Sea Surface Echoes Observed with the MU Radar under Intense Sporadic E Conditions. Tadahiko OGAwA1, Mamoru YAMAMOTO2, and Shoichiro FUKA02

Size: px
Start display at page:

Download "Sea Surface Echoes Observed with the MU Radar under Intense Sporadic E Conditions. Tadahiko OGAwA1, Mamoru YAMAMOTO2, and Shoichiro FUKA02"

Transcription

1 Letter J. Geomaq. Geoelectr., 48, , 1996 Sea Surface Echoes Observed with the MU Radar under Intense Sporadic E Conditions Tadahiko OGAwA1, Mamoru YAMAMOTO2, and Shoichiro FUKA02 1Solar-Terrestrial Environment Laboratory 2Radio Atmospheric Science Center, Nagoya University, Toyokawa, Aichi 442, Japan, Kyoto University, Uji, Kyoto 611, Japan (Received August 17, 1995; Revised November 30, 1995; Accepted December 26, 1995) We present for the first time sea surface echoes observed at ranges of km with the 46.5-MHz middle and upper atmosphere (MU) radar at Shigaraki, Japan. Ionospheric data support that the radar wave propagated toward the target by reflection due to intense sporadic E layer. Although the Doppler spectra obtained are modified more or less due to temporal and spatial changes of the sporadic E layer, fundamental characteristics of the spectra are well explained by a first-order theory of Bragg scatter from sea surface. 1. Introduction Crombie (1955) found experimentally Doppler frequency changes of HF radio signals at MHz due to moving sea scatterers and identified the radio wave scattering mechanism responsible for the dominant nature of the observed Doppler spectra: Bragg backscatter from the gravity waves having wavelengths equal to half the radar wavelength. Since this discovery, a variety of HF and VHF radars have been used for remote sensing of sea surface state (e.g., Ward, 1969; Headrick and Skolnik, 1974; Lipa et al., 1981; Dexter and Theodoridis, 1982; Broche et al., 1987; Nadai et al., 1996). Most of these observations have used the HF band (10-30 MHz). Over-the-horizon (OTH) HF radars using sky-wave propagation via the ionosphere are capable of detecting the sea surface at distances of 1,000-3,000 km, whereas fields of view of HF and VHF radars using ground-wave propagation mode are limited within about 300 km. In Japan, the Communications Research Laboratory is developing an HF ocean surface radar (24.5 MHz) for exploring areas close to the sea coast (Nadai et al., 1996). Broche et al. (1987) applied a meteorological ST radar at a frequency of 47.8 MHz as a ground-wave radar to observe the sea near radar site. This paper briefly reports the first detection of sea surface echoes by the middle and upper atmosphere (MU) VHF radar of Kyoto University. These particular echoes were detected by chance when the radar was observing echoes due to 3.2-m scale field-aligned-irregularities (FAI) in the ionospheric F region. On the basis of information on the Doppler spectra, echoing ranges, and ionospheric conditions, we conclude that these echoes were caused by the Bragg backscatter from sea surface and that the radar waves could propagate toward the target by reflection due to intense sporadic E (Es) layer. 2. Results and Discussion The MU radar, located at Shigaraki, Japan (34.9 N, E), is a 46.5-MHz, pulsed monostatic Doppler radar with a two-way half-power antenna beam width of 4.5 /2.3 in the vertical/horizontal plane (Fukao et al., 1985a, 1985b, 1990). By directing the sharp antenna beam toward the north, we can observe echoes caused by the 3.2-m scale E and F region FAI (Fukao et al., 1991; Yamamoto et al., 1991). 447

2 448 T. OCAWA et al. 2.1 Doppler spectra We made continuous F region FAI observations during the night of May 8, 1990, using an antenna beam direction of (azimuth, elevation) =(-5, 32 ) and a peak transmitting power of 1 MW. In the evening hours, the radar detected intermittently the echoes with which we are concerned here. Figure 1 shows an example of the quick-look data displaying Doppler spectra at some selected ranges and a contour map of the spectral intensity in the Doppler velocity - range domain. To depict Fig. 1 we used 256-point FFT (fast Fourier transform) Doppler spectra averaged over the period 1914: :42 LT. Note that positive and negative velocities correspond to flows away from the radar and toward the radar, respectively. The maximum echo intensity is about 13 db, a value being comparable to or less than the F region FAI echo intensity (Fukao et al., 1991), above the noise level. The echoing ranges are limited between 650 and 900 km corresponding to apparent altitudes between 344 and 477 km. The peculiar features to be noted are that each spectrum is rather symmetrical around zero Doppler velocity and that the Doppler spectra have two maxima at extremely low velocities, one between +2 and +3 m/s and the other between -1 and -2 m/s. These spectral features have never been found in the E and F region FAI observations with the MU radar. 2.2 Sea surface scatter Barrick (1972) gives the first-order spectral cross section for the backscatter from sea surface in the absence of ocean current as follows: al(w)=16rrk4(1+sin29)2 > S(-2mk,,sin0)6(w-mwB) m=f1 (1) where m = ±1 denotes the sign of the Doppler shift, k (= 2a/A) is the radar wavenumber, A is the radar wavelength, 9 is the incidence angle of the radar wave vector at the sea surface, wb is the Bragg angular frequency, S(k) is the spatial spectrum of the sea surface height, and 6(x) is the Dirac delta function. LOB is given by (2gk sin0)1/2 where g is the gravitational acceleration. Equation (1) implies that the signal scattered from the sea surface has two spectral peaks ("Bragg lines") at w = ±WB corresponding to the backscatter by radially approaching and receding ocean gravity waves. For the MU radar case (A = 6.45 m), if 9 is 90, fb(= wb/21r) = ±0.695 Hz, and corresponding Doppler velocity VB is equal to ±2.24 m/s: Because 0 is larger than 73 for the radar echoes to be discussed below (Subsection 2.3), we can almost neglect the 9-dependence of fb. When sea surface wind exciting gravity waves blows toward the radar, the spectral intensity S(-2k, sin 0) associated with the approaching waves is larger than S(+2k sin0) associated with the receding waves. If ocean currents exist, two Bragg lines are shifted equally from their predicted positions (±wb) by an amount of w,(= 47rV /A) where V is the radar line-of-sight component of the current velocity vector. Two vertical broken lines in Fig. 1 represent the predicted positions of ±VB. Clearly the positions of the observed spectral peaks are quite close to ±VB, suggesting that we observed the sea scatter echoes. The spectral intensities around -VB are usually stronger than those around +VB, implying that the sea surface winds exciting the gravity waves had components toward the radar. Moreover, close inspection of Fig. 1 indicates that with increasing radar range the spectral peak positions shift gradually toward the right whereas the two peaks are placed at a constant interval of 2VB. We infer from this fact that the ocean current vectors had components (of the order of 1 m/s at 900-km range) away from the radar and that with increasing radar range the away-from-the-radar component increased gradually with a rate of about m/s/km. The Bragg lines in Fig. 1 are not so clearly discernible as those observed by other investigators (e.g., Crombie, 1955; Lipa et al., 1981; Broche et al., 1987; Nadai et al., 1996). Moreover, the ocean current velocity of the order of 1 m/s at 900-km range is faster than velocities (G50 cm/s)

