12-Pixel WSi SNSPD Arrays for the Lunar Lasercomm OCTL Terminal

Size: px
Start display at page:

Download "12-Pixel WSi SNSPD Arrays for the Lunar Lasercomm OCTL Terminal"

Transcription

1 ! 12-Pixel WSi SNSPD Arrays for the Lunar Lasercomm OCTL Terminal Matt Shaw Jet Propulsion Laboratory, Pasadena, CA 24 June 2013 Jeffrey A. Stern 1, Kevin Birnbaum 1, Meera Srinivasan 1, Michael Cheng 1, Kevin Quirk 1, Abhijit Biswas 1, Francesco Marsili 1,2, William Farr 1 Jet Propulsion Laboratory, California Institute of Technology Varun Verma 2, Richard P. Mirin 2, Sae Woo Nam 2 National Institute of Standards and Technology 1!

2 LLCD Project Overview! Lunar Atmospheric Dust Environment Explorer (LADEE), ARC Lunar Laser Communication Demonstration (LLCD) Launch: August 2013 Moon Lunar Lasercom Space Terminal (LLST), MIT-LL 39, , Mb/s DOWNLINK 39 Mb/s DOWNLINK Lunar Laser Operations Center (LLOC), MIT-LL 10, 20 Mb/s UPLINK BEACON UPLINK ESA, Tenerife, Canary Islands Science Ops. Center, GSFC Lunar Lasercom OCTL Terminal (LLOT), JPL Boston MA Table Mtn CA Greenbelt MD White Sands Lunar Lasercom Ground Terminal (LLGT), MIT-LL NM First laser communication demonstration from Lunar distance Bidirectional laser communication demo from lunar orbit (400,000 km) at 1550 nm First demonstration of laser communication beyond earth orbit Uplink rates Mbps, Downlink rates Mbps Transmit Payload on LADEE Spacecraft (ARC) implemented by MIT-LL Managed by GSFC, Primary ground terminal implemented by MIT-LL Backup ground terminals implemented by JPL and ESA 2!

3 LLOT Ground Terminal! OCTL Telescope LLOT is a secondary ground station for the Lunar Laser Communication Demonstration (LLCD), located at Table Mountain, CA 16 day demonstration (October-November 2013, following 6 Sept LADEE launch) Link support at Sun-Earth-Probe (SEP) > 10 Transmit laser beacon to assist link acquisition Receive downlink at 39 / 78 code-word error rate < 1E-5 Transmit limited real-time channel and link diagnostics to operations center Process downlink in non-real time to extract information 12-pixel WSi SNSPD detector arrays operating at 800 mk. 3!

4 Pulse Position Modulation! Encoding scheme trades data rate for mass and power on the spacecraft Data is encoded in optical pulse timing Ideal for photon starved applications such as deep space optical communication LLST signals use PPM-16 encoding with 311 MHz 5 GHz variable slot rate Fundamental channel capacity hν/2ktln2 (more than one bit per photon) Requires detectors with high efficiency and sub-nanosecond time resolution A B C D E F G H I J K L M N O P Time (ns) 4!

5 Pulse Position Modulation! Encoding scheme trades data rate for mass and power on the spacecraft Data is encoded in optical pulse timing Ideal for photon starved applications such as deep space optical communication LLST signals use PPM-16 encoding with 311 MHz 5 GHz variable slot rate Fundamental channel capacity hν/2ktln2 (more than one bit per photon) Requires detectors with high efficiency and sub-nanosecond time resolution A B C D E F G H I J K L M N O P Time (ns) 5!

6 Pulse Position Modulation! Encoding scheme trades data rate for mass and power on the spacecraft Data is encoded in optical pulse timing Ideal for photon starved applications such as deep space optical communication LLST signals use PPM-16 encoding with 311 MHz 5 GHz variable slot rate Fundamental channel capacity hν/2ktln2 (more than one bit per photon) Requires detectors with high efficiency and sub-nanosecond time resolution A B C D E F G H I J K L M N O P Time (ns) 6!

7 LLOT Detection Architecture! OCTL Telescope Single 1.2-m telescope Signal coupled to GIF-625 multimode fiber 12-pixel WSi SNSPD array 64-µm diameter active area ~40% system detection efficiency All channels combined electronically Combined signal 1.25 Gs/s Receiver implemented in software 7!

8 Single Pixel WSi SNSPDs! Amorphous WSi, T C = 3.1 K (bulk 5 K) Time-resolved single photon counting No intrinsic energy resolution 93% System Detection Efficiency with cavity ps timing jitter ns recovery time µm diameter active area Device Dark Rate < 1 cps System Dark Rate ~1000 cps Cavity optimized for nm Without cavity, operation shown 1 5 µm Operating temperature ~1 K Nanowires 4.5 x nm 12-pixel arrays demonstrated for comm 64-pixel free space arrays in development 15 µm Marsili et al, Nature Photonics 7, 210 (2013) 8!

9 Single Pixel WSi SNSPDs! TE TM TiO 2 Au (pads) WSi SNSPD SiO 2 (sputtered) Au (mirror) SiO 2 (thermal) Si (substrate) Embedding WSi nanowires in a microfabricated optical cavity improves detection efficiency from ~20% (Baek et al, 2011) to > 90% (Marsili et al, 2013) Layer thicknesses optimized for detection at 1550 nm 9!

10 Single Pixel WSi SNSPDs! SDE ISW Sub-cps intrinsic dark counts, ~1 kcps dark counts coupled to SM fiber SDE independent of temperature up to ~ 2 K Bias plateau lost at higher temperatures 10!

11 12 Pixel SNSPD Arrays! Array design based on single-pixel SNSPDs described above 12 Counterwound Nanowires, 6 wires in each plane, 160 nm width 64 µm diameter active area matched to GIF-625 multimode fiber Quarter wave optical cavity to resonantly enhance absorption at 1.55 µm Vias to Au mirror layer give CPW ground straps ~40% total array efficiency Max count rate ~10 MHz / channel Fabricated at JPL with NIST collaboration 11!

