The Effects of Triplen Harmonic Distortion and Other Electrical Stresses on an INSTEON Power Line Communications Networks

Size: px
Start display at page:

Download "The Effects of Triplen Harmonic Distortion and Other Electrical Stresses on an INSTEON Power Line Communications Networks"

Transcription

1 The Effects of Triplen Harmonic Distortion and Other Electrical Stresses on an INSTEON Power Line Communications Networks By: Anthony E., Advisor Dr. Gang Feng April 2006 Abstract In recent years, power line communication networks have been a rapidly developing technology section. New networks have appeared which make claims of great increases in reliability over the previous generation. The performance of a power line communication network based on the INSTEON network architecture was tested in the presence of triplen harmonic distortion. The network was put through an additional battery of three qualitative tests to gauge the performance and stability of the architecture under a variety of electrical stresses. These included presence of capacitive power loads, distance attenuation, and inter-phase impedance. The experimenter concluded that while improvements are present, INSTEON does not live up to its reliability claims under conditions typical of an average home. In particularly, the presence of capacitive loads proved to be a problem for the network. The Big M, Vol II,

2 Introduction What is a Power Line Communication Network? The term power line communication network (hereafter PLC ) refers to a network of interconnected devices which use a standard 120 V home power system as their means of communication. Due to recent advances in PLC technology, networks can now be separated into two major subgroups: broadband and narrowband. This research concerns itself with only narrowband, or low bit-rate networks because broadband PLC technology is not currently commercially available to the general public. In residential settings, narrowband networks are primarily used for applications such as home automation. Such networks are not new; the first PLC network, based on the X10 architecture, was introduced in the late 1970s. Since that time, X10 has found moderate success in niche markets, but has not penetrated the majority of households. In part, this failure can be attributed to a number of weaknesses in the X10 infrastructure that made it susceptible to problems with noise and loading on the power system. During the past few years, there has been a renaissance in development of PLC technology fueled by promises of corporate forums such as Broadband over Power Lines (BPL) and the Homeplug Alliance. Among this new development, there are several new technologies aiming to become the successor to X10 and become the superfluous communication network in households. One such successor, SmartLabs INSTEON, claims to improve on X10 s stability problems and achieve 99.97% reliability [1]. The Big M, Vol II,

3 How does a PLC function? In the United States, the majority of power transmission consists of three conductors, each carrying a 60-Hz sinusoidal signal, which each conductor, or phase, separated by 120º from the others. Each power outlet within a home is connected to a single phase. To communicate to another device plugged into the same phase, an INSTEON device transmits a digital signal using amplitude-shift-keying on a carrier frequency of 120 khz 1. Data is transmitted in bursts of no greater than 1 ms 2 centered on the zero-crossing point 3 of the phase. Fig. 1 - PLC bursts on the power signal (Src: Each INSTEON device is connected to the network though a high-pass filter, which passes the high-frequency data carrier and blocks the low-frequency power signal. INSTEON uses a peer-to-peer architecture which is capable of functioning without a centralized controller. Each device is addressed by a 32-bit ID number and is capable of functioning as a repeater of INSTEON commands (but not X10 commands). 1 This maintains backwards compatibility with legacy X10 devices. 2 1 ms burst size is used for legacy X10 commands. INSTEON commands normally use a smaller size. 3 The point in time at which the phase-to-ground voltage is zero. The Big M, Vol II,

4 Why are PLC Networks Important? Both broadband and narrowband PLC networks have the potential to effect great lifestyle changes. The power line network in the United States covers much more area than other possible broadband carriers such as DSL or coaxial cable. In remote locations, power lines may be the only option to provide last mile internet connectivity to homes. Inside the home, broadband technologies like Homeplug are becoming integrated into high end electronics like HDTVs. Meanwhile, narrowband technologies provide the sort of home automation that has been envisioned for decades. Compared to wireless technologies like Bluetooth or WiFi, PLCs have the potential to provide greater stability for critical applications. What is the Purpose of this Research? The advent of personal computing and increasing number of digital devices in the home have created a number of new noise and loading problems which didn t exist when the original X10 specification was created. These problems were a major contributor to X10 s difficulty in gaining a foothold in US homes. This research aims to test the stability claims made by INSTEON to determine whether PLC technology is ready for consumers. Triplen Harmonic Distortion Tests What are Triplen Harmonics? While the high-pass filters on the INSTEON device prevent the low-frequency power signal from passing through, this is a highly idealized case. In real power lines, the The Big M, Vol II,

5 power signal is never a perfect sine wave; rather it is a periodic signal similar to a sine wave which has some distortion on it. Any periodic signal can be modeled by a Fourier series of the form: n= y( t) = a[ n]sin(2πnft) where f is the frequency of the sine wave. It is evident from this equation that for large values of n, the frequency of the sine wave is also large. At high enough values of n, the frequency will be too large to be blocked by the high-pass filter on the device. Frequencies near to 120 khz will be superimposed on the INSTEON data and may corrupt the data when present at high enough levels. Fig. 2 Distorted power signal made up of fundamental and third harmonic (Src: The Big M, Vol II,

6 Each frequency component of the Fourier series is present at different levels. There is a special class of frequency multiples, or harmonics, that are usually present at high levels in power systems. These signals are called triplen harmonics because of their n values of 3, 6, 9, 12, 15, and so on. Triplen harmonics are of particular concern because of their method of generation. There are two major sources of third harmonics on the power system. The first cause is non-linear effects present in a saturating transformer core [2]. The second cause is a class of power electronics known as inverters. Both of these elements are present in DC power supplies. This is notable, because the increase in the number of personal computers, DVD players, and other digital electronics in the home has led to an increase in the number of large DC power supplies present on the power system. At the zero-crossing point, the magnitude of harmonics is theoretically zero, so by transmitting only in very short bursts near the zero-crossing point, the effects of can be minimized. Unfortunately, this also places heavy limitations on the bit rate. Hence, the bit rate of INSTEON, X10, and related protocols is very low. Testing Methodology In an attempt to create triplen harmonics at realistic levels, the harmonics were generated using an adjustable non-linear transformer which was coupled to the INSTEON network using a high-pass network to isolate the two power systems. A high-power oscilloscope was connected in parallel with the input to the INSTEON network and configured to perform a Fast Fourier Transform. A custom program was written for the network which The Big M, Vol II,