3 Sea Surface Echoes Observed with the MU Radar under Intense Sporadic E Conditions : :42 LT May 8, m/s (-0.695Hz) 2.24m/s (0.695Hz) m -40 T c Mww yy~ Yyu rmr~jm..'mw.nwnw~ 1 "VV~I\v,Y' +hvwm.fyrw..vryrv i0 Doppler Velocity (m/s) 7G0 740 Y ) c 700 c6 6B0 Min.= -62.6dB Max.= -49.7dB I1 E Y 800 rrb a) C) C N 700 I e. I'll k Doppler Velocity Ws) Fig. 1. (Upper) Doppler spectra at some selected ranges and (lower) spectral intensity contour map in the Doppler velocity - range domain averaged over the period 1914: :42 LT on May 8, Positive and negative velocities correspond to flows away from the radar and toward the radar, respectively. Two vertical broken lines represent positions of VB = ±2.24 m/s (fo = ±0.695 Hz). observed with HF radars using ground-wave propagation (e.g., Nadai et al., 1996). We will suggest below that propagation condition for the MU radar wave was changeable with time and space to cause temporal fluctuations of the Bragg line positions. 2.3 Propagation mode of radar wave Since the echoing ranges were between 650 and 900 km, i.e., over the horizon, the radar wave must arrive at the targets via the ionosphere (sky-wave propagation). Normal E and F regions cannot sustain this kind of propagation mode because the electron densities in these regions are usually too low to refract or reflect the 46.5-MHz wave. The most probable candidate is a reflection due to intense Es layer. Assuming an Es altitude of 105 km, we require both foes (or fbes) greater than 12.2 MHz and a radar wave elevation angle of 15.2 in order to detect echoes at 800-km range. This elevation angle, however, is not consistent with the elevation angle (32 )

4 E 450 T. OGAWA et ad. 1,3-JUN :48: r. r +o~ noise level 43.9 db max power 56.2 db T4 Q7 500 f r,«a ylr.' O C Ffd.' V! v-~r~9c Y-~ Doppler 0 Velocity 10 (m/s) 20 Fig. 2. Spectral intensity contour map in the Doppler velocity - range domain at 1848:36 LT on June 13, Positive and negative velocities correspond to flows away from the radar and toward the radar, respectively. Two vertical arrows represent positions of Vg = ±2.24 m/s (fg = ±0.695 Hz). The radar echoes from sea surface are strongly enhanced at velocities near 0 and -4 m/s at ranges between 720 and 850 km. of the MU radar main antenna lobe. Moreover, fes's observed every 15 minutes during the period LT with the ionosondes at Akita (39.7 N, E) and Kokubunji (35.7 N, E) were less than 7.1 MHz, a fact strongly suggesting that the main lobe or side lobes looking toward the north could not detect any sea echoes. Fukao et at. (1990) noted that for the main lobe direction of (azimuth, elevation)=(0.0, 32.2 ), which is very close to our case, two grating lobes that have elevation angels between 0 and 25 appear to the south; one to the southeast (125 azimuth) and the other to the southwest (235 azimuth). The southwest lobe can look the sea around 150 km southwest of Kagoshima at the 800-km radar range. During the period LT, fes's and fbes's at Yamagawa, Kagoshima (31.2 N, E) were between 10.9 and 15.1 MHz and between 10.0 and 14.4 MHz, respectively, with multiple Es echo traces. Thus, the present sea echoes can be explained by the Es reflection, the point of which is located in the Es layer at about 200 km northeast of Yamagawa. Of course, there is a possibility that the southeast lobe instead of the southwest lobe looked the sea around 500 km north of Ogasawara Islands in the Pacific Ocean. This possibility, however, cannot be checked because of lack of nearby ionosonde. Electron density distribution in the Es layer is not stable but changeable with time and space. This may induce temporal and spatial changes of the ray path and phase of the radar wave, resulting in temporal fluctuations of the Bragg line positions, i.e., in the obscure Bragg lines in the Doppler spectra (see Fig. 1). An apparent ocean current velocity of the order of 1 m/s at 900-km range (see Subsection 2.2) may be obtained if a vertical movement of the Es layer was of the order of 0.1 m/s that is comparable to the tidal motions of the layer. Figure 2 shows another example of a contour map of the Doppler spectra (integration time

5 Sea Surface Echoes Observed with the MU Radar under Intense Sporadic E Conditions 451 = 46 s) taken during the F region FAT observations in the evening of June 13, In this case, the sea surface state is completely different from that in Fig. 1: Two spectral peaks shift toward the left, the surface wind blows away from the radar, and the surface current at 850-km range is 2.5 m/s toward the radar. At 1900 LT, fes at Yamagawa was 14.5 MHz with complete disappearance of the F region echoes while fes at Kokubunji was 9.7 MHz. The current velocity of 2.5 m/s is far faster than usual ocean current flows, again indicating that vertical motion of the Es layer largely affects the current velocity estimation. In summary, we have presented for the first time the sea echoes observed with the MU radar under intense Es conditions. Fundamental characteristics of the Doppler spectra axe well explained by the first-order theory of the Bragg backscatter from sea surface. This fact enables us to use the MU radar as a remote sensor of the sea at distances beyond 600 km. To obtain detailed physical parameters of the sea surface state, however, we need development of more sophisticated hardware and software systems and must study the ionospheric effects on the Doppler spectra. The MU radar belongs to, and is operated by the Radio Atmospheric Science Center of Kyoto University. The ionospheric data were supplied through the World Data Center C2 for Ionosphere, Communications Research Laboratory, Tokyo. REFERENCES Barrick, D. E., First-order theory and analysis of MF/HF/VHF scatter from the sea, IEEE Than. Antennas Propag., AP-20, 2-10, Broche, P., P. Forget, J. C. de Maistre, J. L. Devenon, and M. Crochet, VHF radar for ocean surface current and sea state remote sensing, Radio Sci., 22, 69-75, Crombie, D. D., Doppler spectrum of sea echo at Mc/s, Nature, 175, , Dexter, P. E. and S. Theodoridis, Surface wind speed extraction from HF sky wave radar Doppler spectra, Radio Sci., 17, , Fukao, S., T. Sato, T. Tsuda, S. Kato, K. Wakasugi, and T. Makihira, The MU radar with an active phased array system 1. Antenna and power amplifiers, Radio Sci., 20, , 1985a. Fukao, S., T. Tsuda, T. Sato, S. Kato, K. Wakasugi, and T. Makihira, The MU radar with an active phased array system 2. In-house equipment, Radio Sci., 20, , 1985b. Fukao, S., T. Sato, T. Tsuda, M. Yamamoto, M. D. Yamanaka, and S. Kato, MU radar: New capabilities and system calibrations, Radio Sci., 25, , Fukao, S., M. C. Kelley, T. Shirakawa, T. Takami, M. Yamamoto, T. Tsuda, and S. Kato, Turbulent upwelling of the mid-latitude ionosphere 1. Observational results by the MU radar, J. Geophys. Res., 96, , Headrick, J. M. and M. I. Skolnik, Over-the-horizon radar in the HIT band, Proc. IEEE, 62, , Lips, B. J., D. E. Barrick, and J. W. Maresca, Jr., HF radar measurement of long ocean waves, J. Geophys. Res., 86, , Nadai, A., H. Kuroiwa, M. Mizutori, and S. Sakai, Measurement of ocean surface currents using CRL HF ocean surface radar. Part 1. Radial current velocity, J. Oceanography, 1996 (in press). Ward, J. F., Power spectra from ocean movements measured remotely by ionospheric radio backscatter, Nature, 223, , Yamamoto, M., S. Fukao, R. F. Woodman, T. Ogawa, T. Tsuda, and S. Kato, Mid-latitude E region field-alignedirregularities observed with the MU radar, J. Geophys. Res., 96, 15,943-15,949, 1991.