12 12-Pixel Array Packaging! Fiber Self-alignment concept developed by Sae Woo Nam / Aaron Miller at NIST Concept extended to 12-channel arrays for LLOT arrays 12 waveguides connect nanowires to bond pads, then bonded to PCB with waveguides going to SMP connectors Optical fiber Fiber ferrule Zirconia sleeve Device chip Sapphire rod Coaxial connector pin Miller et al., Opt. Express (2011) 12!

13 Array Performance! Bias Current (Arbitrary Units) All 12 channels are working and show saturated bias dependence Array Efficiency ~40% Dark counts 10 kcps/channel with multimode fiber Nanowire switching current I SW ~ 4 µa Recovery time ~17 ns per channel as measured from interarrival time histograms Maximum count rate ~10 MHz per channel 13!

14 Cryogenic System! Cryogen Free 1K cryostat from Photon Spot, Inc. Closed-cycle He4 refrigerator Holds 780 mk > 12 hrs unloaded, 8.5 hrs with wiring Backed by Sumitomo GM cooler with 3K and 40K stages Air-cooled compressor, 208V, suitable for field operations. 14!

15 Cryogenic Readout Electronics! High bandwidth ~2 GHz requires one cryogenic amplifier per channel Low-cost SiGe solution: Sirenza SGL-622Z ~90 K cold noise temperature with transformer coupling to provide return current path 5 MHz 4 GHz amplifier band Detector bias added at amplifier board CuNi coax used from 1K to 40K 3x 4-channel amplifier boards at 40K stage 15!

16 Room Temperature Electronics! Amplifier Filter Comparator ECL Converter Analog Combiner High-Speed Digitizer SNSPD LEVEL SHIFT + DAQ 1 K 40 K 300 K V 16!

17 Link Closure Tests! Performed joint compatibility tests with MIT-LL LLST Transmit Emulator Only used 9 out of 12 SNSPD channels due to wiring issues Closed error-free LLCD communication link at 78 Mbps w/ > 1.5 db margin under worst case additive backgrounds and clock dynamics Closed link at 39 Mbps w/ 4.4 db margin under worst case conditions May be able to close link at 155 Mbps using all 12 channels For comparison, LLGT terminal (MIT-LL) closes link at 622 Mbps using four 4- channel NbN SNSPD arrays with 14 µm diameter WSi detector closed the link at 39 and 78 Mb/s 17!

18 Summary! LLOT is a backup ground terminal for the LLCD space communication demonstration 12-Pixel WSi SNSPD arrays have been developed which are suitable for LLOT Work is based on previous achievements with single-pixel WSi SNSPDs A ground receiver instrument has been built and will be field deployed LLOT Receiver passed all compatibility tests with spacecraft hardware emulator Thanks to our collaborators JPL, NIST, MIT-LL, GSFC Thanks to our sponsors NASA Office of Chief Technologist, Game Changing Development Program NASA HEOMD, Space Communications and Navigation DARPA DSO Information in a Photon (InPho) This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration 18!

Overview and Status of the Lunar Laser Communications Demonstration

Overview and Status of the Lunar Laser Communications Demonstration Overview and Status of the Lunar Laser Communications Demonstration Don M. Boroson, Bryan S. Robinson, Dennis A. Burianek, Daniel V. Murphy MIT Lincoln Laboratory Abhijit Biswas Jet Propulsion Laboratory

More information

A four-pixel single-photon pulse-position camera fabricated from WSi

A four-pixel single-photon pulse-position camera fabricated from WSi A four-pixel single-photon pulse-position camera fabricated from WSi superconducting nanowire single-photon detectors V. B. Verma 1*, R. Horansky 1, F. Marsili 2, J. A. Stern 2, M. D. Shaw 2, A. E. Lita

More information

Status of Free Space Optical Communications Technology at the Jet Propulsion Laboratory

Status of Free Space Optical Communications Technology at the Jet Propulsion Laboratory Status of Free Space Optical Communications Technology at the Jet Propulsion Laboratory National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Deep Space

More information

The Lunar Laser Communications Demonstration (LLCD)

The Lunar Laser Communications Demonstration (LLCD) The Lunar Laser Communications Demonstration (LLCD) The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher

More information

Superconducting Nanowire Single Photon Detector (SNSPD) integrated with optical circuits

Superconducting Nanowire Single Photon Detector (SNSPD) integrated with optical circuits Superconducting Nanowire Single Photon Detector (SNSPD) integrated with optical circuits Marcello Graziosi, ESR 3 within PICQUE (Marie Curie ITN project) and PhD student marcello.graziosi@ifn.cnr.it Istituto

More information

Time-of-Flight and Ranging Experiments on the Lunar Laser Communication Demonstration

Time-of-Flight and Ranging Experiments on the Lunar Laser Communication Demonstration Time-of-Flight and Ranging Experiments on the Lunar Laser Communication Demonstration M. L. Stevens, R. R. Parenti, M. M. Willis, J. A. Greco, F. I. Khatri, B. S. Robinson, D. M. Boroson Stanford PNT Symposium

More information

LLCD Accomplishments No Issues with Atmospheric Effects like Fading and Turbulence. Transmitting Data at 77 Mbps < 5 above the horizon

LLCD Accomplishments No Issues with Atmospheric Effects like Fading and Turbulence. Transmitting Data at 77 Mbps < 5 above the horizon LLCD Accomplishments No Issues with Atmospheric Effects like Fading and Turbulence Transmitting Data at 77 Mbps < 5 above the horizon LLCD Accomplishments Streaming HD Video and Delivering Useful Scientific