7 flashed a lamp on and off at a 1 Hz frequency. The transformer was adjusted to increase the triplen harmonic level until the INSTEON controller reported an error rate in excess of 5%. The amplitude of the third harmonic was measured at this point 4. The transformer was then disconnected and a reference third harmonic level was measured. Test Results The reference level test recorded a third harmonic-to-signal level of db. The breakdown point occurred at a level of db. This is a difference 7.6 db. Fig. 3 Reference third harmonic level 4 The increase in third harmonic should be proportional to that of all harmonics. The Big M, Vol II,

8 Fig. 4 Breakdown third harmonic level Discussion of Results It should be noted that this test measures the change in amplitude of the third harmonic with the assumption that the same proportional difference will exist for higher frequency harmonics. A difference of 7.6 db corresponds to a factor of 5.8. In other words, harmonics had to be increased by almost 6 times the base level before they began to negatively impact performance. It is not likely that such high levels will be reached in a home environment. The use of a zero-crossing transmission system seems to be very effective in preventing harmonic problems. Harmonics are not likely to cause a problem except in areas of very high harmonic contamination, such as large computer data centers. In such locations, a line filter can be used to reduce the amplitude of harmonics. The Big M, Vol II,

9 However, INSTEON was not designed to be used in such environments, so some problems could be expected. Further Tests Following the completion of the triplen harmonic test, three additional qualitative tests were performed to determine whether INSTEON had improved on problems which had afflicted X10 networks. Capacitive Load Test What are capacitive loads? In general, any load on the power system 5 can be classified as either a capacitive or inductive load [2]. Most loads, with the notable exception of motors, are capacitive. Digital electronics, particularly personal computers, act as very strong capacitive loads. Capacitive loads are a problem for PLC networks, because a capacitor acts like a short circuit for high frequency signal, such as the PLC data. As capacitors get larger, their impedance to ground decreases. Capacitors in parallel also add linearly. Thus, when a large number of computers or other capacitive loads are connected on the same power system, the communication signal from the PLC devices may be shorted to ground before it reaches its destination. In its user manual, SmartLabs recommends that INSTEON devices and personal computers should not be plugged into the same power strip. 5 A load is anything drawing power from the system. The Big M, Vol II,

10 Test Methodology An INSTEON network was setup in three locations, a home with one computer, a home with six computers, and a lab with 25 computers, and a test script was run. The script consisted of commands to turn several appliances on and off. The network was also tested with an INSTEON controller plugged into the same power strip as a computer. Test Results The test script ran without error in the setting with one computer. In the six computers home, the test script failed twice out of ten trials. In the lab with 25 computers, the network could not be made to respond in any test. The network also failed to operate when the controller was plugged into the power strip with the computer. Discussion of Results The INSTEON network clearly has some problems on power systems with many capacitive loads. It is marketed as a home network, so it may not be surprising that it struggles in a computer lab environment. The results of the six-computer test raise some concern. The network only achieved 80% reliability, albeit in a small sample test size. However, as the size and cost of computers and other digital devices drops, it is not unreasonable to expect that the number of such devices present in the average home will increase in the future. Without some modification, it seems likely that many INSTEON networks could begin to fail as owners add more digital devices to their power system. There is a solution available to reduce the effect of capacitive loads: placing an inductor or RF choke between the device and the power system can block any high frequency The Big M, Vol II,

11 signals from being short circuited. Such chokes are commercially available, though their cost is currently about $20-30 each. Distance Attenuation Test What is Distance Attenuation? All electrical signals traveling in a material experience some attenuation over distance. The power line that PLC signals travel across can be modeled as having a large number of small shunt capacitive loads [3]. As discussed in the previous section, a capacitive load can present a low-impedance path to ground which decreases the amplitude of the signal. As the signal travels far enough, it will eventually experience so much attenuation that it will be too small to be detected by the receiver. To alleviate this problem, all INSTEON devices can act as repeaters, boosting the signal back to a high level and passing them along. Test Methodology An INSTEON network with two devices was set up with device separation distances of 50 ft, 100 ft, and 200 ft. An acknowledge signal was then sent from one device to the other. Test Results An acknowledgment reply was received in the 50 and 100 ft tests. There was no response in the 200 ft test. The Big M, Vol II,

12 Discussion of Results For a network targeted at home use, these results are quite good. This test only measured the separation distance between two nodes on the network. Because INSTEON devices act as receivers, it would be possible to use several nodes to extend the range of the network over a very long distance. High Interphase Impedance What is Interphase Impedance? As mentioned earlier, the high-voltage power transmission system utilizes three separate conductor phases. Most appliances only connect to a single phase, however some heavy appliances like washing machines require a 2-phase, 240 V power supply. Therefore most homes have at least two different phases in their power system. These phases cannot be directly connected. If two PLC devices are connected to different phases, any transmission between them must travel back to the three-phase transformer that supplies the house and pass through the windings separating the two phases. These windings tend to have very high impedances, such that it is not possible for the low power PLC signal to pass through. This results in some nodes being isolated and unreachable from the rest of the network. Test Methodology Two INSTEON devices were setup such that one was plugged into the A phase of a three-phase power system and the other was plugged in to the B phase. An acknowledgement request was then sent from one device to the other. The Big M, Vol II,