An error analysis on nature and radar system noises in deriving the phase and group velocities of vertical propagation waves

An error analysis on nature and radar system noises in deriving the phase and group velocities of vertical propagation waves Earth Planets Space, 65, 911 916, 2013 An error analysis on nature and radar system noises in deriving the phase and group velocities of vertical propagation waves C. C. Hsiao 1,J.Y.Liu 1,2,3, and Y. H.

More information

A Bistatic HF Radar for Current Mapping and Robust Ship Tracking

A Bistatic HF Radar for Current Mapping and Robust Ship Tracking A Bistatic HF Radar for Current Mapping and Robust Ship Tracking Dennis Trizna Imaging Science Research, Inc. V. 703-801-1417 dennis @ isr-sensing.com www.isr-sensing.com Objective: Develop methods for

More information

Simultaneous observation of sporadic E with a rapid-run ionosonde and VHF coherent backscatter radar

Simultaneous observation of sporadic E with a rapid-run ionosonde and VHF coherent backscatter radar Annales Geophysicae, 24, 153 162, 06 SRef-ID: 1432-0576/ag/06-24-153 European Geosciences Union 06 Annales Geophysicae Simultaneous observation of sporadic E with a rapid-run ionosonde and VHF coherent

More information

C three decadesz'other reviews serve that purpose (e.g., Barrick, 1978;

C three decadesz'other reviews serve that purpose (e.g., Barrick, 1978; STATUS OF HF RADARS FOR WAVE-HEIGHT DIRECTIONAL SPECTRAL MEASUREMENTS - Donald E. Barrick 1 Introduction SThis manuscript is a concise review of the status of high-frequency (HF) radars for measuring various

More information

Ship echo discrimination in HF radar sea-clutter

Ship echo discrimination in HF radar sea-clutter Ship echo discrimination in HF radar sea-clutter A. Bourdillon (), P. Dorey () and G. Auffray () () Université de Rennes, IETR/UMR CNRS 664, Rennes Cedex, France () ONERA, DEMR/RHF, Palaiseau, France.

More information

Vertical group and phase velocities of ionospheric waves derived from the MU radar

Vertical group and phase velocities of ionospheric waves derived from the MU radar Click Here for Full Article Vertical group and phase velocities of ionospheric waves derived from the MU radar J. Y. Liu, 1,2 C. C. Hsiao, 1,6 C. H. Liu, 1 M. Yamamoto, 3 S. Fukao, 3 H. Y. Lue, 4 and F.

More information

Ionospheric effect of HF surface wave over-the-horizon radar

Ionospheric effect of HF surface wave over-the-horizon radar RADIO SCIENCE, VOL. 41,, doi:10.1029/2005rs003323, 2006 Ionospheric effect of HF surface wave over-the-horizon radar Huotao Gao, 1 Geyang Li, 1 Yongxu Li, 1 Zijie Yang, 1 and Xiongbin Wu 1 Received 25

More information

Clutter suppression for high resolution atmospheric observations using multiple receivers and multiple frequencies

Clutter suppression for high resolution atmospheric observations using multiple receivers and multiple frequencies RADIO SCIENCE, VOL. 45,, doi:10.1029/2009rs004330, 2010 Clutter suppression for high resolution atmospheric observations using multiple receivers and multiple frequencies T. Y. Yu, 1 J. I Furumoto, 2 and

More information

SODAR- sonic detecting and ranging

SODAR- sonic detecting and ranging Active Remote Sensing of the PBL Immersed vs. remote sensors Active vs. passive sensors RADAR- radio detection and ranging WSR-88D TDWR wind profiler SODAR- sonic detecting and ranging minisodar RASS RADAR

More information

Radar Reprinted from "Waves in Motion", McGourty and Rideout, RET 2005

Radar Reprinted from Waves in Motion, McGourty and Rideout, RET 2005 Radar Reprinted from "Waves in Motion", McGourty and Rideout, RET 2005 What is Radar? RADAR (Radio Detection And Ranging) is a way to detect and study far off targets by transmitting a radio pulse in the

More information

Directional Wave Information from the SeaSonde PREPRINT

Directional Wave Information from the SeaSonde PREPRINT Directional Wave Information from the SeaSonde PREPRINT Belinda Lipa Codar Ocean Sensors 25 La Sandra Way, Portola Valley 94028 Bruce Nyden Codar Ocean Sensors 00 Fremont Ave Suite 45, Los Altos, CA 94024

More information

Using the Radio Spectrum to Understand Space Weather

Using the Radio Spectrum to Understand Space Weather Using the Radio Spectrum to Understand Space Weather Ray Greenwald Virginia Tech Topics to be Covered What is Space Weather? Origins and impacts Analogies with terrestrial weather Monitoring Space Weather

More information

Dual Use Multi-Frequency Radar For Current Shear Mapping and Ship Target Classification

Dual Use Multi-Frequency Radar For Current Shear Mapping and Ship Target Classification Dual Use Multi-Frequency Radar For Current Shear Mapping and Ship Target Classification Dennis B. Trizna, Ph. D. Imaging Science Research, Inc. 9310A Old Keene Mill Road Burke, VA 22015 V 703 801-1417,