More information

Detecting Single Infrared Photons with 93% System Efficiency

Detecting Single Infrared Photons with 93% System Efficiency Detecting Single Infrared Photons with 93% System Efficiency F. Marsili 1*, V. B. Verma 1, J. A. Stern 2, S. Harrington 1, A. E. Lita 1, T. Gerrits 1, I. Vayshenker 1, B. Baek 1, M. D. Shaw 2, R. P. Mirin

More information

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER FA C AUTHOR(S) 5d. PROJECT NUMBER

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER FA C AUTHOR(S) 5d. PROJECT NUMBER REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Overview on Lasercom (from an MIT-LL Perspective)

Overview on Lasercom (from an MIT-LL Perspective) Overview on Lasercom (from an MIT-LL Perspective) Scott A. Hamilton Presented to: Workshop on Free Space Optical Networks 3-4 July 207 Distribution Statement A: Approved for public release: distribution

More information

Overview of the Lunar Laser Communication Demonstration

Overview of the Lunar Laser Communication Demonstration Overview of the Lunar Laser Communication Demonstration Don M. Boroson MIT Lincoln Laboratory; Lexington, MA, USA boroson@ll.mit.edu Abstract For one month in late 2013, NASA s Lunar Laser Communication

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Detecting Single Infrared Photons with 93 % System Efficiency: Supplementary Information F. Marsili 1*, V. B. Verma 1, J. A. Stern 2, S. Harrington 1, A. E. Lita 1, T. Gerrits 1, I. Vayshenker 1, B. Baek

More information

Ground based photon counting detection for the 2010 Mars Laser Communications Demonstration

Ground based photon counting detection for the 2010 Mars Laser Communications Demonstration Ground based photon counting detection for the 2010 Mars Laser Communications Demonstration William H. Farr Jet Propulsion Laboratory California Institute of Technology William Farr - 1 Optical Communications

More information

Waveguide superconducting single-photon detectors for Integrated Quantum Photonic devices

Waveguide superconducting single-photon detectors for Integrated Quantum Photonic devices Waveguide superconducting single-photon detectors for Integrated Quantum Photonic devices KOBIT- 1 Izmir Yuksek Teknoloji Enstitusu Döndü Sahin QET Labs, d.sahin@bristol.ac.uk EU-FP7 Implementing QNIX

More information

AIM payload OPTEL-D. Multi-purpose laser communication system. Presentation to: AIM Industry Days ESTEC, 22nd February 2016

AIM payload OPTEL-D. Multi-purpose laser communication system. Presentation to: AIM Industry Days ESTEC, 22nd February 2016 AIM payload OPTEL-D Multi-purpose laser communication system Presentation to: AIM Industry Days ESTEC, 22nd February 2016 Outline 1. Objectives OPTEL-D 2. Technology Development Activities 3. OPTEL-D payload

More information

Don M Boroson MIT Lincoln Laboratory. 28 August MIT Lincoln Laboratory

Don M Boroson MIT Lincoln Laboratory. 28 August MIT Lincoln Laboratory Free-Space Optical Communication Don M Boroson 28 August 2012 Overview-1 This work is sponsored by National Aeronautics and Space Administration under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations,

More information

Small Sat Lasercom. Renny Fields. The Aerospace Corporation, El Segundo, CA July 11, 2016

Small Sat Lasercom. Renny Fields. The Aerospace Corporation, El Segundo, CA July 11, 2016 Small Sat Lasercom Renny Fields The Aerospace Corporation, El Segundo, CA 90245 July 11, 2016 The Aerospace Corporation 2016 1 Acknowledgements Abi Biswas and the DSOC team Todd Rose Darren Rowen Seven

More information

Status of Free-Space Optical Communications Program at JPL

Status of Free-Space Optical Communications Program at JPL Status of Free-Space Optical Communications Program at JPL H. Hemmati Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Dr., Pasadena, CA 91 109, M/S 161-135 Phone #: 8 18-354-4960

More information

LARGE-AREA SUPERCONDUCTING NANOWIRE SINGLE-PHOTON DETECTOR WITH DOUBLE-STAGE AVALANCHE STRUCTURE

LARGE-AREA SUPERCONDUCTING NANOWIRE SINGLE-PHOTON DETECTOR WITH DOUBLE-STAGE AVALANCHE STRUCTURE 1 LARGE-AREA SUPERCONDUCTING NANOWIRE SINGLE-PHOTON DETECTOR WITH DOUBLE-STAGE AVALANCHE STRUCTURE Risheng Cheng, Menno Poot, Xiang Guo, Linran Fan and Hong X. Tang Abstract We propose a novel design of

More information

NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature

NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature Supplementary Information NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature W. J. Zhang, L. X. You *, H. Li,

More information

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77. Table of Contents 1

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77. Table of Contents 1 Efficient single photon detection from 500 nm to 5 μm wavelength: Supporting Information F. Marsili 1, F. Bellei 1, F. Najafi 1, A. E. Dane 1, E. A. Dauler 2, R. J. Molnar 2, K. K. Berggren 1* 1 Department

More information

Laser Communications Relay Demonstrations

Laser Communications Relay Demonstrations Laser Communications Relay Demonstrations Vishesh Shrivastava Department of Computer Science & Engineering KLS Gogte Institute of Technology Belagavi, India Contact No.-7406219350 vishesh0109@gmail.com

More information

A distributed superconducting nanowire single photon detector for imaging

A distributed superconducting nanowire single photon detector for imaging A distributed superconducting nanowire single photon detector for imaging Qing-Yuan Zhao, D. Zhu, N. Calandri, F. Bellei, A. McCaughan, A. Dane, H. Wang, K. Berggren Massachusetts Institute of Technology