13 Test Results No acknowledgement was received from the device on the different phase. Discussion of Results It is not surprising that the INSTEON network failed the interphase impedance test, as its communication system has no fundamental differences from X10, which also suffered from this problem. There are some solutions which exist to bypass the problem of interphase impedance. A solution that has existed since the X10 days is to insert a shunt capacitor between the phases. As discussed earlier, a capacitor acts as a low-impedance path to high frequency signals. Thus, the signal can easily propagate between phases without causing any ill effect to the low frequency power signal. The drawback of this method is that it requires an electrical technician to install safely and a high-voltage capacitor may be expensive. The second method is a new innovation available to INSTEON, an antenna transmitter/receiver pair that plugs into different phases and propagates data between phases via a wireless connection. This solution requires no invasive installation on the power system, however the wireless device currently costs approximately $80, and foregoes most of the advantages of choosing a wired PLC network over a wireless network. Discussion of Overall Results The INSTEON network showed mixed results across the battery of tests. Triplen harmonic and distance attenuation performance were both strong. However, problems The Big M, Vol II,

14 with capacitive loads and high interphase impedance exist. While fixes exist for both these problems, they are currently expensive and/or difficult to implement. The capacitive load problem is particularly notable, as a filter is required for each new device. Overall, the performance of INSTEON has increased over that of X10, but SmartLabs claims of 99.97% reliability is either inaccurate or based off results of highly-skewed tests. Cited Sources [1] SmartHome. (2006, January 25). What is INSTEON? Retrieved January 25, 2006, from [2] Duncan, J. D., & Sarma, M. S. (1994). Power System Analysis and Design (2 nd ed.). New York: Wadsworth. [3] Johansson, J., & Lundgren, U. (1997). EMC of Telecommunication Lines. Unpublished masters thesis, Lulea University of Technology, Lulea, Sweden. The Big M, Vol II,

COMPARATIVE ANALYSIS OF THREE LINE COUPLING CIRCUITS FOR NARROW BAND POWER LINE COMMUNICATIONS APPLICATION

COMPARATIVE ANALYSIS OF THREE LINE COUPLING CIRCUITS FOR NARROW BAND POWER LINE COMMUNICATIONS APPLICATION COMPARATIVE ANALYSIS OF THREE LINE COUPLING CIRCUITS FOR NARROW BAND POWER LINE COMMUNICATIONS APPLICATION Marion Albert T. Batingal 1, Errol Marc B. De Guzman. 2, Charles Michael C. Gaw 3, Mark Lemmuel

More information

University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques

University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques 1. Introduction. Students are often frustrated in their attempts to execute

More information

The Impact of Broadband PLC Over VDSL2 Inside The Home Environment

The Impact of Broadband PLC Over VDSL2 Inside The Home Environment The Impact of Broadband PLC Over VDSL2 Inside The Home Environment Mussa Bshara and Leo Van Biesen line Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium Tel: +32 (0)2 629.29.46, Fax: +32

More information

Understanding Harmonics

Understanding Harmonics Understanding Harmonics Terry Gaiser Sensus What Are Harmonics? 1 » What is Power Quality?» Power quality is the degree to which both the utilization and delivery of electric power affects the performance

More information

SIMULATION of EMC PERFORMANCE of GRID CONNECTED PV INVERTERS

SIMULATION of EMC PERFORMANCE of GRID CONNECTED PV INVERTERS SIMULATION of EMC PERFORMANCE of GRID CONNECTED PV INVERTERS Qin Jiang School of Communications & Informatics Victoria University P.O. Box 14428, Melbourne City MC 8001 Australia Email: jq@sci.vu.edu.au

More information

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans. Electronic Measurements & Instrumentation

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans.   Electronic Measurements & Instrumentation UNIT 2 Q.1) Describe the functioning of standard signal generator Ans. STANDARD SIGNAL GENERATOR A standard signal generator produces known and controllable voltages. It is used as power source for the

More information

Device Interconnection

Device Interconnection Device Interconnection An important, if less than glamorous, aspect of audio signal handling is the connection of one device to another. Of course, a primary concern is the matching of signal levels and

More information

RCTrms Technical Notes

RCTrms Technical Notes RCTrms Technical Notes All measuring instruments are subject to limitations. The purpose of these technical notes is to explain some of those limitations and to help the engineer maximise the many advantages

More information

AM BASIC ELECTRONICS TRANSMISSION LINES JANUARY 2012 DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT HUACHUCA ARIZONA

AM BASIC ELECTRONICS TRANSMISSION LINES JANUARY 2012 DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT HUACHUCA ARIZONA AM 5-306 BASIC ELECTRONICS TRANSMISSION LINES JANUARY 2012 DISTRIBUTION RESTRICTION: Approved for Pubic Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT HUACHUCA

More information

EE 462G Laboratory #1 Measuring Capacitance

EE 462G Laboratory #1 Measuring Capacitance EE 462G Laboratory #1 Measuring Capacitance Drs. A.V. Radun and K.D. Donohue (1/24/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated 8/31/2007 by

More information

PHYS 3322 Modern Laboratory Methods I AC R, RC, and RL Circuits

PHYS 3322 Modern Laboratory Methods I AC R, RC, and RL Circuits Purpose PHYS 3322 Modern Laboratory Methods I AC, C, and L Circuits For a given frequency, doubling of the applied voltage to resistors, capacitors, and inductors doubles the current. Hence, each of these

More information

POWER LINE COMMUNICATION (PLC) OVERVIEW

POWER LINE COMMUNICATION (PLC) OVERVIEW National Scientific Session of the Academy of Romanin Scientists ISSN 2067-2160 Spring 2009 113 POWER LINE COMMUNICATION (PLC) OVERVIEW Alexandru-Ionut CHIUŢA 1, Cristina STANCU 2 Abstract Power line Communications

More information

Attenuation Characteristics of High Rate Home-Networking PLC Signals

Attenuation Characteristics of High Rate Home-Networking PLC Signals IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 17, NO. 4, OCTOBER 2002 945 Attenuation Characteristics of High Rate Home-Networking PLC Signals Charles J. Kim, Member, IEEE, and Mohamed F. Chouikha, Member,