More information

Geometric Dilution of Precision of HF Radar Data in 2+ Station Networks. Heather Rae Riddles May 2, 2003

Geometric Dilution of Precision of HF Radar Data in 2+ Station Networks. Heather Rae Riddles May 2, 2003 Geometric Dilution of Precision of HF Radar Data in + Station Networks Heather Rae Riddles May, 003 Introduction The goal of this Directed Independent Study (DIS) is to provide a basic understanding of

More information

Post beam steering techniques as a means to extract horizontal winds from atmospheric radars

Post beam steering techniques as a means to extract horizontal winds from atmospheric radars Post beam steering techniques as a means to extract horizontal winds from atmospheric radars VN Sureshbabu 1, VK Anandan 1, oshitaka suda 2 1 ISRAC, Indian Space Research Organisation, Bangalore -58, India

More information

GNSS Ocean Reflected Signals

GNSS Ocean Reflected Signals GNSS Ocean Reflected Signals Per Høeg DTU Space Technical University of Denmark Content Experimental setup Instrument Measurements and observations Spectral characteristics, analysis and retrieval method

More information

Ionospheric multiple stratifications and irregularities induced by the 2011 off the Pacific coast of Tohoku Earthquake

Ionospheric multiple stratifications and irregularities induced by the 2011 off the Pacific coast of Tohoku Earthquake LETTER Earth Planets Space, 63, 869 873, 2011 Ionospheric multiple stratifications and irregularities induced by the 2011 off the Pacific coast of Tohoku Earthquake Takashi Maruyama 1, Takuya Tsugawa 1,

More information

Assessment of HF Radar for Significant Wave Height Determination. Desmond Power VP, Remote Sensing, C-CORE

Assessment of HF Radar for Significant Wave Height Determination. Desmond Power VP, Remote Sensing, C-CORE Assessment of HF Radar for Significant Wave Height Determination Desmond Power VP, Remote Sensing, C-CORE Study Rationale Agenda Technology Overview Technology Assessment for CNLOPB Proposed Go Forward

More information

OC3570 PROJECT REPORT: A COMPARISON OF COASTAL CURRENTS USING LAND BASED HF RADAR AND SHIP BOARD ADCP OBSERVATIONS. LCDR Steve Wall, RAN Winter 2007

OC3570 PROJECT REPORT: A COMPARISON OF COASTAL CURRENTS USING LAND BASED HF RADAR AND SHIP BOARD ADCP OBSERVATIONS. LCDR Steve Wall, RAN Winter 2007 OC3570 PROJECT REPORT: A COMPARISON OF COASTAL CURRENTS USING LAND BASED HF RADAR AND SHIP BOARD ADCP OBSERVATIONS LCDR Steve Wall, RAN Winter 2007 Background High Frequency (HF) radar between 3 and 30MHz

More information

Characteristics of HF Coastal Radars

Characteristics of HF Coastal Radars Function Characteristics System 1 Maximum operational (measurement) range** Characteristics of HF Coastal Radars 5 MHz Long-range oceanographic 160-220 km average during (daytime)* System 2 System 3 System

More information

The HF oceanographic radar development in China. Wu Xiongbin School of Electronic Information Wuhan University

The HF oceanographic radar development in China. Wu Xiongbin School of Electronic Information Wuhan University The HF oceanographic radar development in China Wu Xiongbin School of Electronic Information Wuhan University xbwu@whu.edu.cn Outlines An overall introduction Development of the OSMAR HFSWR technique OSMAR

More information

SuperDARN (Super Dual Auroral Radar Network)

SuperDARN (Super Dual Auroral Radar Network) SuperDARN (Super Dual Auroral Radar Network) What is it? How does it work? Judy Stephenson Sanae HF radar data manager, UKZN Ionospheric radars Incoherent Scatter radars AMISR Arecibo Observatory Sondrestrom

More information

Observational evidence of coupling between quasi-periodic echoes and medium scale traveling ionospheric disturbances

Observational evidence of coupling between quasi-periodic echoes and medium scale traveling ionospheric disturbances Observational evidence of coupling between quasi-periodic echoes and medium scale traveling ionospheric disturbances S. Saito, M. Yamamoto, H. Hashiguchi, A. Maegawa, A. Saito To cite this version: S.

More information

Radar astronomy and radioastronomy using the over-the-horizon radar NOSTRADAMUS. ONERA, Département Electromagnétisme et Radar

Radar astronomy and radioastronomy using the over-the-horizon radar NOSTRADAMUS. ONERA, Département Electromagnétisme et Radar Radar astronomy and radioastronomy using the over-the-horizon radar NOSTRADAMUS J-F. Degurse 1,2, J-Ph. Molinié 1, V. Rannou 1,S. Marcos 2 1 ONERA, Département Electromagnétisme et Radar 2 L2S Supéléc,

More information

A STUDY OF DOPPLER BEAM SWINGING USING AN IMAGING RADAR

A STUDY OF DOPPLER BEAM SWINGING USING AN IMAGING RADAR .9O A STUDY OF DOPPLER BEAM SWINGING USING AN IMAGING RADAR B. L. Cheong,, T.-Y. Yu, R. D. Palmer, G.-F. Yang, M. W. Hoffman, S. J. Frasier and F. J. López-Dekker School of Meteorology, University of Oklahoma,

More information

Solar eclipse effects of 22 July 2009 on Sporadic-E

Solar eclipse effects of 22 July 2009 on Sporadic-E Ann. Geophys., 28, 353 357, 2010 Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License. Annales Geophysicae Solar eclipse effects of 22 July 2009 on Sporadic-E G.

More information

RADAR DEVELOPMENT BASIC CONCEPT OF RADAR WAS DEMONSTRATED BY HEINRICH. HERTZ VERIFIED THE MAXWELL RADAR.

RADAR DEVELOPMENT BASIC CONCEPT OF RADAR WAS DEMONSTRATED BY HEINRICH. HERTZ VERIFIED THE MAXWELL RADAR. 1 RADAR WHAT IS RADAR? RADAR (RADIO DETECTION AND RANGING) IS A WAY TO DETECT AND STUDY FAR OFF TARGETS BY TRANSMITTING A RADIO PULSE IN THE DIRECTION OF THE TARGET AND OBSERVING THE REFLECTION OF THE

More information

Novel Approach in Cross-Spectral signal Analysis using Interferometry Technique.