More information

ixblue Photonics Space Activities

ixblue Photonics Space Activities ixblue Photonics Space Activities Introduction ixblue Photonics develops and produces Optical LiNbO3 modulators showing high reliability regarding space qualification : radiation, vibration, vacuum, lifetime,

More information

Design of a Free Space Optical Communication Module for Small Satellites

Design of a Free Space Optical Communication Module for Small Satellites Design of a Free Space Optical Communication Module for Small Satellites Ryan W. Kingsbury, Kathleen Riesing Prof. Kerri Cahoy MIT Space Systems Lab AIAA/USU Small Satellite Conference August 6 2014 Problem

More information

Deep Space Communication The further you go, the harder it gets. D. Kanipe, Sept. 2013

Deep Space Communication The further you go, the harder it gets. D. Kanipe, Sept. 2013 Deep Space Communication The further you go, the harder it gets D. Kanipe, Sept. 2013 Deep Space Communication Introduction Obstacles: enormous distances, S/C mass and power limits International Telecommunications

More information

MLCD: Overview of NASA s Mars Laser Communications Demonstration System

MLCD: Overview of NASA s Mars Laser Communications Demonstration System MLCD: Overview of NASA s Mars Laser Communications Demonstration System D. M. Boroson, A. Biswas2, B. L. Edwards3 MIT Lincoln Laboratory, Lexington, MA 02420 Jet Propulsion Laboratory, Pasadena, CA 9 1

More information

DOCOMAS Deep Space Optical Communications Architecture Study. Executive Summary. ESOC Contract No /12/F/MOS

DOCOMAS Deep Space Optical Communications Architecture Study. Executive Summary. ESOC Contract No /12/F/MOS Deep Space Optical Communications Architecture Study Executive Summary ESOC Contract No. 4000106720/12/F/MOS -Issue 1 March 2016 1 of 11 1 INTRODUCTION Satellite based optical communications in space is

More information

Modeling plasmonic structure integrated single-photon detectors to maximize polarization contrast

Modeling plasmonic structure integrated single-photon detectors to maximize polarization contrast Modeling plasmonic structure integrated single-photon detectors to maximize polarization contrast Mária Csete, András Szenes, Gábor Szekeres, Balázs Bánhelyi, Tibor Csendes, Gábor Szabó Department of Optics

More information

SY-SNSPD-001 Superconducting Nanowire Single Photon Detector System

SY-SNSPD-001 Superconducting Nanowire Single Photon Detector System SY-SNSPD-001 Superconducting Nanowire Single Photon Detector System www.ali-us.com Overview Advanced Lab Instruments SY-SNSPD-001 single-photon detectors system is integrated one or more units Advanced

More information

Ranging and Optical Communication R&D for Deep Space Missions

Ranging and Optical Communication R&D for Deep Space Missions National Institute of Information and Communications Technology 14th BroadSky Workshop Ranging and Optical Communication R&D for Deep Space Missions October 18, 2016 Hiroo Kunimori *1) and Hayabusa2 LIDAR

More information

arxiv: v1 [physics.ins-det] 11 Aug 2017

arxiv: v1 [physics.ins-det] 11 Aug 2017 UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature arxiv:78.423v [physics.ins-det] Aug 27 E. E. WOLLMAN,,* V. B. VERMA, 2 A. D. BEYER, R.

More information

A single-photon detector with high efficiency. and sub-10 ps time resolution

A single-photon detector with high efficiency. and sub-10 ps time resolution A single-photon detector with high efficiency and sub-10 ps time resolution arxiv:1801.06574v1 [physics.ins-det] 19 Jan 2018 Iman Esmaeil Zadeh,,, Johannes W. N. Los, Ronan B. M. Gourgues, Gabriele Bulgarini,

More information

Design of the ESA Optical Ground Station for Participation in LLCD

Design of the ESA Optical Ground Station for Participation in LLCD Design of the ESA Optical Ground Station for Participation in LLCD Marc Sans and Zoran Sodnik European Space Research and Technology Centre European Space Agency Noordwijk, The Netherlands marc.sans@esa.int,

More information

Optical Communications Telescope Laboratory (OCTL) Support of Space to Ground Link Demonstrations

Optical Communications Telescope Laboratory (OCTL) Support of Space to Ground Link Demonstrations SpaceOps Conferences 5-9 May 2014, Pasadena, CA SpaceOps 2014 Conference 10.2514/6.2014-1710 Optical Communications Telescope Laboratory (OCTL) Support of Space to Ground Link Demonstrations Abhijit Biswas

More information

Multimode Fiber Coupled Superconductor Nanowire Single-Photon Detector

Multimode Fiber Coupled Superconductor Nanowire Single-Photon Detector Multimode Fiber Coupled Superconductor Nanowire Single-Photon Detector Volume 6, Number 5, October 2014 Labao Zhang Ming Gu Tao Jia Ruiyin Xu Chao Wan Lin Kang Jian Chen Peiheng Wu DOI: 10.1109/JPHOT.2014.2360285

More information

Efficient communication at telecom wavelengths using wavelength conversion and silicon photon-counting detectors

Efficient communication at telecom wavelengths using wavelength conversion and silicon photon-counting detectors Efficient communication at telecom wavelengths using wavelength conversion and silicon photon-counting detectors M. E. Grein* a, L. E. Elgin a, B. S. Robinson a a a, David O. Caplan, Mark L. Stevens, S.