More information

sensors ISSN

sensors ISSN Sensors,, 7-; DOI: 1.9/s17 Article OPEN ACCESS sensors ISSN 1- www.mdpi.com/journal/sensors Measurements of Impedance and Attenuation at CENELEC Bands for Power Line Communications Systems I. Hakki Cavdar

More information

Modelling of Impedance Matching Circuit with Digital Capacitor in Narrowband Power Line Communication

Modelling of Impedance Matching Circuit with Digital Capacitor in Narrowband Power Line Communication Journal of Energy and Power Engineering 8 (2014) 201-207 D DAVID PUBLISHING Modelling of Impedance Matching Circuit with Digital Capacitor in Chin Pin Rui 1, Nader Nassif Barsoum 2, Arthur Wong Kok Ming

More information

LISN UP Application Note

LISN UP Application Note LISN UP Application Note What is the LISN UP? The LISN UP is a passive device that enables the EMC Engineer to easily distinguish between differential mode noise and common mode noise. This will enable

More information

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING Objectives: To familiarize the student with the concepts of signal conditioning. At the end of the lab, the student should be able to: Understand the

More information

Design And Application Of A Control System For DC Motors Over Power Line

Design And Application Of A Control System For DC Motors Over Power Line Design And Application Of A Control System For DC Motors Over Power Line Alperen Mustafa Colak Electronic and Communication Engineering Cankaya University Ankara, Turkey alperenmustafacolak@gmail.com Ilhan

More information

POWER LINE COMMUNICATION. A dissertation submitted. to Istanbul Arel University in partial. fulfillment of the requirements for the.

POWER LINE COMMUNICATION. A dissertation submitted. to Istanbul Arel University in partial. fulfillment of the requirements for the. POWER LINE COMMUNICATION A dissertation submitted to Istanbul Arel University in partial fulfillment of the requirements for the Bachelor's Degree Submitted by Egemen Recep Çalışkan 2013 Title in all caps

More information

Experiment 9 AC Circuits

Experiment 9 AC Circuits Experiment 9 AC Circuits "Look for knowledge not in books but in things themselves." W. Gilbert (1540-1603) OBJECTIVES To study some circuit elements and a simple AC circuit. THEORY All useful circuits

More information

Harmonic Filters for Single Phase Equipment

Harmonic Filters for Single Phase Equipment POWER QUALITY Harmonic Filters for Single Phase Equipment Agriculture Call Centers Casino Slot Machines Computer Centers Distributed Generation Electronic Power Converter Oil & Gas On-Line UPS Power Electronics

More information

Home & Building Automation. parte 2

Home & Building Automation. parte 2 Home & Building Automation parte 2 Corso di reti per l automazione industriale Prof. Orazio Mirabella Technologies for Home automation Main distribution 230V TP (Twisted Pair) Socket Lighting Sun blinds

More information

Measurement and Analysis for Switchmode Power Design

Measurement and Analysis for Switchmode Power Design Measurement and Analysis for Switchmode Power Design Switched Mode Power Supply Measurements AC Input Power measurements Safe operating area Harmonics and compliance Efficiency Switching Transistor Losses

More information

A Simple Notch Type Harmonic Distortion Analyzer

A Simple Notch Type Harmonic Distortion Analyzer by Kenneth A. Kuhn Nov. 28, 2009, rev. Nov. 29, 2009 Introduction This note describes a simple notch type harmonic distortion analyzer that can be constructed with basic parts. It is intended for use in

More information

EMC and Variable Speed Drives

EMC and Variable Speed Drives EMC stands for electromagnetic compatibility the ability of electric and electronic devices to work properly in the environment for which they are designed. For this purpose the environment is defined

More information

ELEC Course Objectives/Proficiencies

ELEC Course Objectives/Proficiencies Lecture 1 -- to identify (and list examples of) intentional and unintentional receivers -- to list three (broad) ways of reducing/eliminating interference -- to explain the differences between conducted/radiated

More information

Experiment 1: Instrument Familiarization (8/28/06)

Experiment 1: Instrument Familiarization (8/28/06) Electrical Measurement Issues Experiment 1: Instrument Familiarization (8/28/06) Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied

More information

Electromagnetic Compatibility

Electromagnetic Compatibility Electromagnetic Compatibility Introduction to EMC International Standards Measurement Setups Emissions Applications for Switch-Mode Power Supplies Filters 1 What is EMC? A system is electromagnetic compatible

More information

Theory: The idea of this oscillator comes from the idea of positive feedback, which is described by Figure 6.1. Figure 6.1: Positive Feedback

Theory: The idea of this oscillator comes from the idea of positive feedback, which is described by Figure 6.1. Figure 6.1: Positive Feedback Name1 Name2 12/2/10 ESE 319 Lab 6: Colpitts Oscillator Introduction: This lab introduced the concept of feedback in combination with bipolar junction transistors. The goal of this lab was to first create

More information

Power Quality Summary

Power Quality Summary Power Quality Summary This article provides an overview of how voltage harmonic distortion is managed on the distribution network and focuses on the current at future issues surround the connection of

More information

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope.

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. 3.5 Laboratory Procedure / Summary Sheet Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. Set the function generator to produce a 5 V pp 1kHz sinusoidal output.