Novel Approach in Cross-Spectral signal Analysis using Interferometry Technique. Novel Approach in Cross-Spectral signal Analysis using Interferometry Technique.. Professor, Dept of ECE, Gayatri Vidyaparishad College of Engineering (Autonomous), Visakhapatnam. Abstract 1. Radar Interferometer

More information

MST radar observations of meteor showers and trail induced irregularities in the ionospheric E region

MST radar observations of meteor showers and trail induced irregularities in the ionospheric E region Indian Journal of Radio & Space Physics Vol. 39, June 2010, pp. 138-143 MST radar observations of meteor showers and trail induced irregularities in the ionospheric E region N Rakesh Chandra 1,$,*, G Yellaiah

More information

Adaptive sidelobe control for clutter rejection of atmospheric radars

Adaptive sidelobe control for clutter rejection of atmospheric radars Adaptive sidelobe control for clutter rejection of atmospheric radars K. Kamio 1,*, K. Nishimura 1, and T. Sato 1 1 Kyoto University, Kyoto, Japan * Present affiliation: Sony Corporation, Tokyo, Japan

More information

Directional Wave Information from the SeaSonde

Directional Wave Information from the SeaSonde Directional Wave Information from the SeaSonde PREPRINT ACCEPTED FOR PUBLICATION IN IEEE JOE Belinda Lipa 1 Codar Ocean Sensors 125 La Sandra Way, Portola Valley 9428 Bruce Nyden Codar Ocean Sensors 1

More information

Radar for Atmosphere and Ionosphere Study

Radar for Atmosphere and Ionosphere Study ISELION 2018 Bandung, Indonesia March 5-9, 2018 Radar for Atmosphere and Ionosphere Study Mamoru Yamamoto (RISH, Kyoto University) Outline Introduction MU radar Scattering sources Radar principle Some

More information

A Bistatic HF Radar for Current Mapping and Robust Ship Tracking

A Bistatic HF Radar for Current Mapping and Robust Ship Tracking A Bistatic HF Radar for Current Mapping and Robust Ship Tracking D. B. Trizna Imaging Science Research, Inc. 6103B Virgo Court Burke, VA, 22015 USA Abstract- A bistatic HF radar has been developed for

More information

Gravity wave activity and dissipation around tropospheric jet streams

Gravity wave activity and dissipation around tropospheric jet streams Gravity wave activity and dissipation around tropospheric jet streams W. Singer, R. Latteck P. Hoffmann, A. Serafimovich Leibniz-Institute of Atmospheric Physics, 185 Kühlungsborn, Germany (email: singer@iap-kborn.de

More information

AGF-216. The Earth s Ionosphere & Radars on Svalbard

AGF-216. The Earth s Ionosphere & Radars on Svalbard AGF-216 The Earth s Ionosphere & Radars on Svalbard Katie Herlingshaw 07/02/2018 1 Overview Radar basics what, how, where, why? How do we use radars on Svalbard? What is EISCAT and what does it measure?

More information

APPLICATION OF OCEAN RADAR ON THE BALTIC, FEATURES AND LIMITATIONS

APPLICATION OF OCEAN RADAR ON THE BALTIC, FEATURES AND LIMITATIONS APPLICATION OF OCEAN RADAR ON THE BALTIC, FEATURES AND LIMITATIONS Thomas Helzel, Matthias Kniephoff, Leif Petersen, Markus Valentin Helzel Messtechnik GmbH e-mail: helzel@helzel.com Presentation at Hydro

More information

Dartmouth College SuperDARN Radars

Dartmouth College SuperDARN Radars Dartmouth College SuperDARN Radars Under the guidance of Thayer School professor Simon Shepherd, a pair of backscatter radars were constructed in the desert of central Oregon over the Summer and Fall of

More information

Test results of Array Type HF Radar in the eastern coast of Korea

Test results of Array Type HF Radar in the eastern coast of Korea Test results of Array Type HF Radar in the eastern coast of Korea Seung Bea Choi 1, Hyeon Seong Kim 1, Jong Yoon Moon 1, Kang Ho Lee 1, Isamu Ogasawara 2 and Matthias Kniephoff 3 1 Marine Information Technology,

More information

QUALITY ISSUES IN RADAR WIND PROFILER

QUALITY ISSUES IN RADAR WIND PROFILER QUALITY ISSUES IN RADAR WIND PROFILER C.Abhishek 1, S.Chinmayi 2, N.V.A.Sridhar 3, P.R.S.Karthikeya 4 1,2,3,4 B.Tech(ECE) Student, SCSVMV University Kanchipuram(India) ABSTRACT The paper discusses possible

More information

Ultrasound Physics. History: Ultrasound 2/13/2019. Ultrasound

Ultrasound Physics. History: Ultrasound 2/13/2019. Ultrasound Ultrasound Physics History: Ultrasound Ultrasound 1942: Dr. Karl Theodore Dussik transmission ultrasound investigation of the brain 1949-51: Holmes and Howry subject submerged in water tank to achieve

More information

Equatorial Atmosphere Radar (EAR): System description and first results

Equatorial Atmosphere Radar (EAR): System description and first results RADIO SCIENCE, VOL. 38, NO. 3, 1053, doi:10.1029/2002rs002767, 2003 Equatorial Atmosphere Radar (EAR): System description and first results Shoichiro Fukao, Hiroyuki Hashiguchi, Mamoru Yamamoto, Toshitaka

More information

Determination of the correlation distance for spaced antennas on multipath HF links and implications for design of SIMO and MIMO systems.

Determination of the correlation distance for spaced antennas on multipath HF links and implications for design of SIMO and MIMO systems. Determination of the correlation distance for spaced antennas on multipath HF links and implications for design of SIMO and MIMO systems. Hal J. Strangeways, School of Electronic and Electrical Engineering,

More information

Microwave Remote Sensing (1)

Microwave Remote Sensing (1) Microwave Remote Sensing (1) Microwave sensing encompasses both active and passive forms of remote sensing. The microwave portion of the spectrum covers the range from approximately 1cm to 1m in wavelength.

More information

Dynasonde measurements advance understanding of the thermosphereionosphere

Dynasonde measurements advance understanding of the thermosphereionosphere Dynasonde measurements advance understanding of the thermosphereionosphere dynamics Nikolay Zabotin 1 with contributions from Oleg Godin 2, Catalin Negrea 1,4, Terence Bullett 3,5, Liudmila Zabotina 1

More information

Impact of the low latitude ionosphere disturbances on GNSS studied with a three-dimensional ionosphere model

Impact of the low latitude ionosphere disturbances on GNSS studied with a three-dimensional ionosphere model Impact of the low latitude ionosphere disturbances on GNSS studied with a three-dimensional ionosphere model Susumu Saito and Naoki Fujii Communication, Navigation, and Surveillance Department, Electronic

More information

Digital Sounder: HF Diagnostics Module:Ionosonde Dual Channel ( ) Eight Channel ( )

Digital Sounder: HF Diagnostics Module:Ionosonde Dual Channel ( ) Eight Channel ( ) CENTER FOR REMOTE SE NSING, INC. Digital Sounder: HF Diagnostics Module:Ionosonde Dual Channel (001-2000) Eight Channel (004-2006) 2010 Center for Remote Sensing, Inc. All specifications subject to change