More information

Superconducting Transition-Edge Sensors and Superconducting Tunnel Junctions for Optical/UV Time-Energy Resolved Single-Photon Counters

Superconducting Transition-Edge Sensors and Superconducting Tunnel Junctions for Optical/UV Time-Energy Resolved Single-Photon Counters Superconducting Transition-Edge Sensors and Superconducting Tunnel Junctions for Optical/UV Time-Energy Resolved Single-Photon Counters NHST Meeting STScI - Baltimore 10 April 2003 TES & STJ Detector Summary

More information

2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising

More information

Two- Stage Control for CubeSat Optical Communications

Two- Stage Control for CubeSat Optical Communications Two- Stage Control for CubeSat Optical Communications Ryan W. Kingsbury Kathleen Riesing, Tam Nguyen, Prof. Kerri Cahoy MIT Space Systems Lab CalPoly CubeSat Developers Workshop April 24, 2014 Outline

More information

PRELIMINARY. Specifications are at array temperature of -30 C and package ambient temperature of 23 C All values are typical

PRELIMINARY. Specifications are at array temperature of -30 C and package ambient temperature of 23 C All values are typical DAPD NIR 5x5 Array+PCB 1550 Series: Discrete Amplification Photon Detector Array Including Pre-Amplifier Board The DAPDNIR 5x5 Array 1550 series takes advantage of the breakthrough Discrete Amplification

More information

The Lunar Laser Communication Demonstration: NASA s First Step Toward Very High Data Rate Support of Science and Exploration Missions

The Lunar Laser Communication Demonstration: NASA s First Step Toward Very High Data Rate Support of Science and Exploration Missions The Lunar Laser Communication Demonstration: NASA s First Step Toward Very High Data Rate Support of Science and Exploration Missions The MIT Faculty has made this article openly available. Please share

More information

First tests of prototype SCUBA-2 array

First tests of prototype SCUBA-2 array First tests of prototype SCUBA-2 array Adam Woodcraft Astronomical Instrumentation Group School of Physics and Astronomy,Cardiff University http://woodcraft.lowtemp lowtemp.org/ Techniques and Instrumentation

More information

The Laser Communications Relay Demonstration

The Laser Communications Relay Demonstration Proc. and Applications (ICSOS) 2012, 1-1, Ajaccio, Corsica, France, October 9-12 (2012) The Laser Communications Relay Demonstration and lossless data compression have improved the capability over time,

More information

A Space Based Optical Communications Relay Architecture to Support Future NASA Science and Exploration Missions

A Space Based Optical Communications Relay Architecture to Support Future NASA Science and Exploration Missions Proc. and Applications (ICSOS) 2014, S6-1, Kobe, Japan, May 7-9 (2014) A Space Based Optical Communications Relay Architecture to Support Future NASA Science and Exploration Missions Bernard L. Edwards,

More information

Nano-structured superconducting single-photon detector

Nano-structured superconducting single-photon detector Nano-structured superconducting single-photon detector G. Gol'tsman *a, A. Korneev a,v. Izbenko a, K. Smirnov a, P. Kouminov a, B. Voronov a, A. Verevkin b, J. Zhang b, A. Pearlman b, W. Slysz b, and R.

More information

Starshade Technology Development Status

Starshade Technology Development Status Starshade Technology Development Status Dr. Nick Siegler NASA Exoplanets Exploration Program Chief Technologist Jet Propulsion Laboratory California Institute of Technology Dr. John Ziemer NASA Exoplanets

More information

Instruction manual and data sheet ipca h

Instruction manual and data sheet ipca h 1/15 instruction manual ipca-21-05-1000-800-h Instruction manual and data sheet ipca-21-05-1000-800-h Broad area interdigital photoconductive THz antenna with microlens array and hyperhemispherical silicon

More information

Developing two-way free-space optical communication links to connect atomic clocks on the ground with atomic clocks in orbit.

Developing two-way free-space optical communication links to connect atomic clocks on the ground with atomic clocks in orbit. Developing two-way free-space optical communication links to connect atomic clocks on the ground with atomic clocks in orbit. Nov 7 th 2018 Michael Taylor Supervisor: Prof. Leo Hollberg Fundamental Physics

More information

THE OFFICINE GALILEO DIGITAL SUN SENSOR

THE OFFICINE GALILEO DIGITAL SUN SENSOR THE OFFICINE GALILEO DIGITAL SUN SENSOR Franco BOLDRINI, Elisabetta MONNINI Officine Galileo B.U. Spazio- Firenze Plant - An Alenia Difesa/Finmeccanica S.p.A. Company Via A. Einstein 35, 50013 Campi Bisenzio

More information

Figure 1. Proposed Mission Operations Functions. Key Performance Parameters Success criteria of an amateur communicator on board of Moon-exploration

Figure 1. Proposed Mission Operations Functions. Key Performance Parameters Success criteria of an amateur communicator on board of Moon-exploration Title: CubeSat amateur laser communicator with Earth to Moon orbit data link capability Primary Point of Contact (POC) & email: oregu.nijuniku@jaxa.jp Co-authors: Oleg Nizhnik Organization: JAXA Need Available

More information

A CubeSat-Based Optical Communication Network for Low Earth Orbit

A CubeSat-Based Optical Communication Network for Low Earth Orbit A CubeSat-Based Optical Communication Network for Low Earth Orbit Richard Welle, Alexander Utter, Todd Rose, Jerry Fuller, Kristin Gates, Benjamin Oakes, and Siegfried Janson The Aerospace Corporation

More information

INGAAS FAST PIN (RF) AMPLIFIED PHOTODETECTORS

INGAAS FAST PIN (RF) AMPLIFIED PHOTODETECTORS INGAAS FAST PIN (RF) AMPLIFIED PHOTODETECTORS High Signal-to-Noise Ratio Ultrafast up to 9.5 GHz Free-Space or Fiber-Coupled InGaAs Photodetectors Wavelength Range from 750-1650 nm FPD310 FPD510-F https://www.thorlabs.com/newgrouppage9_pf.cfm?guide=10&category_id=77&objectgroup_id=6687

More information

SPACOMM 2009 PANEL. Challenges and Hopes in Space Navigation and Communication: From Nano- to Macro-satellites