More information

Considerations for Choosing a Switching Converter

Considerations for Choosing a Switching Converter Maxim > Design Support > Technical Documents > Application Notes > ASICs > APP 3893 Keywords: High switching frequency and high voltage operation APPLICATION NOTE 3893 High-Frequency Automotive Power Supplies

More information

Application of Random PWM Technique for Reducing EMI

Application of Random PWM Technique for Reducing EMI International Research Journal of Applied and Basic Sciences 2013 Available online at www.irjabs.com ISSN 2251-838X / Vol, 6 (9): 1237-1242 Science Explorer Publications Application of Random PWM Technique

More information

Alternative Coupling Method for Immunity Testing of Power Grid Protection Equipment

Alternative Coupling Method for Immunity Testing of Power Grid Protection Equipment Alternative Coupling Method for Immunity Testing of Power Grid Protection Equipment Christian Suttner*, Stefan Tenbohlen Institute of Power Transmission and High Voltage Technology (IEH), University of

More information

Wireless Communication

Wireless Communication Equipment and Instruments Wireless Communication An oscilloscope, a signal generator, an LCR-meter, electronic components (see the table below), a container for components, and a Scotch tape. Component

More information

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter 3.1 Introduction DC/DC Converter efficiently converts unregulated DC voltage to a regulated DC voltage with better efficiency and high power density.

More information

Lab 9 Frequency Domain

Lab 9 Frequency Domain Lab 9 Frequency Domain 1 Components Required Resistors Capacitors Function Generator Multimeter Oscilloscope 2 Filter Design Filters are electric components that allow applying different operations to

More information

GTEM cell simplifies EMC test

GTEM cell simplifies EMC test GTEM cell simplifies EMC test Check the EMC performance of your designs in the lab with a GTEM cell and a spectrum analyzer. James P. Muccioli, Jastech EMC Consulting, Farmington Hills, MI Anthony A. Anthony

More information

EE 340 Transmission Lines. Spring 2012

EE 340 Transmission Lines. Spring 2012 EE 340 Transmission Lines Spring 2012 Physical Characteristics Overhead lines An overhead transmission line usually consists of three conductors or bundles of conductors containing the three phases of

More information

Experiment 1: Instrument Familiarization

Experiment 1: Instrument Familiarization Electrical Measurement Issues Experiment 1: Instrument Familiarization Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied to the

More information

Any wave shape can be reproduced by the sum of sine waves of the appropriate magnitude and frequency.

Any wave shape can be reproduced by the sum of sine waves of the appropriate magnitude and frequency. How do we use an oscilloscope? Measure signals with unknown wave shapes and frequency other than 60 Hz sine waves and dc. To get a picture of the waveform. Distortion? Phase duration? Magnitude Any wave

More information

Design of Single Phase Pure Sine Wave Inverter for Photovoltaic Application

Design of Single Phase Pure Sine Wave Inverter for Photovoltaic Application Design of Single Phase Pure Sine Wave Inverter for Photovoltaic Application Yash Kikani School of Technology, Pandit Deendayal Petroleum University, India yashkikani004@gmail.com Abstract:- This paper

More information

Measuring Power Line Impedance

Measuring Power Line Impedance By Florian Hämmerle & Tobias Schuster 2017 by OMICRON Lab V1.1 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com for technical support. Page 2 of 13 Table of Contents 1 MEASUREMENT

More information

MODEL 5002 PHASE VERIFICATION BRIDGE SET

MODEL 5002 PHASE VERIFICATION BRIDGE SET CLARKE-HESS COMMUNICATION RESEARCH CORPORATION clarke-hess.com MODEL 5002 PHASE VERIFICATION BRIDGE SET TABLE OF CONTENTS WARRANTY i I BASIC ASSEMBLIES I-1 1-1 INTRODUCTION I-1 1-2 BASIC ASSEMBLY AND SPECIFICATIONS

More information

Keywords: ISM, RF, transmitter, short-range, RFIC, switching power amplifier, ETSI

Keywords: ISM, RF, transmitter, short-range, RFIC, switching power amplifier, ETSI Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP 4929 Keywords: ISM, RF, transmitter, short-range, RFIC, switching power amplifier, ETSI APPLICATION NOTE 4929 Adapting

More information

Transmission Medium/ Media

Transmission Medium/ Media Transmission Medium/ Media The successful transmission of data depends principally on two factors: the quality of the signal being transmitted and the characteristics of the transmission medium Transmission

More information

FDM- FREQUENCY DIVISION MULTIPLEXING

FDM- FREQUENCY DIVISION MULTIPLEXING FDM- FREQUENCY DIVISION MULTIPLEXING Multiplexing to refer to the combination of information streams from multiple sources for transmission over a shared medium Demultiplexing to refer to the separation

More information

RMS Communications TECHNICAL BRIEF

RMS Communications TECHNICAL BRIEF TECHNICAL BRIEF BROADBAND CATV Coaxial Network Demands Today: Introducing Intermodulation: Its Role in Cable Modem and Reverse Path Operation RF Products Division A History of CATV Coaxial Network Design:

More information

Pre-Lab. Introduction

Pre-Lab. Introduction Pre-Lab Read through this entire lab. Perform all of your calculations (calculated values) prior to making the required circuit measurements. You may need to measure circuit component values to obtain

More information

10 Mb/s Single Twisted Pair Ethernet Noise Environment for PHY Proposal Evaluation Steffen Graber Pepperl+Fuchs

10 Mb/s Single Twisted Pair Ethernet Noise Environment for PHY Proposal Evaluation Steffen Graber Pepperl+Fuchs 10 Mb/s Single Twisted Pair Ethernet Noise Environment for PHY Proposal Evaluation Steffen Graber Pepperl+Fuchs IEEE P802.3cg 10 Mb/s Single Twisted Pair Ethernet Task Force 3/7/2017 1 Content Noise in

More information

Instruction Manual. SSQ-2F Controller Board. For the. v1.41 For Rife Plasma Tube Systems. Manual v by Ralph Hartwell Spectrotek Services

Instruction Manual. SSQ-2F Controller Board. For the. v1.41 For Rife Plasma Tube Systems. Manual v by Ralph Hartwell Spectrotek Services Instruction Manual For the SSQ-2F Controller Board v1.41 For Rife Plasma Tube Systems Manual v1.00 2012 by Ralph Hartwell Spectrotek Services This page intentionally blank. 2 Index and Table of Contents

