelength due to congestion or other network factors. The above characteristics, or rather advantages, have rendered the WDM/DWDM systems far superior as compared to the normal point-to-point communication link. A Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical Engineering, IIT Bombay Page 5

6 variety of devices and systems have been developed which are capable of performing all the above mentioned functions such as wavelength routing, wavelength switching, etc. The next query that comes to the mind is the different components that are required for setting up a WDM/DWDM system for various practical applications. The list below highlights the fundamental components that are required to set up WDM/DWDM system. Dispersion Shifted/Flattened Optical Fiber. Tuneable/Multi-wavelength LASER Optical Source. Broadband Optical Amplifiers. Wavelength Dependent Optical Devices The different background technologies that help in realizing the above components and their intended functions are: Semiconductor Optical Amplifiers (SOA) or Fiber Amplifier (such as Erbium Doped Fiber Amplifier (EDFA), Raman Amplifier) Integrated optical switches / optical couplers Fiber Bragg Gratings (FBG) Arrayed Waveguide Gratings (AWG) Having had the introductory knowledge of the different components required in a WDM system, the subsequent sections shall deal with these components in more detail in order to enhance the understanding of the reader. The first component to be discussed is the optical amplifier- which may either be a Semiconductor Optical amplifier or Erbium Doped Fiber Amplifier (EDFA) or a Raman Amplifier. Let us first acknowledge the actual need for an optical amplifier. For this, let us revert back to the discussions on the Optical Link Design where two different budget calculations were made in order to calculate the inter-repeater distance. For facilitating a comparative discussion let us assume a scenario of a link design as follows: Figure 26.3: Need of Optical Fiber The deterioration of the SNR in the transmission through the optical link is encompassed in the Power budget calculations and the distortion losses in the pulse as it travels through the optical link is taken care of by the rise-time budget calculations. In the figure 26.3 above, a scenario of an optical fiber link has been depicted by the parameters Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical Engineering, IIT Bombay Page 6

7 that have been mentioned under the two heads. Based on these given parameter values, the inter-repeater distances under the two heads have been calculated. From the values of the inter-repeater distance, it is very clear that the lowering of the SNR or the power budget calculations is a prime factor for determining the inter-repeater distance. A repeater is a device which receives the transmitted signal, regenerates it, amplifies it (in the electrical/optical domain) and then re-transmits the signal onto the channel. The repeater is thus a back-to-back integration of a receiver, an amplifier and a transmitter. That is why repeater units are costly too. So, to install repeater units at every ~200Km would not be a cost-effective design. Also, the function of the repeater takes a finite amount of time for the received signal to be amplified and then re-transmitted. However, one must note the fact that the improvement in the SNR of the signal can be brought about by a simple amplification of the transmitted signal which can be done just by installing an amplifier (optical/electrical) unit rather than installing the entire repeater. This fact generates the need for an amplifier unit to be used in the optical fiber link design. In earlier systems, however, repeater units were, in fact, used just for the sake of SNR improvement due to unavailability of appropriate amplifier units. But, the advancements in the optical communications have provided amplifiers that can amplify the signal even in the optical domain and thereby provide very fast and reliable link. Optical Amplifier Technology provides us with two main amplifying strategies which are- semiconductor based amplifier (SOA) of a fiber based optical amplifier (EDFA) as mentioned above. Let us have a quick comparative study between the two in terms of their features and characteristics. Semiconductor Optical Amplifiers (SOA) These amplifiers are compatible both the 1300nm and the 1550nm optical communication windows. SOAs have a high output optical power due to the fact that they are nothing but LASERs which, intrinsically, are optical amplifiers. SOAs have a high coupling loss. Because they are semiconductor based, SOAs can be integrated with other semiconductor based circuitry. They have high non-linearities. Erbium Doped Fiber Amplifier (EDFA) These amplifiers are compatible only in the 1550nm optical communication window. EDFAs can handle high power as well as provide a high gain (25dB). These amplifiers have low coupling losses as well as low noise figures. EDFAs have low cross-talk figures. EDFAs are polarization-insensitive. As can be seen from the above table, EDFAs have number of desirable advantages and so, they have gained high popularity and have become a centre of research over the last decade. The only limitation is the fact that these amplifiers are compatible only in the 1550nm optical communication window. In a generic sense, let us have a basic understanding of an optical amplifier unit which is depicted in the figure 26.4 below: Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical Engineering, IIT Bombay Page 7