SPACOMM 2009 PANEL. Challenges and Hopes in Space Navigation and Communication: From Nano- to Macro-satellites SPACOMM 2009 PANEL Challenges and Hopes in Space Navigation and Communication: From Nano- to Macro-satellites Lunar Reconnaissance Orbiter (LRO): NASA's mission to map the lunar surface Landing on the

More information

Convergence Challenges of Photonics with Electronics

Convergence Challenges of Photonics with Electronics Convergence Challenges of Photonics with Electronics Edward Palen, Ph.D., P.E. PalenSolutions - Optoelectronic Packaging Consulting www.palensolutions.com palensolutions@earthlink.net 415-850-8166 October

More information

Next Generation Space Atomic Clock Space Communications and Navigation (SCaN) Technology

Next Generation Space Atomic Clock Space Communications and Navigation (SCaN) Technology Next Generation Space Atomic Clock Space Communications and Navigation (SCaN) Technology John D. Prestage- 1 Next Generation Space Atomic Clock!! Hg Ion Clock Technology was selected as NASA OCT TDM!!

More information

Application Notes: Discrete Amplification Photon Detector 5x5 Array Including Pre- Amplifiers Board

Application Notes: Discrete Amplification Photon Detector 5x5 Array Including Pre- Amplifiers Board Application Notes: Discrete Amplification Photon Detector 5x5 Array Including Pre- Amplifiers Board March 2015 General Description The 5x5 Discrete Amplification Photon Detector (DAPD) array is delivered

More information

A High-Speed Data Downlink for Wide-Bandwidth CubeSat Payloads

A High-Speed Data Downlink for Wide-Bandwidth CubeSat Payloads A High-Speed Data Downlink for Wide-Bandwidth CubeSat Payloads John Buonocore 12 th Annual Developer s Workshop 22 April 2015 Cal Poly San Luis Obispo High Speed Data Downlink The need for wider bandwidth

More information

Ti/Au TESs as photon number resolving detectors

Ti/Au TESs as photon number resolving detectors Ti/Au TESs as photon number resolving detectors LAPO LOLLI, E. MONTICONE, C. PORTESI, M. RAJTERI, E. TARALLI SIF XCVI National Congress, Bologna 20 24 September 2010 1 Introduction: What are TES? TESs

More information

High-performance Multichannel Superconducting Single-Photon Detector System with Compact Cryocooler

High-performance Multichannel Superconducting Single-Photon Detector System with Compact Cryocooler High-performance Multichannel Superconducting Single-Photon Detector System with Compact Cryocooler Taro Yamashita, Shigehito Miki, and Hirotaka Terai Advanced ICT Research Institute National Institute

More information

PROCEEDINGS OF SPIE. Inter-satellite omnidirectional optical communicator for remote sensing

PROCEEDINGS OF SPIE. Inter-satellite omnidirectional optical communicator for remote sensing PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Inter-satellite omnidirectional optical communicator for remote sensing Jose E. Velazco, Joseph Griffin, Danny Wernicke, John Huleis,

More information

A novel, low power optical communication instrument for small satellites

A novel, low power optical communication instrument for small satellites A novel, low power optical communication instrument for small satellites SSC15-VI-10 Paul Serra, Nathan Barnwell, John W. Conklin University of Florida Mechanical and Aerospace Engineering, 231 MAE-A Building,

More information

NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL

NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL OUTLINE Introduction Platform Overview Device Library Overview What s Next? Conclusion OUTLINE Introduction Platform Overview

More information

Detectors that cover a dynamic range of more than 1 million in several dimensions

Detectors that cover a dynamic range of more than 1 million in several dimensions Detectors that cover a dynamic range of more than 1 million in several dimensions Detectors for Astronomy Workshop Garching, Germany 10 October 2009 James W. Beletic Teledyne Providing the best images

More information

Optical Communications Group (332-D): Deep-space Optical Terminal (DOT) and Active Isolation Steering Element (AISE) design

Optical Communications Group (332-D): Deep-space Optical Terminal (DOT) and Active Isolation Steering Element (AISE) design Optical Communications Group (332-D): Deep-space Optical Terminal (DOT) and Active Isolation Steering Element (AISE) design I. Abstract Derek Wells (1), Dr. Martin Regehr (2) California State University,

More information

NON-AMPLIFIED HIGH SPEED PHOTODETECTOR USER S GUIDE

NON-AMPLIFIED HIGH SPEED PHOTODETECTOR USER S GUIDE NON-AMPLIFIED HIGH SPEED PHOTODETECTOR USER S GUIDE Thank you for purchasing your Non-amplified High Speed Photodetector. This user s guide will help answer any questions you may have regarding the safe

More information

A 200 GHz Broadband, Fixed-Tuned, Planar Doubler

A 200 GHz Broadband, Fixed-Tuned, Planar Doubler A 200 GHz Broadband, Fixed-Tuned, Planar Doubler David W. Porterfield Virginia Millimeter Wave, Inc. 706 Forest St., Suite D Charlottesville, VA 22903 Abstract - A 100/200 GHz planar balanced frequency

More information

Silicon photonics integration roadmap for applications in computing systems

Silicon photonics integration roadmap for applications in computing systems Silicon photonics integration roadmap for applications in computing systems Bert Jan Offrein Neuromorphic Devices and Systems Group 2016 IBM Corporation Outline Photonics and computing? The interconnect

More information

Planar Transmission Line Technologies

Planar Transmission Line Technologies Planar Transmission Line Technologies CMB Polarization Technology Workshop NIST/Boulder Edward J. Wollack Observational Cosmology Laboratory NASA Goddard Space Flight Center Greenbelt, Maryland Overview

More information

March 31, 2003 Single-photon Detection at 1.55 µm with InGaAs APDs and via Frequency Upconversion Marius A. Albota and Franco N.C.