More information

Harmonic Power. A VFDs.com Whitepaper Written by Ernesto Jimenez

Harmonic Power. A VFDs.com Whitepaper Written by Ernesto Jimenez Harmonic Power A VFDs.com Whitepaper Written by Ernesto Jimenez Table of Contents 1. Need for Clean Electricity 2. What Are Harmonics? 3. Lower Order Harmonics 4. Causes of Harmonics 5. Effects of Harmonics

More information

ARE HARMONICS STILL A PROBLEM IN DATA CENTERS? by Mohammad Al Rawashdeh, Lead Consultant, Data Center Engineering Services

ARE HARMONICS STILL A PROBLEM IN DATA CENTERS? by Mohammad Al Rawashdeh, Lead Consultant, Data Center Engineering Services ARE HARMONICS STILL A PROBLEM IN DATA CENTERS? by Mohammad Al Rawashdeh, Lead Consultant, Data Center Engineering Services edarat group INTRODUCTION Harmonics are a mathematical way of describing distortion

More information

ENGINEERING COMMITTEE Interface Practices Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE

ENGINEERING COMMITTEE Interface Practices Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE ENGINEERING COMMITTEE Interface Practices Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE 145 2013 Test Method for Second Harmonic Distortion of ives Using a Single Carrier NOTICE The Society of Cable

More information

Filter Considerations for the IBC

Filter Considerations for the IBC APPLICATION NOTE AN:202 Filter Considerations for the IBC Mike DeGaetano Application Engineering Contents Page Introduction 1 IBC Attributes 1 Input Filtering Considerations 2 Damping and Converter Bandwidth

More information

SCIN. Shield Current Induced Noise. Causes and Solutions. Random Thoughts from Chicago

SCIN. Shield Current Induced Noise. Causes and Solutions. Random Thoughts from Chicago Random Thoughts from Chicago SCIN Shield Current Induced Noise by Jim Brown Causes and Solutions My last two columns have focused on pin 1 problems as an open door for RF into audio equipment. But RF can

More information

Agilent PN 4395-1 Agilent 4395A Network/Spectrum/ Impedance Analyzer Silicon Investigations Repair Information - Contact Us 920-955-3693 www.siliconinvestigations.com ADSL Copper Loop Measurements Product

More information

POWER FACTOR CORRECTION AND HARMONIC CURRENT REDUCTION IN DUAL FEEDBACK PWM CONTROLLED AC/DC DRIVES.

POWER FACTOR CORRECTION AND HARMONIC CURRENT REDUCTION IN DUAL FEEDBACK PWM CONTROLLED AC/DC DRIVES. POWER FACTOR CORRECTION AND HARMONIC CURRENT REDUCTION IN DUAL FEEDBACK PWM CONTROLLED AC/DC DRIVES. 1 RAJENDRA PANDAY, 2 C.VEERESH,ANIL KUMAR CHAUDHARY 1, 2 Mandsaur Institute of Techno;ogy,Mandsaur,

More information

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE July 22, 2008 AC Currents, Voltages, Filters, Resonance 1 Name Date Partners AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE V(volts) t(s) OBJECTIVES To understand the meanings of amplitude, frequency, phase,

More information

Design and Implementation of Quasi-Z-Source Inverter for Off-grid Photovoltaic Systems

Design and Implementation of Quasi-Z-Source Inverter for Off-grid Photovoltaic Systems Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 3, March 2015,

More information

Harmonics Analysis Of A Single Phase Inverter Using Matlab Simulink

Harmonics Analysis Of A Single Phase Inverter Using Matlab Simulink International Journal Of Engineering Research And Development e- ISSN: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 14, Issue 5 (May Ver. II 2018), PP.27-32 Harmonics Analysis Of A Single Phase Inverter

More information

Minimizing Input Filter Requirements In Military Power Supply Designs

Minimizing Input Filter Requirements In Military Power Supply Designs Keywords Venable, frequency response analyzer, MIL-STD-461, input filter design, open loop gain, voltage feedback loop, AC-DC, transfer function, feedback control loop, maximize attenuation output, impedance,

More information

How will the third edition of IEC affect your test facility?

How will the third edition of IEC affect your test facility? How will the third edition of IEC 61000-4-3 affect your test facility? Changes in the standard could mean that your amplifier is no longer powerful enough Introduction The third edition of IEC 61000-4-3

More information

Testing Power Sources for Stability

Testing Power Sources for Stability Keywords Venable, frequency response analyzer, oscillator, power source, stability testing, feedback loop, error amplifier compensation, impedance, output voltage, transfer function, gain crossover, bode

More information

CHAPTER 6 EMI EMC MEASUREMENTS AND STANDARDS FOR TRACKED VEHICLES (MIL APPLICATION)

CHAPTER 6 EMI EMC MEASUREMENTS AND STANDARDS FOR TRACKED VEHICLES (MIL APPLICATION) 147 CHAPTER 6 EMI EMC MEASUREMENTS AND STANDARDS FOR TRACKED VEHICLES (MIL APPLICATION) 6.1 INTRODUCTION The electrical and electronic devices, circuits and systems are capable of emitting the electromagnetic

More information

University of Pennsylvania Department of Electrical and Systems Engineering ESE319

University of Pennsylvania Department of Electrical and Systems Engineering ESE319 University of Pennsylvania Department of Electrical and Systems Engineering ESE39 Laboratory Experiment Parasitic Capacitance and Oscilloscope Loading This lab is designed to familiarize you with some

More information

POWER FACTOR CORRECTION AND ITS PITFALLS

POWER FACTOR CORRECTION AND ITS PITFALLS Technical Note No. May 1999 POWER FACTOR CORRECTION AND ITS PITFALLS This Technical Note considers power factor correction as applied by large customers and the possible consequences when power factor

More information

CONTROLLER DESIGN FOR POWER CONVERSION SYSTEMS

CONTROLLER DESIGN FOR POWER CONVERSION SYSTEMS CONTROLLER DESIGN FOR POWER CONVERSION SYSTEMS Introduction A typical feedback system found in power converters Switched-mode power converters generally use PI, pz, or pz feedback compensators to regulate