8 Figure 26.4: Generic Optical Amplifier As the figure shows, an optical amplifier generally consists of an active medium which is excited by a pump-source. The incident optical input signal is then coupled to this active medium via fiber-to-amplifier couplers and the optical signal gets amplified inside this medium by virtue of stimulated emissions (already discussed earlier) and the amplified optical output s then recoupled to the optical fiber via another fiber-to-amplifier coupler. When the input optical signal travels through the active medium, the power from the pump gets transferred to the signal power and thus we obtain an amplified optical output. The energy level structure of the active medium, in fact, has to be such that forbidden-energy gap corresponds to the energy of the incoming photons, so that the stimulated emission process is initiated. Hence, the first step in the construction of an optical amplifier is to identify suitable materials that can be used as active media in the amplifier either directly or after suitable treatment to a basic material. The latter, in fact, is done in the construction of an EDFA in which the core of a normal optical fiber is appropriately doped with erbium (Er 3+ ) atoms and the energy level diagram of the doped region of the optical fiber core thus looks like: Figure 26.5: Erbium Energy Level Diagram Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical Engineering, IIT Bombay Page 8

9 As can be seen from the above diagram, the energy difference between the metastable and the ground states corresponds to about 1550 nm and so the EDFA are said to operate in the 1550nm optical communication window. The metastable state acts as the lasing level in the EDFA where the electrons await stimulation from the incident optical photons to undergo stimulated emission so as to provide an amplified coherent optical output. However, due to the wide nature of the metastable band (1480nm-1560nm), two different types of pumping wavelengths may be possible viz. 980nm pump and 1400nm pump as shown in the above figure. But the use of a 1400nm pump poses difficulties such as higher noise and lesser separation between pump and signal wavelengths thereby creating the possibility of interference. Hence a 980nm pump which has lower noise is generally preferred. The pumped electrons to the pump band then undergo a rapid non-radiative decay to the metastable band. The time constant of this decay is of the order of micro-seconds. Once in the metastable band, the electrons in the higher metastable levels further decay down to the lower metastable levels where there are more number of energy levels available and here they wait to enrol in the process of stimulated emission. Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical Engineering, IIT Bombay Page 9

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 37

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 37 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 37 Introduction to Raman Amplifiers Fiber Optics, Prof. R.K. Shevgaonkar, Dept.

More information

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture No. # 27 EDFA In the last lecture, we talked about wavelength

More information

Module 19 : WDM Components

Module 19 : WDM Components Module 19 : WDM Components Lecture : WDM Components - I Part - I Objectives In this lecture you will learn the following WDM Components Optical Couplers Optical Amplifiers Multiplexers (MUX) Insertion

More information

OPTICAL NETWORKS. Building Blocks. A. Gençata İTÜ, Dept. Computer Engineering 2005

OPTICAL NETWORKS. Building Blocks. A. Gençata İTÜ, Dept. Computer Engineering 2005 OPTICAL NETWORKS Building Blocks A. Gençata İTÜ, Dept. Computer Engineering 2005 Introduction An introduction to WDM devices. optical fiber optical couplers optical receivers optical filters optical amplifiers

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 20

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 20 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 20 Photo-Detectors and Detector Noise Fiber Optics, Prof. R.K. Shevgaonkar, Dept.

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 18.

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 18. FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 18 Optical Sources- Introduction to LASER Diodes Fiber Optics, Prof. R.K. Shevgaonkar,

More information

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs)

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Prof. Dr. Yaocheng SHI ( 时尧成 ) yaocheng@zju.edu.cn http://mypage.zju.edu.cn/yaocheng 1 Traditional Optical Communication System Loss

More information

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University Photonics Group Department of Micro- and Nanosciences Aalto University Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Last Lecture Topics Course introduction Ray optics & optical

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 22.

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 22. FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 22 Optical Receivers Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical Engineering,

More information

Optical Fibre Amplifiers Continued

Optical Fibre Amplifiers Continued 1 Optical Fibre Amplifiers Continued Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus ECE 445 Lecture 09 Fall Semester 2016 2 ERBIUM-DOPED FIBRE AMPLIFIERS BASIC

More information

Contents for this Presentation. Multi-Service Transport

Contents for this Presentation. Multi-Service Transport Contents for this Presentation SDH/DWDM based Multi-Service Transport Platform by Khurram Shahzad ad Brief Contents Description for this of Presentation the Project Development of a Unified Transport Platform

More information

Introduction Fundamental of optical amplifiers Types of optical amplifiers

Introduction Fundamental of optical amplifiers Types of optical amplifiers ECE 6323 Introduction Fundamental of optical amplifiers Types of optical amplifiers Erbium-doped fiber amplifiers Semiconductor optical amplifier Others: stimulated Raman, optical parametric Advanced application:

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 24. Optical Receivers-

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 24. Optical Receivers- FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 24 Optical Receivers- Receiver Sensitivity Degradation Fiber Optics, Prof. R.K.