March 31, 2003 Single-photon Detection at 1.55 µm with InGaAs APDs and via Frequency Upconversion Marius A. Albota and Franco N.C. March 31, 2003 Single-photon Detection at 1.55 µm with InGaAs APDs and via Frequency Upconversion Marius A. Albota and Franco N.C. Wong Quantum and Optical Communications Group MIT Funded by: ARO MURI,

More information

Deep- Space Optical Communication Link Requirements

Deep- Space Optical Communication Link Requirements Deep- Space Optical Communication Link Requirements Professor Chester S. Gardner Department of Electrical and Computer Engineering University of Illinois cgardner@illinois.edu Link Equation: For a free-

More information

HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE

HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your High Speed Fiber Photodetector. This user s guide will help answer any questions you may have regarding the safe use and optimal

More information

160-Gb/s Bidirectional Parallel Optical Transceiver Module for Board-Level Interconnects

160-Gb/s Bidirectional Parallel Optical Transceiver Module for Board-Level Interconnects 160-Gb/s Bidirectional Parallel Optical Transceiver Module for Board-Level Interconnects Fuad Doany, Clint Schow, Jeff Kash C. Baks, D. Kuchta, L. Schares, & R. John IBM T. J. Watson Research Center doany@us.ibm.com

More information

Quantum Sensors Programme at Cambridge

Quantum Sensors Programme at Cambridge Quantum Sensors Programme at Cambridge Stafford Withington Quantum Sensors Group, University Cambridge Physics of extreme measurement, tackling demanding problems in ultra-low-noise measurement for fundamental

More information

Space-Based Laser Communications Break Threshold

Space-Based Laser Communications Break Threshold Recent and upcoming deployments of satellite laser communication systems are bringing Internet-like speeds for data transmission in space. The result could be a revolution in communication, both on Earth

More information

Single photon detectors used in free space communication

Single photon detectors used in free space communication Single photon detectors used in free space communication July 2016 Introduction The increase in demand of high speed internet, video conferencing, live streaming, real-time imagery, and information technologies

More information

A Low Power Optical Communication Instrument for Deep-Space CubeSats. Paul Serra, CubeSat Developers Workshop, 2015 v1.5

A Low Power Optical Communication Instrument for Deep-Space CubeSats. Paul Serra, CubeSat Developers Workshop, 2015 v1.5 A Low Power Optical Communication Instrument for Deep-Space CubeSats Paul Serra, Nathan Barnwell, John W. Conklin Paul Serra, CubeSat Developers Workshop, 2015 v1.5 Motivation and Objectives Objectives:

More information

Fabrication Process Yielding Saturated Nanowire Single- Photon Detectors With 24-Picosecond Jitter

Fabrication Process Yielding Saturated Nanowire Single- Photon Detectors With 24-Picosecond Jitter Fabrication Process Yielding Saturated Nanowire Single- Photon Detectors With 24-Picosecond Jitter The MIT Faculty has made this article openly available. Please share how this access benefits you. Your

More information

Cyber-Physical Systems

Cyber-Physical Systems Cyber-Physical Systems Cody Kinneer Slides used with permission from: Dr. Sebastian J. I. Herzig Jet Propulsion Laboratory, California Institute of Technology Oct 2, 2017 The cost information contained

More information

Photo-Electronic Crossbar Switching Network for Multiprocessor Systems

Photo-Electronic Crossbar Switching Network for Multiprocessor Systems Photo-Electronic Crossbar Switching Network for Multiprocessor Systems Atsushi Iwata, 1 Takeshi Doi, 1 Makoto Nagata, 1 Shin Yokoyama 2 and Masataka Hirose 1,2 1 Department of Physical Electronics Engineering

More information

LISA AIV/T. N. Dinu Jaeger ARTEMIS. [joint work with APC and CNES]

LISA AIV/T. N. Dinu Jaeger ARTEMIS. [joint work with APC and CNES] LISA AIV/T N. Dinu Jaeger ARTEMIS [joint work with APC and CNES] Outline General configuration of LISA payload & MOSA Top level MOSA AIV/T flow description Main French MOSA AIV/T activities Proposal for

More information

ECE 6390 Project : Communication system

ECE 6390 Project : Communication system ECE 6390 Project : Communication system December 9, 2008 1. Overview The Martian GPS network consists of 18 satellites (3 constellations of 6 satellites). One master satellite of each constellation will

More information

Photon counting astronomy with TES

Photon counting astronomy with TES Photon counting astronomy with TES Stanford University Blas Cabrera, Chao-Lin Kuo, Roger Romani, Keith Thompson Jeff Yen, Matthew Yankowitz NIST Sae Woo Nam, Kent Irwin, Adriana Lita KISS Workshop-1 Motivation

More information

Mission requirements and satellite overview

Mission requirements and satellite overview Mission requirements and satellite overview E. BOUSSARIE 1 Dual concept Users need Defence needs Fulfil the Defence needs on confidentiality and security Civilian needs Fulfillment of the different needs

More information

inemi OPTOELECTRONICS ROADMAP FOR 2004 Dr. Laura J. Turbini University of Toronto SMTA International September 26, 2005

inemi OPTOELECTRONICS ROADMAP FOR 2004 Dr. Laura J. Turbini University of Toronto SMTA International September 26, 2005 inemi OPTOELECTRONICS ROADMAP FOR 2004 0 Dr. Laura J. Turbini University of Toronto SMTA International September 26, 2005 Outline Business Overview Traditional vs Jisso Packaging Levels Optoelectronics

More information

Optical Time Transfer for Future Disaggregated Small Satellite Navigation Systems

Optical Time Transfer for Future Disaggregated Small Satellite Navigation Systems Optical Time Transfer for Future Disaggregated Small Satellite Navigation Systems John W. Conklin*, Nathan Barnwell, Leopoldo Caro, Maria Carrascilla, Olivia Formoso, Seth Nydam, Paul Serra, Norman Fitz-Coy