More information

10 Mb/s Single Twisted Pair Ethernet Noise Environment for PHY Proposal Evaluation Steffen Graber Pepperl+Fuchs

10 Mb/s Single Twisted Pair Ethernet Noise Environment for PHY Proposal Evaluation Steffen Graber Pepperl+Fuchs 10 Mb/s Single Twisted Pair Ethernet Noise Environment for PHY Proposal Evaluation Steffen Graber Pepperl+Fuchs IEEE P802.3cg 10 Mb/s Single Twisted Pair Ethernet Task Force 3/13/2017 1 Content Noise in

More information

Power Line Communication Technology Update

Power Line Communication Technology Update Power Line Communication Technology Update By Walter Downey and Phil Sutterlin Echelon Corporation 415 Oakmead Parkway Sunnyvale, CA 9486 1-888-ECHELON (888-324-3566) www.echelon.com 1 Power Line Communications

More information

Power Electronics. Exercise: Circuit Feedback

Power Electronics. Exercise: Circuit Feedback Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Technische Universität München Prof Dr-Ing Ralph Kennel Aricsstr 21 Email: eat@eitumde Tel: +49 (0)89 289-28358 D-80333 München Internet:

More information

87415A microwave system amplifier A microwave. system amplifier A microwave system amplifier A microwave.

87415A microwave system amplifier A microwave. system amplifier A microwave system amplifier A microwave. 20 Amplifiers 83020A microwave 875A microwave 8308A microwave 8307A microwave 83006A microwave 8705C preamplifier 8705B preamplifier 83050/5A microwave The Agilent 83006/07/08/020/050/05A test s offer

More information

Chapter 6. Small signal analysis and control design of LLC converter

Chapter 6. Small signal analysis and control design of LLC converter Chapter 6 Small signal analysis and control design of LLC converter 6.1 Introduction In previous chapters, the characteristic, design and advantages of LLC resonant converter were discussed. As demonstrated

More information

Features. Future Electronics (

Features. Future Electronics ( / ASB Embedding the wireless future.. Low-Cost SAW-stabilized surface mount OOK RF transmitter Typical Applications Remote Keyless Entry (RKE) Remote Lighting Controls On-Site Paging Asset Tracking Wireless

More information

Introduction to Telecommunications and Computer Engineering Unit 3: Communications Systems & Signals

Introduction to Telecommunications and Computer Engineering Unit 3: Communications Systems & Signals Introduction to Telecommunications and Computer Engineering Unit 3: Communications Systems & Signals Syedur Rahman Lecturer, CSE Department North South University syedur.rahman@wolfson.oxon.org Acknowledgements

More information

INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT

INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT ABSTRACT: This paper describes the design of a high-efficiency energy harvesting

More information

Power Quality Analysis in Power System with Non Linear Load

Power Quality Analysis in Power System with Non Linear Load International Journal of Electrical Engineering. ISSN 0974-2158 Volume 10, Number 1 (2017), pp. 33-45 International Research Publication House http://www.irphouse.com Power Quality Analysis in Power System

More information

ECE 2274 Lab 2. Your calculator will have a setting that will automatically generate the correct format.

ECE 2274 Lab 2. Your calculator will have a setting that will automatically generate the correct format. ECE 2274 Lab 2 Forward (DO NOT TURN IN) You are expected to use engineering exponents for all answers (p,n,µ,m, N/A, k, M, G) and to give each with a precision between one and three leading digits and

More information

SOLID-STATE TRANSFORMERS

SOLID-STATE TRANSFORMERS SOLID-STATE TRANSFORMERS Mrs. K. S. Gadgil 1 1 Asst Professor, Department of Electrical Engineering, AISSMS IOIT, Maharashtra, India ABSTRACT Solid State Transformer (SST) has been regarded as one of the

More information

MODELLING OF BROADBAND POWERLINE COMMUNICATION CHANNELS

MODELLING OF BROADBAND POWERLINE COMMUNICATION CHANNELS Vol.2(4) December 2 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 7 MODELLING OF BROADBAND POWERLINE COMMUNICATION CHANNELS C.T. Mulangu, T.J. Afullo and N.M. Ijumba School of Electrical, Electronic

More information

Transmission Line Signal Sampling By Don Steinbach, AE6PM

Transmission Line Signal Sampling By Don Steinbach, AE6PM Transmission Line Signal Sampling By Don Steinbach, AE6PM When I was finalizing the mechanical layout of my remotely-operated 3-position coaxial antenna switch (Fig. 1), I wanted to include a way to bring

More information

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 98 CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 6.1 INTRODUCTION Process industries use wide range of variable speed motor drives, air conditioning plants, uninterrupted power supply systems

More information

50 W High Power Silicon PIN Diode SPDT Switch By Rick Puente, Skyworks Solutions, Inc.

50 W High Power Silicon PIN Diode SPDT Switch By Rick Puente, Skyworks Solutions, Inc. February 2012 50 W High Power Silicon PIN Diode SPDT Switch By Rick Puente, Skyworks Solutions, Inc. Radio transceiver designers have searched for a low cost solution to replace expensive mechanical switches

More information

LCM100 USER GUIDE. Line Carrier Modem INDUSTRIAL DATA COMMUNICATIONS

LCM100 USER GUIDE. Line Carrier Modem INDUSTRIAL DATA COMMUNICATIONS USER GUIDE INDUSTRIAL DATA COMMUNICATIONS LCM100 Line Carrier Modem It is essential that all instructions contained in the User Guide are followed precisely to ensure proper operation of equipment. Product

More information

ECE 2274 Lab 2 (Network Theorems)

ECE 2274 Lab 2 (Network Theorems) ECE 2274 Lab 2 (Network Theorems) Forward (DO NOT TURN IN) You are expected to use engineering exponents for all answers (p,n,µ,m, N/A, k, M, G) and to give each with a precision between one and three

More information

Internal Model of X2Y Chip Technology

Internal Model of X2Y Chip Technology Internal Model of X2Y Chip Technology Summary At high frequencies, traditional discrete components are significantly limited in performance by their parasitics, which are inherent in the design. For example,

More information

Digital Communication Systems. Asymmetric Digital Subscriber Line (ADSL) Gavin Cameron

Digital Communication Systems. Asymmetric Digital Subscriber Line (ADSL) Gavin Cameron Digital Communication Systems Asymmetric Digital Subscriber Line (ADSL) Gavin Cameron MSc/PGD Electronics and Communication Engineering May 17, 2000 TABLE OF CONTENTS TABLE OF CONTENTS..........................................................