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 29.

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 29. FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 29 Integrated Optics Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical Engineering,

More information

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm Khaled O. Basulaim, Samah Ali Al-Azani Dept. of Information Technology Faculty of Engineering,

More information

Lecture 15 Semiconductor Optical Amplifiers and OTDR

Lecture 15 Semiconductor Optical Amplifiers and OTDR Lecture 15 Semiconductor Optical Amplifiers and OTDR Introduction Where are we? Using semiconductors as amplifiers. Amplifier geometry Cross talk Polarisation dependence Gain clamping Real amplifier performance

More information

Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA

Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA P.P. Hema [1], Prof. A.Sangeetha [2] School of Electronics Engineering [SENSE], VIT University, Vellore

More information

Photonics and Optical Communication Spring 2005

Photonics and Optical Communication Spring 2005 Photonics and Optical Communication Spring 2005 Final Exam Instructor: Dr. Dietmar Knipp, Assistant Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Final Exam: 2 hour You

More information

Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using DCF

Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using DCF Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using Sabina #1, Manpreet Kaur *2 # M.Tech(Scholar) & Department of Electronics & Communication

More information

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers Chapter 8 Wavelength-Division Multiplexing (WDM) Part II: Amplifiers Introduction Traditionally, when setting up an optical link, one formulates a power budget and adds repeaters when the path loss exceeds

More information

Practical Aspects of Raman Amplifier

Practical Aspects of Raman Amplifier Practical Aspects of Raman Amplifier Contents Introduction Background Information Common Types of Raman Amplifiers Principle Theory of Raman Gain Noise Sources Related Information Introduction This document

More information

OPTICAL COMMUNICATIONS S

OPTICAL COMMUNICATIONS S OPTICAL COMMUNICATIONS S-108.3110 1 Course program 1. Introduction and Optical Fibers 2. Nonlinear Effects in Optical Fibers 3. Fiber-Optic Components 4. Transmitters and Receivers 5. Fiber-Optic Measurements

More information

OFC SYSTEMS Performance & Simulations. BC Choudhary NITTTR, Sector 26, Chandigarh

OFC SYSTEMS Performance & Simulations. BC Choudhary NITTTR, Sector 26, Chandigarh OFC SYSTEMS Performance & Simulations BC Choudhary NITTTR, Sector 26, Chandigarh High Capacity DWDM OFC Link Capacity of carrying enormous rates of information in THz 1.1 Tb/s over 150 km ; 55 wavelengths

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW #5 is assigned (due April 9) April 9 th class will be in

More information

Performance Analysis of 4-Channel WDM System with and without EDFA

Performance Analysis of 4-Channel WDM System with and without EDFA Performance Analysis of 4-Channel WDM System with and without EDFA 1 Jyoti Gujral, 2 Maninder Singh 1,2 Indo Global College of Engineering, Abhipur, Mohali, Punjab, India Abstract The Scope of this paper

More information

S Optical Networks Course Lecture 2: Essential Building Blocks

S Optical Networks Course Lecture 2: Essential Building Blocks S-72.3340 Optical Networks Course Lecture 2: Essential Building Blocks Edward Mutafungwa Communications Laboratory, Helsinki University of Technology, P. O. Box 2300, FIN-02015 TKK, Finland Tel: +358 9

More information

Elements of Optical Networking

Elements of Optical Networking Bruckner Elements of Optical Networking Basics and practice of optical data communication With 217 Figures, 13 Tables and 93 Exercises Translated by Patricia Joliet VIEWEG+ TEUBNER VII Content Preface

More information

Optical Transport Tutorial

Optical Transport Tutorial Optical Transport Tutorial 4 February 2015 2015 OpticalCloudInfra Proprietary 1 Content Optical Transport Basics Assessment of Optical Communication Quality Bit Error Rate and Q Factor Wavelength Division

More information

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian m.karbassian@arizona.edu Contents Optical Communications: Review Optical Communications and Photonics Why Photonics?