More information

THE OPS-SAT NANOSATELLITE MISSION

THE OPS-SAT NANOSATELLITE MISSION THE OPS-SAT NANOSATELLITE MISSION Aerospace O.Koudelka, TU Graz M.Wittig MEW Aerospace D.Evans ESA 1 Contents 1) Introduction 2) ESA s OPS-SAT Mission 3) System Design 4) Communications Experiments 5)

More information

Single photon detection with nanowires

Single photon detection with nanowires Single photon detection with nanowires Val Zwiller, L. Schweickert, J. Zichi, K. Jöns, M. Versteegh, A. Elshaari, L. Yang, M. Bavinck, A. Fognini, I. Zadeh Quantum Nano Photonics Applied Physics KTH zwillerlab.tudelft.nl

More information

Integration of Optoelectronic and RF Devices for Applications in Optical Interconnect and Wireless Communication

Integration of Optoelectronic and RF Devices for Applications in Optical Interconnect and Wireless Communication Integration of Optoelectronic and RF Devices for Applications in Optical Interconnect and Wireless Communication Zhaoran (Rena) Huang Assistant Professor Department of Electrical, Computer and System Engineering

More information

FPA-320x256-K-2.2-TE2 InGaAs Imager

FPA-320x256-K-2.2-TE2 InGaAs Imager FPA-320x256-K-2.2-TE2 InGaAs Imager NEAR INFRARED (1.2 µm - 2.2 µm) IMAGE SENSOR FEATURES 320 x 256 Array Format 28-pin Metal DIP Package Embedded 2-stage Thermoelectric Cooler Typical Pixel Operability

More information

Fieldworthy ROFL/OFL Multimode Fiber Differential Mode Delay Measurement System

Fieldworthy ROFL/OFL Multimode Fiber Differential Mode Delay Measurement System Fieldworthy ROFL/OFL Multimode Fiber Differential Mode Delay Measurement System Lew Aronson and Lisa Buckman HP Labs Palo Alto February 2, 1998 Outline Measurement Goals and Issues Functional Block Diagram

More information

The Q/U Imaging ExperimenT (QUIET) receivers Coherent Polarimeter Arrays at 40 and 90 GHz

The Q/U Imaging ExperimenT (QUIET) receivers Coherent Polarimeter Arrays at 40 and 90 GHz The Q/U Imaging ExperimenT (QUIET) receivers Coherent Polarimeter Arrays at 40 and 90 GHz Dorothea Samtleben, Max-Planck-Institut für Radioastronomie, Bonn Universe becomes transparent => Release of Cosmic

More information

External Cavity Diode Laser Tuned with Silicon MEMS

External Cavity Diode Laser Tuned with Silicon MEMS External Cavity Diode Laser Tuned with Silicon MEMS MEMS-Tunable External Cavity Diode Laser Lenses Laser Output Diffraction Grating AR-coated FP Diode Silicon Mirror 3 mm Balanced MEMS Actuator iolon

More information

HIGH BANDWIDTH DFB LASERS

HIGH BANDWIDTH DFB LASERS HIGH BANDWIDTH DFB LASERS 7-pin k-package AA71 SERIES The AA71 distributed feedback laser (DFB) is an InGaAsP/InP multi-quantum well laser diode. The module is ideal in applications where high bandwidth,

More information

DLR s Optical Communications Program for 2018 and beyond. Dr. Sandro Scalise Institute of Communications and Navigation

DLR s Optical Communications Program for 2018 and beyond. Dr. Sandro Scalise Institute of Communications and Navigation DLR.de Chart 1 DLR s Optical Communications Program for 2018 and beyond Dr. Sandro Scalise Institute of Communications and Navigation DLR.de Chart 3 Relevant Scenarios Unidirectional Links Main application

More information

HEMERA Constellation of passive SAR-based micro-satellites for a Master/Slave configuration

HEMERA Constellation of passive SAR-based micro-satellites for a Master/Slave configuration HEMERA Constellation of passive SAR-based micro-satellites for a Master/Slave HEMERA Team Members: Andrea Bellome, Giulia Broggi, Luca Collettini, Davide Di Ienno, Edoardo Fornari, Leandro Lucchese, Andrea

More information

A 4 Channel Waveform Sampling ASIC in 130 nm CMOS

A 4 Channel Waveform Sampling ASIC in 130 nm CMOS A 4 Channel Waveform Sampling ASIC in 130 nm CMOS E. Oberla, H. Grabas, J.F. Genat, H. Frisch Enrico Fermi Institute, University of Chicago K. Nishimura, G. Varner University of Hawai I Large Area Picosecond

More information

Optical Bus for Intra and Inter-chip Optical Interconnects

Optical Bus for Intra and Inter-chip Optical Interconnects Optical Bus for Intra and Inter-chip Optical Interconnects Xiaolong Wang Omega Optics Inc., Austin, TX Ray T. Chen University of Texas at Austin, Austin, TX Outline Perspective of Optical Backplane Bus

More information

Heinrich-Hertz-Institut Berlin

Heinrich-Hertz-Institut Berlin NOVEMBER 24-26, ECOLE POLYTECHNIQUE, PALAISEAU OPTICAL COUPLING OF SOI WAVEGUIDES AND III-V PHOTODETECTORS Ludwig Moerl Heinrich-Hertz-Institut Berlin Photonic Components Dept. Institute for Telecommunications,,

More information

Ultra-sensitive, room-temperature THz detector using nonlinear parametric upconversion

Ultra-sensitive, room-temperature THz detector using nonlinear parametric upconversion 15 th Coherent Laser Radar Conference Ultra-sensitive, room-temperature THz detector using nonlinear parametric upconversion M. Jalal Khan Jerry C. Chen Z-L Liau Sumanth Kaushik Ph: 781-981-4169 Ph: 781-981-3728

More information