More information

Rec. ITU-R P RECOMMENDATION ITU-R P *

Rec. ITU-R P RECOMMENDATION ITU-R P * Rec. ITU-R P.682-1 1 RECOMMENDATION ITU-R P.682-1 * PROPAGATION DATA REQUIRED FOR THE DESIGN OF EARTH-SPACE AERONAUTICAL MOBILE TELECOMMUNICATION SYSTEMS (Question ITU-R 207/3) Rec. 682-1 (1990-1992) The

More information

CODAR. Ben Kravitz September 29, 2009

CODAR. Ben Kravitz September 29, 2009 CODAR Ben Kravitz September 29, 2009 Outline What is CODAR? Doppler shift Bragg scatter How CODAR works What CODAR can tell us What is CODAR? Coastal Ocean Dynamics Application Radar Land-based HF radar

More information

4-10 Development of the CRL Okinawa Bistatic Polarimetric Radar

4-10 Development of the CRL Okinawa Bistatic Polarimetric Radar 4-10 Development of the CRL Okinawa Bistatic Polarimetric Radar NAKAGAWA Katsuhiro, HANADO Hiroshi, SATOH Shinsuke, and IGUCHI Toshio Communications Research Laboratory (CRL) has developed a new C-band

More information

THE NATURE OF GROUND CLUTTER AFFECTING RADAR PERFORMANCE MOHAMMED J. AL SUMIADAEE

THE NATURE OF GROUND CLUTTER AFFECTING RADAR PERFORMANCE MOHAMMED J. AL SUMIADAEE International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN(P): 2249-684X; ISSN(E): 2249-7951 Vol. 6, Issue 2, Apr 2016, 7-14 TJPRC Pvt. Ltd.

More information

6/20/2012 ACORN ACORN ACORN ACORN ACORN ACORN. Arnstein Prytz. Australian Coastal Ocean Radar Network (ACORN)

6/20/2012 ACORN ACORN ACORN ACORN ACORN ACORN. Arnstein Prytz. Australian Coastal Ocean Radar Network (ACORN) The Australian Coastal Ocean Radar Network WERA Processing and Quality Control Arnstein Prytz Australian Coastal Ocean Radar Network Marine Geophysical Laboratory School of Earth and Environmental Sciences

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.2 MICROPHONE ARRAY

More information

DETECTION OF SMALL AIRCRAFT WITH DOPPLER WEATHER RADAR

DETECTION OF SMALL AIRCRAFT WITH DOPPLER WEATHER RADAR DETECTION OF SMALL AIRCRAFT WITH DOPPLER WEATHER RADAR Svetlana Bachmann 1, 2, Victor DeBrunner 3, Dusan Zrnic 2 1 Cooperative Institute for Mesoscale Meteorological Studies, The University of Oklahoma

More information

Reading 28 PROPAGATION THE IONOSPHERE

Reading 28 PROPAGATION THE IONOSPHERE Reading 28 Ron Bertrand VK2DQ http://www.radioelectronicschool.com PROPAGATION THE IONOSPHERE The ionosphere is a region of the upper atmosphere extending from a height of about 60 km to greater than 500

More information

VHF Radar Target Detection in the Presence of Clutter *

VHF Radar Target Detection in the Presence of Clutter * BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 6, No 1 Sofia 2006 VHF Radar Target Detection in the Presence of Clutter * Boriana Vassileva Institute for Parallel Processing,

More information

Measurements of doppler shifts during recent auroral backscatter events.

Measurements of doppler shifts during recent auroral backscatter events. Measurements of doppler shifts during recent auroral backscatter events. Graham Kimbell, G3TCT, 13 June 2003 Many amateurs have noticed that signals reflected from an aurora are doppler-shifted, and that

More information

Sea Surface Backscatter Distortions of Scanning Radar Altimeter Ocean Wave Measurements

Sea Surface Backscatter Distortions of Scanning Radar Altimeter Ocean Wave Measurements Sea Surface Backscatter Distortions of Scanning Radar Altimeter Ocean Wave Measurements Edward J. Walsh and C. Wayne Wright NASA Goddard Space Flight Center Wallops Flight Facility Wallops Island, VA 23337

More information

1. Terrestrial propagation

1. Terrestrial propagation Rec. ITU-R P.844-1 1 RECOMMENDATION ITU-R P.844-1 * IONOSPHERIC FACTORS AFFECTING FREQUENCY SHARING IN THE VHF AND UHF BANDS (30 MHz-3 GHz) (Question ITU-R 218/3) (1992-1994) Rec. ITU-R PI.844-1 The ITU

More information

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman Antennas & Propagation CSG 250 Fall 2007 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

IONOSPHERE AND ATMOSPHERE RESEARCH WITH RADARS

IONOSPHERE AND ATMOSPHERE RESEARCH WITH RADARS IONOSPHERE AND ATMOSPHERE RESEARCH WITH RADARS Jürgen Röttger, Max-Planck-Institut, Lindau, Germany published in UNESCO Encyclopedia of Life Support Systems (EOLSS), Geophysics and Geochemistry, 6.16.5.3,

More information

AN INTRODUCTION TO VHF/ UHF PROPAGATION. Paul Wilton, M1CNK

AN INTRODUCTION TO VHF/ UHF PROPAGATION. Paul Wilton, M1CNK AN INTRODUCTION TO VHF/ UHF PROPAGATION Paul Wilton, M1CNK OVERVIEW Introduction Propagation Basics Propagation Modes Getting Started in 2m DX INTRODUCTION QRV on 2m SSB since Aug 1998, on 6m since Jan

More information

Over the Horizon Sky-wave Radar: Coordinate Registration by Sea-land Transitions Identification

Over the Horizon Sky-wave Radar: Coordinate Registration by Sea-land Transitions Identification Progress In Electromagnetics Research Symposium Proceedings, Moscow, Russia, August 18 21, 2009 21 Over the Horizon Sky-wave Radar: Coordinate Registration by Sea-land Transitions Identification F. Cuccoli

More information

Operation of a Mobile Wind Profiler In Severe Clutter Environments

Operation of a Mobile Wind Profiler In Severe Clutter Environments 1. Introduction Operation of a Mobile Wind Profiler In Severe Clutter Environments J.R. Jordan, J.L. Leach, and D.E. Wolfe NOAA /Environmental Technology Laboratory Boulder, CO Wind profiling radars have

More information

Dependence of radio wave anomalous attenuation in the ionosphere on properties of spatial spectrum of irregularities

Dependence of radio wave anomalous attenuation in the ionosphere on properties of spatial spectrum of irregularities Dependence of radio wave anomalous attenuation in the ionosphere on properties of spatial spectrum of irregularities N.A. Zabotin, G.A. Zhbankov and E.S. Kovalenko ostov State University, ostov-on-don,