More information

PERFORMANCE ANALYSIS OF WDM AND EDFA IN C-BAND FOR OPTICAL COMMUNICATION SYSTEM

PERFORMANCE ANALYSIS OF WDM AND EDFA IN C-BAND FOR OPTICAL COMMUNICATION SYSTEM www.arpapress.com/volumes/vol13issue1/ijrras_13_1_26.pdf PERFORMANCE ANALYSIS OF WDM AND EDFA IN C-BAND FOR OPTICAL COMMUNICATION SYSTEM M.M. Ismail, M.A. Othman, H.A. Sulaiman, M.H. Misran & M.A. Meor

More information

Improved Analysis of Hybrid Optical Amplifier in CWDM System

Improved Analysis of Hybrid Optical Amplifier in CWDM System Improved Analysis of Hybrid Optical Amplifier in CWDM System 1 Bandana Mallick, 2 Reeta Kumari, 3 Anirban Mukherjee, 4 Kunwar Parakram 1. Asst Proffesor in Dept. of ECE, GIET Gunupur 2, 3,4. Student in

More information

A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF

A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF Research Manuscript Title A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF Dr.Punal M.Arabi, Nija.P.S PG Scholar, Professor, Department of ECE, SNS College of Technology,

More information

RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM

RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM Prof. Muthumani 1, Mr. Ayyanar 2 1 Professor and HOD, 2 UG Student, Department of Electronics and Communication Engineering,

More information

Design of an Optical Submarine Network With Longer Range And Higher Bandwidth

Design of an Optical Submarine Network With Longer Range And Higher Bandwidth Design of an Optical Submarine Network With Longer Range And Higher Bandwidth Yashas Joshi 1, Smridh Malhotra 2 1,2School of Electronics Engineering (SENSE) Vellore Institute of Technology Vellore, India

More information

Fiberoptic Communication Systems By Dr. M H Zaidi. Optical Amplifiers

Fiberoptic Communication Systems By Dr. M H Zaidi. Optical Amplifiers Optical Amplifiers Optical Amplifiers Optical signal propagating in fiber suffers attenuation Optical power level of a signal must be periodically conditioned Optical amplifiers are a key component in

More information

Chapter 9 GUIDED WAVE OPTICS

Chapter 9 GUIDED WAVE OPTICS [Reading Assignment, Hecht 5.6] Chapter 9 GUIDED WAVE OPTICS Optical fibers The step index circular waveguide is the most common fiber design for optical communications plastic coating (sheath) core cladding

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 4

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 4 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 4 Modal Propagation of Light in an Optical Fiber Fiber Optics, Prof. R.K. Shevgaonkar,

More information

Spectral Response of FWM in EDFA for Long-haul Optical Communication

Spectral Response of FWM in EDFA for Long-haul Optical Communication Spectral Response of FWM in EDFA for Long-haul Optical Communication Lekshmi.S.R 1, Sindhu.N 2 1 P.G.Scholar, Govt. Engineering College, Wayanad, Kerala, India 2 Assistant Professor, Govt. Engineering

More information

Comparative Analysis of Various Optimization Methodologies for WDM System using OptiSystem

Comparative Analysis of Various Optimization Methodologies for WDM System using OptiSystem Comparative Analysis of Various Optimization Methodologies for WDM System using OptiSystem Koushik Mukherjee * Department of Electronics and Communication, Dublin Institute of Technology, Ireland E-mail:

More information

Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier

Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier Aied K. Mohammed, PhD Department of Electrical Engineering, University

More information

Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks

Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks 363 Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks CHAOUI Fahd 3, HAJAJI Anas 1, AGHZOUT Otman 2,4, CHAKKOUR Mounia 3, EL YAKHLOUFI Mounir

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 35. Self-Phase-Modulation

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 35. Self-Phase-Modulation FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 35 Self-Phase-Modulation (SPM) Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical

More information

Dr. Monir Hossen ECE, KUET

Dr. Monir Hossen ECE, KUET Dr. Monir Hossen ECE, KUET 1 Outlines of the Class Principles of WDM DWDM, CWDM, Bidirectional WDM Components of WDM AWG, filter Problems with WDM Four-wave mixing Stimulated Brillouin scattering WDM Network

More information

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian m.karbassian@arizona.edu Contents Optical Communications: Review Optical Communications and Photonics Why Photonics?