More information

Electrical signal types

Electrical signal types Electrical signal types With BogusBus, our signals were very simple and straightforward: each signal wire (1 through 5) carried a single bit of digital data, 0 Volts representing "off" and 24 Volts DC

More information

ECE 203 ELECTRIC CIRCUITS AND SYSTEMS LABORATORY SPRING No labs meet this week. Course introduction & lab safety

ECE 203 ELECTRIC CIRCUITS AND SYSTEMS LABORATORY SPRING No labs meet this week. Course introduction & lab safety ECE 203 ELECTRIC CIRCUITS AND SYSTEMS LABORATORY SPRING 2019 Week of Jan. 7 Jan. 14 Jan. 21 Jan. 28 Feb. 4 Feb. 11 Feb. 18 Feb. 25 Mar. 4 Mar. 11 Mar. 18 Mar. 25 Apr. 1 Apr. 8 Apr. 15 Topic No labs meet

More information

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS 73 CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS 6.1 INTRODUCTION Hybrid distributed generators are gaining prominence over the

More information

Saturation of Active Loop Antennas

Saturation of Active Loop Antennas Saturation of Active Loop Antennas Alexander Kriz EMC and Optics Seibersdorf Laboratories 2444 Seibersdorf, Austria Abstract The EMC community is working towards shorter test distances for radiated emission

More information

A statistical survey of common-mode noise

A statistical survey of common-mode noise A statistical survey of common-mode noise By Jerry Gaboian Characterization Engineer, High Performance Linear Department Introduction In today s high-tech world, one does not have to look very far to find

More information

Potential Impacts of khz Harmonic Emissions on Smart Grid Communications in the United States

Potential Impacts of khz Harmonic Emissions on Smart Grid Communications in the United States Potential Impacts of 9-150 khz Harmonic Emissions on Smart Grid Communications in the United States Maria Arechavaleta, S. Mark Halpin, Adam Birchfield, Wendy Pittman, W. Eric Griffin, Michael Mitchell

More information

Lab 2: Common Base Common Collector Design Exercise

Lab 2: Common Base Common Collector Design Exercise CSUS EEE 109 Lab - Section 01 Lab 2: Common Base Common Collector Design Exercise Author: Bogdan Pishtoy / Lab Partner: Roman Vermenchuk Lab Report due March 26 th Lab Instructor: Dr. Kevin Geoghegan 2016-03-25

More information

Electronic Instrumentation ENGR-4300 Fall 2002 Project 2: Optical Communications Link

Electronic Instrumentation ENGR-4300 Fall 2002 Project 2: Optical Communications Link Project 2: Optical Communications Link For this project, each group will build a transmitter circuit and a receiver circuit. It is suggested that 1 or 2 students build and test the individual components

More information

Characteristics of In-building Power Lines at High Frequencies and their Channel Capacity

Characteristics of In-building Power Lines at High Frequencies and their Channel Capacity Characteristics of In-building Power Lines at High Frequencies and their Channel Capacity T. Esmailian~ F. R. Kschischang, and P. G. Gulak Department of Electrical and Computer Engineering University of

More information

Power Line Carrier Communication Based Data Transmission for Tele-Operation of Devices

Power Line Carrier Communication Based Data Transmission for Tele-Operation of Devices Power Line Carrier Communication Based Data Transmission for Tele-Operation of Devices 1 Sundari.B, 2 Nandhini.N, 3 Agila.G 1 Assistant Professor, Dept of ECE, Jayam College of Engg & Technology, Tamilnadu,

More information

LFR: flexible, clip-around current probe for use in power measurements

LFR: flexible, clip-around current probe for use in power measurements LFR: flexible, clip-around current probe for use in power measurements These technical notes should be read in conjunction with the LFR short-form datasheet. Power Electronic Measurements Ltd Nottingham

More information

HARMONICS THE BASICS H A R M O N I C M I T I G A T I O N A N D D I S P L A C E M E N T P O W E R F A C T O R C O R R E C T I O N

HARMONICS THE BASICS H A R M O N I C M I T I G A T I O N A N D D I S P L A C E M E N T P O W E R F A C T O R C O R R E C T I O N HARMONICS THE BASICS H A R M O N I C M I T I G A T I O N A N D D I S P L A C E M E N T P O W E R F A C T O R C O R R E C T I O N Harmonic Basics 3 rd Harmonic Fundamental 5 t1h Harmonic 7 th Harmonic Harmonic

More information

IN-CIRCUIT RF IMPEDANCE MEASUREMENT FOR EMI FILTER DESIGN IN SWITCHED MODE POWER SUPPLIES

IN-CIRCUIT RF IMPEDANCE MEASUREMENT FOR EMI FILTER DESIGN IN SWITCHED MODE POWER SUPPLIES IN-CIRCUIT RF IMPEDANCE MEASUREMENT FOR EMI FILTER DESIGN IN SWITCHED MODE POWER SUPPLIES IN-CIRCUIT RF IMPEDANCE MEASUREMENT FOR EMI FILTER DESIGN IN SWITCHED MODE POWER SUPPLIES DENG JUNHONG 2008 DENG

More information