More information

RADAR is the acronym for Radio Detection And Ranging. The. radar invention has its roots in the pioneering research during

RADAR is the acronym for Radio Detection And Ranging. The. radar invention has its roots in the pioneering research during 1 1.1 Radar General Introduction RADAR is the acronym for Radio Detection And Ranging. The radar invention has its roots in the pioneering research during nineteen twenties by Sir Edward Victor Appleton

More information

ATS 351 Lecture 9 Radar

ATS 351 Lecture 9 Radar ATS 351 Lecture 9 Radar Radio Waves Electromagnetic Waves Consist of an electric field and a magnetic field Polarization: describes the orientation of the electric field. 1 Remote Sensing Passive vs Active

More information

Modeling of Ionospheric Refraction of UHF Radar Signals at High Latitudes

Modeling of Ionospheric Refraction of UHF Radar Signals at High Latitudes Modeling of Ionospheric Refraction of UHF Radar Signals at High Latitudes Brenton Watkins Geophysical Institute University of Alaska Fairbanks USA watkins@gi.alaska.edu Sergei Maurits and Anton Kulchitsky

More information

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave WAVE PROPAGATION By Marcel H. De Canck, ON5AU Electromagnetic radio waves can propagate in three different ways between the transmitter and the receiver. 1- Ground waves 2- Troposphere waves 3- Sky waves

More information

Maximum Usable Frequency

Maximum Usable Frequency Maximum Usable Frequency 15 Frequency (MHz) 10 5 0 Maximum Usable Frequency Usable Frequency Window Lowest Usable Frequency Solar Flare 6 12 18 24 Time (Hours) Radio Blackout Usable Frequency Window Ken

More information

Antennas and Propagation

Antennas and Propagation Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Lecture 1 INTRODUCTION. Dr. Aamer Iqbal Bhatti. Radar Signal Processing 1. Dr. Aamer Iqbal Bhatti

Lecture 1 INTRODUCTION. Dr. Aamer Iqbal Bhatti. Radar Signal Processing 1. Dr. Aamer Iqbal Bhatti Lecture 1 INTRODUCTION 1 Radar Introduction. A brief history. Simplified Radar Block Diagram. Two basic Radar Types. Radar Wave Modulation. 2 RADAR The term radar is an acronym for the phrase RAdio Detection

More information

Ionospheric Propagation

Ionospheric Propagation Ionospheric Nick Massey VA7NRM 1 Electromagnetic Spectrum Radio Waves are a form of Electromagnetic Radiation Visible Light is also a form of Electromagnetic Radiation Radio Waves behave a lot like light

More information

OBJECTIVES: PROPAGATION INTRO RADIO WAVES POLARIZATION LINE OF SIGHT, GROUND WAVE, SKY WAVE IONOSPHERE REGIONS PROPAGATION, HOPS, SKIPS ZONES THE

OBJECTIVES: PROPAGATION INTRO RADIO WAVES POLARIZATION LINE OF SIGHT, GROUND WAVE, SKY WAVE IONOSPHERE REGIONS PROPAGATION, HOPS, SKIPS ZONES THE WAVE PROPAGATION OBJECTIVES: PROPAGATION INTRO RADIO WAVES POLARIZATION LINE OF SIGHT, GROUND WAVE, SKY WAVE IONOSPHERE REGIONS PROPAGATION, HOPS, SKIPS ZONES THE IONOSPHERIC LAYERS ABSORPTION AND FADING

More information

HiFi Radar Target. Kristian Karlsson (RISE)

HiFi Radar Target. Kristian Karlsson (RISE) HiFi Radar Target Kristian Karlsson (RISE) Outline HiFi Radar Target: Overview Background & goals Radar introduction RCS measurements: Setups Uncertainty contributions (ground reflection) Back scattering

More information

Observations and modeling of 630 nm airglow and total electron content associated with traveling ionospheric disturbances over Shigaraki, Japan

Observations and modeling of 630 nm airglow and total electron content associated with traveling ionospheric disturbances over Shigaraki, Japan Earth Planets Space, 54, 45 56, 2002 Observations and modeling of 630 nm airglow and total electron content associated with traveling ionospheric disturbances over Shigaraki, Japan T. Ogawa 1, N. Balan

More information

Groundwave Propagation, Part One

Groundwave Propagation, Part One Groundwave Propagation, Part One 1 Planar Earth groundwave 2 Planar Earth groundwave example 3 Planar Earth elevated antenna effects Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17,

More information

A Sourcebook on the Use of the MU Radar for Satellite Tracking

A Sourcebook on the Use of the MU Radar for Satellite Tracking A Sourcebook on the Use of the MU Radar for Satellite Tracking Version of 2006-09-10 Additional material for this sourcebook would be appreciated Please send it to thomsona@flash.net http://www-lab26.kuee.kyoto-u.ac.jp/study/mu/mu_e.html

More information

A technique for calculating ionospheric Doppler shifts from standard ionograms suitable for scientific, HF communication, and OTH radar applications

A technique for calculating ionospheric Doppler shifts from standard ionograms suitable for scientific, HF communication, and OTH radar applications RADIO SCIENCE, VOL. 44,, doi:10.1029/2009rs004210, 2009 A technique for calculating ionospheric Doppler shifts from standard ionograms suitable for scientific, HF communication, and OTH radar applications

More information

HIGH-FREQUENCY ACOUSTIC PROPAGATION IN THE PRESENCE OF OCEANOGRAPHIC VARIABILITY

HIGH-FREQUENCY ACOUSTIC PROPAGATION IN THE PRESENCE OF OCEANOGRAPHIC VARIABILITY HIGH-FREQUENCY ACOUSTIC PROPAGATION IN THE PRESENCE OF OCEANOGRAPHIC VARIABILITY M. BADIEY, K. WONG, AND L. LENAIN College of Marine Studies, University of Delaware Newark DE 19716, USA E-mail: Badiey@udel.edu

More information

DOPPLER RADAR. Doppler Velocities - The Doppler shift. if φ 0 = 0, then φ = 4π. where

DOPPLER RADAR. Doppler Velocities - The Doppler shift. if φ 0 = 0, then φ = 4π. where Q: How does the radar get velocity information on the particles? DOPPLER RADAR Doppler Velocities - The Doppler shift Simple Example: Measures a Doppler shift - change in frequency of radiation due to

More information

A bluffer s guide to Radar

A bluffer s guide to Radar A bluffer s guide to Radar Andy French December 2009 We may produce at will, from a sending station, an electrical effect in any particular region of the globe; (with which) we may determine the relative

More information

Introduction to Dept. of Communications & Computer Engineering (Part 2)