More information

Physics 464/564. Research Project: AWG Technology in DWDM System. By: Andre Y. Ma Date:

Physics 464/564. Research Project: AWG Technology in DWDM System. By: Andre Y. Ma Date: Physics 464/564 Research Project: AWG Technology in DWDM System By: Andre Y. Ma Date: 2-28-03 Abstract: The ever-increasing demand for bandwidth poses a serious limitation for the existing telecommunication

More information

Semiconductor Optical Amplifiers (SOAs) as Power Boosters. Applications Note No. 0001

Semiconductor Optical Amplifiers (SOAs) as Power Boosters. Applications Note No. 0001 Semiconductor Optical Amplifiers (s) as Power Boosters Applications Note No. 0001 Semiconductor Optical Amplifiers (s) as Power Boosters There is a growing need to manage the increase in loss budgets associated

More information

Optical Communications and Networking 朱祖勍. Oct. 9, 2017

Optical Communications and Networking 朱祖勍. Oct. 9, 2017 Optical Communications and Networking Oct. 9, 2017 1 Optical Amplifiers In optical communication systems, the optical signal from the transmitter are attenuated by the fiber and other passive components

More information

Chapter 10 WDM concepts and components

Chapter 10 WDM concepts and components Chapter 10 WDM concepts and components - Outline 10.1 Operational principle of WDM 10. Passive Components - The x Fiber Coupler - Scattering Matrix Representation - The x Waveguide Coupler - Mach-Zehnder

More information

Thursday, April 17, 2008, 6:28:40

Thursday, April 17, 2008, 6:28:40 Wavelength Division Multiplexing By: Gurudatha Pai K gurudatha@gmail.com Thursday, April 17, 2008, 6:28:40 Overview Introduction Popular Multiplexing Techniques Optical Networking WDM An Analogy of Multiplexing

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 36

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 36 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 36 Solitonic Communication Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical

More information

Gain Flattened L-Band EDFA -Raman Hybrid Amplifier by Bidirectional Pumping technique

Gain Flattened L-Band EDFA -Raman Hybrid Amplifier by Bidirectional Pumping technique Gain Flattened L-Band EDFA -Raman Hybrid Amplifier by Bidirectional Pumping technique Avneet Kour 1, Neena Gupta 2 1,2 Electronics and Communication Department, PEC University of Technology, Chandigarh

More information

Implementation of Dense Wavelength Division Multiplexing FBG

Implementation of Dense Wavelength Division Multiplexing FBG AUSTRALIAN JOURNAL OF BASIC AND APPLIED SCIENCES ISSN:1991-8178 EISSN: 2309-8414 Journal home page: www.ajbasweb.com Implementation of Dense Wavelength Division Multiplexing Network with FBG 1 J. Sharmila

More information

Long-Haul DWDM RF Fiber Optic Link System

Long-Haul DWDM RF Fiber Optic Link System EMCORE Corporation - Broadband Division, Alhambra, CA, USA ABSTRACT EMCORE s vertically integrated ISO-9001 facility, staffed with our optics/rf engineering team, has been successfully designing and manufacturing

More information

Module 19 : WDM Components

Module 19 : WDM Components Module 19 : WDM Components Lecture : WDM Components - II Objectives In this lecture you will learn the following OADM Optical Circulators Bidirectional OADM using Optical Circulators and FBG Optical Cross

More information

EDFA WDM Optical Network using GFF

EDFA WDM Optical Network using GFF EDFA WDM Optical Network using GFF Shweta Bharti M. Tech, Digital Communication, (Govt. Women Engg. College, Ajmer), Rajasthan, India ABSTRACT This paper describes the model and simulation of EDFA WDM

More information

Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing

Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing Viyoma Sarup* and Amit Gupta Chandigarh University Punjab, India *viyoma123@gmail.com Abstract A RoF

More information

Optical Communications and Networking 朱祖勍. Sept. 25, 2017

Optical Communications and Networking 朱祖勍. Sept. 25, 2017 Optical Communications and Networking Sept. 25, 2017 Lecture 4: Signal Propagation in Fiber 1 Nonlinear Effects The assumption of linearity may not always be valid. Nonlinear effects are all related to

More information

Bit error rate and cross talk performance in optical cross connect with wavelength converter

Bit error rate and cross talk performance in optical cross connect with wavelength converter Vol. 6, No. 3 / March 2007 / JOURNAL OF OPTICAL NETWORKING 295 Bit error rate and cross talk performance in optical cross connect with wavelength converter M. S. Islam and S. P. Majumder Department of

More information

Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System

Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 06 34 Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System Meenakshi,

More information

Lecture 2. Introduction to Optical. Ivan Avrutsky, ECE 5870 Optical Communication Networks, Lecture 2. Slide 1

Lecture 2. Introduction to Optical. Ivan Avrutsky, ECE 5870 Optical Communication Networks, Lecture 2. Slide 1 Lecture 2 Introduction to Optical Networks Ivan Avrutsky, ECE 5870 Optical Communication Networks, Lecture 2 Slide 1 Optical Communication Networks 1. Why optical? 2. How does it work? 3. How to design

More information

WDM. Coarse WDM. Nortel's WDM System

WDM. Coarse WDM. Nortel's WDM System WDM wavelength-division multiplexing (WDM) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths (i.e. colors) of laser light.

More information

UNREPEATERED SYSTEMS: STATE OF THE ART CAPABILITY

UNREPEATERED SYSTEMS: STATE OF THE ART CAPABILITY UNREPEATERED SYSTEMS: STATE OF THE ART CAPABILITY Nicolas Tranvouez, Eric Brandon, Marc Fullenbaum, Philippe Bousselet, Isabelle Brylski Nicolas.tranvouez@alcaltel.lucent.fr Alcatel-Lucent, Centre de Villarceaux,

More information

SYLLABUS Optical Fiber Communication

SYLLABUS Optical Fiber Communication SYLLABUS Optical Fiber Communication Subject Code : IA Marks : 25 No. of Lecture Hrs/Week : 04 Exam Hours : 03 Total no. of Lecture Hrs. : 52 Exam Marks : 100 UNIT - 1 PART - A OVERVIEW OF OPTICAL FIBER

More information

Performance Investigation of RAMAN-EDFA HOA for DWDM System (Received 17 September, 2016 Accepted 02 October, 2016)

Performance Investigation of RAMAN-EDFA HOA for DWDM System (Received 17 September, 2016 Accepted 02 October, 2016) Performance Investigation of RAMAN-EDFA HOA for DWDM System (Received 17 September, 2016 Accepted 02 October, 2016) ABSTRACT Neha Thakral Research Scholar, DAVIET, Jalandhar nthakral9@gmail.com Earlier

More information

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source JOURNAL OF L A TEX CLASS FILES, VOL. X, NO. XX, XXXX XXX 1 Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source Jérôme Vasseur, Jianjun Yu Senior Member,

More information

Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates

Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates Simarpreet Kaur Gill 1, Gurinder Kaur 2 1Mtech Student, ECE Department, Rayat- Bahra University,

More information

Ph.D. Course Spring Wireless Communications. Wirebound Communications

Ph.D. Course Spring Wireless Communications. Wirebound Communications Ph.D. Course Spring 2005 Danyo Danev associate professor Div. Data Transmission, Dept. Electrical Engineering Linköping University SWEDEN Wireless Communications Radio transmissions Mobile telephony Satellite

More information

Erbium-Doper Fiber Amplifiers

Erbium-Doper Fiber Amplifiers Seminar presentation Erbium-Doper Fiber Amplifiers 27.11.2009 Ville Pale Presentation Outline History of EDFA EDFA operating principle Stimulated Emission Stark Splitting Gain Gain flatness Gain Saturation

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING. FINAL EXAMINATION, April 2017 DURATION: 2.5 hours

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING. FINAL EXAMINATION, April 2017 DURATION: 2.5 hours UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING ECE4691-111 S - FINAL EXAMINATION, April 2017 DURATION: 2.5 hours Optical Communication and Networks Calculator Type: 2 Exam Type: X Examiner:

More information

Performance analysis of Erbium Doped Fiber Amplifier at different pumping configurations

Performance analysis of Erbium Doped Fiber Amplifier at different pumping configurations Performance analysis of Erbium Doped Fiber Amplifier at different pumping configurations Mayur Date M.E. Scholar Department of Electronics and Communication Ujjain Engineering College, Ujjain (M.P.) datemayur3@gmail.com

More information

To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks

To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks 289 To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks Areet Aulakh 1, Kulwinder Singh Malhi 2 1 Student, M.Tech, ECE department, Punjabi University,

More information

DWDM Theory. ZTE Corporation Transmission Course Team. ZTE University

DWDM Theory. ZTE Corporation Transmission Course Team. ZTE University DWDM Theory ZTE Corporation Transmission Course Team DWDM Overview Multiplexing Technology WDM TDM SDM What is DWDM? Gas Station High Way Prowl Car Definition l 1 l 2 l N l 1 l 2 l 1 l 2 l N OA l N OMU

More information

UNIT - 7 WDM CONCEPTS AND COMPONENTS

UNIT - 7 WDM CONCEPTS AND COMPONENTS UNIT - 7 WDM CONCEPTS AND COMPONENTS WDM concepts, overview of WDM operation principles, WDM standards, Mach-Zehender interferometer, multiplexer, Isolators and circulators, direct thin film filters, active