Introduction to Dept. of Communications & Computer Engineering (Part 2) Introduction to Dept. of Communications & Computer Engineering (Part 2) Mamoru YAMAMOTO Research Insititute for Sustainable Humanosphere (RISH), Kyoto University (Dept of Communications & Computer Engineering)

More information

Analysis of South China Sea Shelf and Basin Acoustic Transmission Data

Analysis of South China Sea Shelf and Basin Acoustic Transmission Data DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Analysis of South China Sea Shelf and Basin Acoustic Transmission Data Ching-Sang Chiu Department of Oceanography

More information

The Impact of Very High Frequency Surface Reverberation on Coherent Acoustic Propagation and Modeling

The Impact of Very High Frequency Surface Reverberation on Coherent Acoustic Propagation and Modeling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. The Impact of Very High Frequency Surface Reverberation on Coherent Acoustic Propagation and Modeling Grant B. Deane Marine

More information

High Frequency Acoustical Propagation and Scattering in Coastal Waters

High Frequency Acoustical Propagation and Scattering in Coastal Waters High Frequency Acoustical Propagation and Scattering in Coastal Waters David M. Farmer Graduate School of Oceanography (educational) University of Rhode Island Narragansett, RI 02882 Phone: (401) 874-6222

More information

DIRECTIONAL THE OCEAN WAVE SPECTRUM. T hmeasurement FEATURE

DIRECTIONAL THE OCEAN WAVE SPECTRUM. T hmeasurement FEATURE FEATURE THE OCEAN WAVE SPECTRUM DIRECTIONAL By Lucy R. Wyatt THE DIRECTIONAL SPECTRUM S(k) [or S(f,0)] measures the distribution of wave energy in wave number, k, (or frequency, f) and direction. Different

More information

A first study into the propagation of 5 MHz (60 m) signals using the South African ionosonde network

A first study into the propagation of 5 MHz (60 m) signals using the South African ionosonde network A first study into the propagation of 5 MHz (60 m) signals using the South African ionosonde network Hannes Coetzee, B. Eng. (Electronics), M. Sc. (Physics), ZS6BZP The SARL has purchased two 5 MHz test

More information

EISCAT Experiments. Anders Tjulin EISCAT Scientific Association 2nd March 2017

EISCAT Experiments. Anders Tjulin EISCAT Scientific Association 2nd March 2017 EISCAT Experiments Anders Tjulin EISCAT Scientific Association 2nd March 2017 Contents 1 Introduction 3 2 Overview 3 2.1 The radar systems.......................... 3 2.2 Antenna scan patterns........................

More information

Scalable Ionospheric Analyser SIA 24/6

Scalable Ionospheric Analyser SIA 24/6 Scalable Ionospheric Analyser SIA 24/6 Technical Overview Functional description The ATRAD Scalable Ionospheric Analyser SIA24/6 is designed to observe ionospheric irregularities and their drift in the

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Radio tomography based on satellite beacon experiment and FORMOSAT- 3/COSMIC radio occultation

Radio tomography based on satellite beacon experiment and FORMOSAT- 3/COSMIC radio occultation Radio tomography based on satellite beacon experiment and FORMOSAT- 3/COSMIC radio occultation Mamoru Yamamoto (1), Smitha V. Thampi (2), Charles Lin (3) (1) RISH, Kyoto University, Japan (2) Space Physics

More information

RECOMMENDATION ITU-R S.1340 *,**

RECOMMENDATION ITU-R S.1340 *,** Rec. ITU-R S.1340 1 RECOMMENDATION ITU-R S.1340 *,** Sharing between feeder links the mobile-satellite service and the aeronautical radionavigation service in the Earth-to-space direction in the band 15.4-15.7

More information

APPLICATION OF SMALL SATELLITES FOR HIGH PRECISION MEASURING EFFECTS OF RADIO WAVE PROPAGATION

APPLICATION OF SMALL SATELLITES FOR HIGH PRECISION MEASURING EFFECTS OF RADIO WAVE PROPAGATION APPLICATION OF SMALL SATELLITES FOR HIGH PRECISION MEASURING EFFECTS OF RADIO WAVE PROPAGATION K. Igarashi 1, N.A. Armand 2, A.G. Pavelyev 2, Ch. Reigber 3, J. Wickert 3, K. Hocke 1, G. Beyerle 3, S.S.

More information

4/18/2012. Supplement T3. 3 Exam Questions, 3 Groups. Amateur Radio Technician Class

4/18/2012. Supplement T3. 3 Exam Questions, 3 Groups. Amateur Radio Technician Class Amateur Radio Technician Class Element 2 Course Presentation ti ELEMENT 2 SUB-ELEMENTS Technician Licensing Class Supplement T3 Radio Wave Characteristics 3 Exam Questions, 3 Groups T1 - FCC Rules, descriptions

More information

ESA Radar Remote Sensing Course ESA Radar Remote Sensing Course Radar, SAR, InSAR; a first introduction

ESA Radar Remote Sensing Course ESA Radar Remote Sensing Course Radar, SAR, InSAR; a first introduction Radar, SAR, InSAR; a first introduction Ramon Hanssen Delft University of Technology The Netherlands r.f.hanssen@tudelft.nl Charles University in Prague Contents Radar background and fundamentals Imaging

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Atmospheric Radar for the km Region

Atmospheric Radar for the km Region The following paper posted here is not the official IEEE published version. The final published version of this paper can be found in the Proceedings of the International Radar Conference, 3-5 September,

More information

RECOMMENDATION ITU-R P HF propagation prediction method *

RECOMMENDATION ITU-R P HF propagation prediction method * Rec. ITU-R P.533-7 1 RECOMMENDATION ITU-R P.533-7 HF propagation prediction method * (Question ITU-R 3/3) (1978-198-1990-199-1994-1995-1999-001) The ITU Radiocommunication Assembly, considering a) that

More information

Mapping ionospheric backscatter measured by the SuperDARN HF radars Part 1: A new empirical virtual height model

Mapping ionospheric backscatter measured by the SuperDARN HF radars Part 1: A new empirical virtual height model Ann. Geophys., 26, 823 84, 2008 European Geosciences Union 2008 Annales Geophysicae Mapping ionospheric backscatter measured by the SuperDARN HF radars Part : A new empirical virtual height model G. Chisham,

More information

RECOMMENDATION ITU-R P Prediction of sky-wave field strength at frequencies between about 150 and khz

RECOMMENDATION ITU-R P Prediction of sky-wave field strength at frequencies between about 150 and khz Rec. ITU-R P.1147-2 1 RECOMMENDATION ITU-R P.1147-2 Prediction of sky-wave field strength at frequencies between about 150 and 1 700 khz (Question ITU-R 225/3) (1995-1999-2003) The ITU Radiocommunication

More information