More information

WDM Concept and Components. EE 8114 Course Notes

WDM Concept and Components. EE 8114 Course Notes WDM Concept and Components EE 8114 Course Notes Part 1: WDM Concept Evolution of the Technology Why WDM? Capacity upgrade of existing fiber networks (without adding fibers) Transparency:Each optical channel

More information

LW Technology. Passive Components. LW Technology (Passive Components).PPT - 1 Copyright 1999, Agilent Technologies

LW Technology. Passive Components. LW Technology (Passive Components).PPT - 1 Copyright 1999, Agilent Technologies LW Technology Passive Components LW Technology (Passive Components).PPT - 1 Patchcords Jumper cables to connect devices and instruments Adapter cables to connect interfaces using different connector styles

More information

Ultra High Capacity Wavelength Division Multiplexed Optical Wireless Communication System

Ultra High Capacity Wavelength Division Multiplexed Optical Wireless Communication System Ultra High Capacity Wavelength Division Multiplexed Optical Wireless Communication System 1 Meenakshi, 2 Gurinder Singh 1 Student, 2 Assistant Professor 1 Electronics and communication, 1 Ludhiana College

More information

Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia

Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia Research Journal of Applied Sciences, Engineering and Technology 13(7): 606-610, 2016 DOI:10.19026/rjaset.13.3020 ISSN: 2040-7459; e-issn: 2040-7467 2016 Maxwell Scientific Publication Corp. Submitted:

More information

ANALYSIS OF THE CROSSTALK IN OPTICAL AMPLIFIERS

ANALYSIS OF THE CROSSTALK IN OPTICAL AMPLIFIERS MANDEEP SINGH AND S K RAGHUWANSHI: ANALYSIS OF THE CROSSTALK IN OPTICAL AMPLIFIERS DOI: 10.1917/ijct.013.0106 ANALYSIS OF THE CROSSTALK IN OPTICAL AMPLIFIERS Mandeep Singh 1 and S. K. Raghuwanshi 1 Department

More information

Performance Analysis of Dwdm System With Different Modulation Techique And Photodiode

Performance Analysis of Dwdm System With Different Modulation Techique And Photodiode The International Journal Of Engineering And Science (IJES) Volume 2 Issue 7 Pages 07-11 2013 ISSN(e): 2319 1813 ISSN(p): 2319 1805 Performance Analysis of Dwdm System With Different Modulation Techique

More information

Performance Evaluation of Different Hybrid Optical Amplifiers for 64 10, and Gbps DWDM transmission system

Performance Evaluation of Different Hybrid Optical Amplifiers for 64 10, and Gbps DWDM transmission system Performance Evaluation of Different Hybrid Optical Amplifiers for 64 10, 96 10 and 128 10 Gbps DWDM transmission system Rashmi a, Anurag Sharma b, Vikrant Sharma c a Deptt. of Electronics & Communication

More information

Agilent 83430A Lightwave Digital Source Product Overview

Agilent 83430A Lightwave Digital Source Product Overview Agilent Lightwave Digital Source Product Overview SDH/SONET Compliant DFB laser source for digital, WDM, and analog test up to 2.5 Gb/s 52 Mb/s STM-0/OC-1 155 Mb/s STM-1/OC-3 622 Mb/s STM-4/OC-12 2488

More information

Optical switches. Switching Technology S Optical switches

Optical switches. Switching Technology S Optical switches Optical switches Switching Technology S38.165 http://www.netlab.hut.fi/opetus/s38165 13-1 Optical switches Components and enabling technologies Contention resolution Optical switching schemes 13-2 1 Components

More information

Introduction and concepts Types of devices

Introduction and concepts Types of devices ECE 6323 Introduction and concepts Types of devices Passive splitters, combiners, couplers Wavelength-based devices for DWDM Modulator/demodulator (amplitude and phase), compensator (dispersion) Others:

More information

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER Progress In Electromagnetics Research Letters, Vol. 9, 9 18, 29 CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER H. Ahmad, M. Z. Zulkifli, S. F. Norizan,

More information

Optical communications

Optical communications Optical communications Components and enabling technologies Optical networking Evolution of optical networking: road map SDH = Synchronous Digital Hierarchy SONET = Synchronous Optical Network SDH SONET

More information

Wavelength Multiplexing. The Target

Wavelength Multiplexing. The Target The Target Design a MAN* like fiber network for high data transmission rates. The network is partial below sea level and difficult to install and to maintain. Such a fiber network demands an optimized

More information

Fiber Bragg Grating Dispersion Compensation Enables Cost-Efficient Submarine Optical Transport

Fiber Bragg Grating Dispersion Compensation Enables Cost-Efficient Submarine Optical Transport Fiber Bragg Grating Dispersion Compensation Enables Cost-Efficient Submarine Optical Transport By Fredrik Sjostrom, Proximion Fiber Systems Undersea optical transport is an important part of the infrastructure

More information

Dispersion Pre-Compensation for a Multi-wavelength Erbium Doped Fiber Laser Using Cascaded Fiber Bragg Gratings

Dispersion Pre-Compensation for a Multi-wavelength Erbium Doped Fiber Laser Using Cascaded Fiber Bragg Gratings Journal of Applied Sciences Research, 5(10): 1744749, 009 009, INSInet Publication Dispersion Pre-Compensation for a Multi-wavelength Erbium Doped Fiber Laser Using Cascaded Fiber Bragg Gratings 1 1 1

More information

DESIGN TEMPLATE ISSUES ANALYSIS FOR ROBUST DESIGN OUTPUT. performance, yield, reliability

DESIGN TEMPLATE ISSUES ANALYSIS FOR ROBUST DESIGN OUTPUT. performance, yield, reliability DESIGN TEMPLATE ISSUES performance, yield, reliability ANALYSIS FOR ROBUST DESIGN properties, figure-of-merit thermodynamics, kinetics, process margins process control OUTPUT models, options Optical Amplification

More information

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber I. H. M. Nadzar 1 and N. A.Awang 1* 1 Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, Johor,

More information

Gain Flattening Improvements With Two Cascade Erbium Doped Fiber Amplifier In WDM Systems

Gain Flattening Improvements With Two Cascade Erbium Doped Fiber Amplifier In WDM Systems International Academic Institute for Science and Technology International Academic Journal of Science and Engineering Vol. 3, No. 1, 2016, pp. 36-42. ISSN 2454-3896 International Academic Journal of Science

More information

NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR WAVELENGTH SELEC- TIVE SWITCHING BASED OPTICAL NETWORKS

NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR WAVELENGTH SELEC- TIVE SWITCHING BASED OPTICAL NETWORKS Progress In Electromagnetics Research Letters, Vol. 9, 93 100, 2009 NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR WAVELENGTH SELEC- TIVE SWITCHING BASED OPTICAL NETWORKS A. Banerjee

More information

Optical Local Area Networking

Optical Local Area Networking Optical Local Area Networking Richard Penty and Ian White Cambridge University Engineering Department Trumpington Street, Cambridge, CB2 1PZ, UK Tel: +44 1223 767029, Fax: +44 1223 767032, e-mail:rvp11@eng.cam.ac.uk

More information

Multiplexing. Timeline. Multiplexing. Types. Optically

Multiplexing. Timeline. Multiplexing. Types. Optically Multiplexing Multiplexing a process where multiple analog message signals or digital data streams are combined into one signal over a shared medium Types Time division multiplexing Frequency division multiplexing

More information

Simulation of Pre & Post Compensation Techniques for 16 Channels DWDM Optical Network using CSRZ & DRZ Formats

Simulation of Pre & Post Compensation Techniques for 16 Channels DWDM Optical Network using CSRZ & DRZ Formats Simulation of Pre & Post Compensation Techniques for 16 Channels DWDM Optical Network using CSRZ & DRZ Formats Richa Arya 1, Malti Rani 2 1 M. Tech, Computer Science Department, Punjab Technical University,

More information

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. Preface p. xiii Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. 6 Plastic Optical Fibers p. 9 Microstructure Optical

More information

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices Dr. Rüdiger Paschotta RP Photonics Consulting GmbH Competence Area: Fiber Devices Topics in this Area Fiber lasers, including exotic types Fiber amplifiers, including telecom-type devices and high power

More information

A NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR DWDM OPTICAL NETWORKS

A NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR DWDM OPTICAL NETWORKS Progress In Electromagnetics Research M, Vol. 11, 213 223, 2010 A NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR DWDM OPTICAL NETWORKS A. Banerjee Department of Electronics and Communication

More information

Advanced Test Equipment Rentals ATEC (2832)

Advanced Test Equipment Rentals ATEC (2832) Established 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) BN 8000 May 2000 Profile Optische Systeme GmbH Gauss Str. 11 D - 85757 Karlsfeld / Germany Tel + 49 8131 5956-0 Fax

More information

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a)

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a) Optical Sources (a) Optical Sources (b) The main light sources used with fibre optic systems are: Light-emitting diodes (LEDs) Semiconductor lasers (diode lasers) Fibre laser and other compact solid-state

More information