Quantum shot noise in a tunnel junction Toward the dynamical control of tunneling processes

Size: px
Start display at page:

Download "Quantum shot noise in a tunnel junction Toward the dynamical control of tunneling processes"

Transcription

1 Quantum shot noise in a tunnel junction Toward the dynamical control of tunneling processes Laboratoire de Physique des Solides, Université Paris Sud, UMR8502, Orsay, France Perspectives in Quantum Thermoelectricity, time-dependence, correlations & measurements

2 Charge transfer in a quantum conductor Is it possible to measure and/or control the coherent charge transfer in a conductor? Quantum conductor = h=ev electronic wave packet charge I(t) amp meter - Measurement of the current fluctuations gives the electronic wavepacket width τ = h/ev - Control of charge transfer with a classical voltage source

3 Single-particle excitations generated by voltage pulses Are there time-dependent voltage pulses which create single-particle excitations from a degenerate Fermi sea in a mesoscopic conductor?

4 Single-particle excitations generated by voltage pulses Are there time-dependent voltage pulses which create single-particle excitations from a degenerate Fermi sea in a mesoscopic conductor? It has been proven for voltage pulse with unit flux and a Lorentzian shape. Á Z T 0 V (t)dt = N h e V (t) = X n V t+nt 2 L. Levitov et al. (96), I. Keeling et al. (06), F. Hassler et al. (07)

5 Single-particle excitations generated by voltage pulses Are there time-dependent voltage pulses which create single-particle excitations from a degenerate Fermi sea in a mesoscopic conductor? It has been proven for voltage pulse with unit flux and a Lorentzian shape. - Dynamical control of a non-equilibrium electronic distribution function - Generation and manipulation of coherent excitations in mesoscopic conductors Fundamental questions about the nature of these elementary excitations E. Bocquillon et al. (Science 2013), J. Dubois et al. (Nature 2013)

6 Contents 1 Current noise measurement to probe electronic excitations Noise and photon-assisted noise in a tunnel junction Excess noise and electronic excitations 2 Photon-assisted noise under bi-harmonic excitation Lorentzian pulses vs. bi-harmonic excitation Exprimental setup Dynamical control of a non-equilibrium electronic distribution function Coherent scattering state and shot noise minimization 3 Outlook: power fluctuations in an ac-driven conductor Unlike current noise, energy noise reveals e-h correlations Case of Lorentzian pulses

7 Contents 1 Current noise measurement to probe electronic excitations Noise and photon-assisted noise in a tunnel junction Excess noise and electronic excitations 2 Photon-assisted noise under bi-harmonic excitation Lorentzian pulses vs. bi-harmonic excitation Exprimental setup Dynamical control of a non-equilibrium electronic distribution function Coherent scattering state and shot noise minimization 3 Outlook: power fluctuations in an ac-driven conductor Unlike current noise, energy noise reveals e-h correlations Case of Lorentzian pulses

8 Current fluctuations in a tunnel junction AFM picture (Lafe Spietz) - Tunnel junction = the simplest quantum conductor contact (L) contact (R) N e T n e N e τ = 1/Δf ev dc I = e Δf n e

9 Current fluctuations in a tunnel junction AFM picture (Lafe Spietz) - Tunnel junction = the simplest quantum conductor contact (L) contact (R) N e T n e N e τ = 1/Δf ev dc - Charge granularity - A toy model for a single conduction channel I = e Δf n e Probability of transferring n e electronsfor N e incoming electrons : P Ne n e = N e n e T n e(1 T) N e n e - The barrier (transmission T 1) induces partition noise. At zero temperature, the noise spectral density at low frequency for a dc voltage bias is given by: S 2 V dc = Δn 2 /Δf = e I n e

10 Current fluctuations in a tunnel junction AFM picture (Lafe Spietz) - Time dependent voltage bias: contact (L) contact (R) N e h N e T n e N e τ = 1/Δf - Probability of transferring n e electrons and n h holes: P Ne +N e h n e = N e + N e h n e P Ne h n h = N e h n h ev dc + ev ac The excess noise S 2 = S 2 V dc +V - S ac 2 V is related to the number of e-h dc pairs created by the time dependent excitation: S 2 N e h T n e(1 T) N e+n e h n e T n h(1 T) N e h n h I = e Δf (n e n h )

11 Current fluctuations in a tunnel junction Wave-particle duality is hidden in the probability per unit time - Fermi golden rule for a dc voltage bias gives: Γ ± = e h dε T(ε) f(ε ± ev/2) 1 f(ε ev/2) - Average charge current : I = e Γ + Γ

12 Current fluctuations in a tunnel junction S 2 /Ghν Wave-particle duality is hidden in the probability per unit time - Fermi golden rule for a dc voltage bias gives: Γ ± = e dε T(ε) f(ε ± ev/2) 1 f(ε ev/2) h - Average charge current : I = e Γ + Γ - Noise spectral density for a dc biased tunnel junction: S 2 Vdc = e 2 ev Γ + + Γ = e I coth 2k B T e 35 T e = 25 mk V dc f integrated time 1/ f 1ns ev dc /hν

13 Current fluctuations in a tunnel junction S 2 /Ghν Wave-particle duality is hidden in the probability per unit time - Fermi golden rule for a dc voltage bias gives: Γ ± = e h dε T(ε) f(ε ± ev/2) 1 f(ε ev/2) - Average charge current : I = e Γ + Γ - Noise spectral density for a dc biased tunnel junction: S 2 Vdc = e 2 ev Γ + + Γ = e I coth 2k B T e 35 T e = 25 mk Equilibrium noise (thermal fluctuations) 30 S 2 Vdc = 2Gk B T e Shot noise (discreteness of charge) S 2 Vdc = e I ev dc /hν

14 Photon-assisted noise in a tunnel junction The tunnel junction is biased with a time-dependent voltage: V t = V dc + V ac (t) - Fermi golden rule for an arbitrary periodic excitation gives: Γ ± = e h dε T(ε) f(ε ± ev dc /2) 1 f(ε ev dc /2) where f ε is an out of equilibrium distribution function: f ε = + n= c 2 n f ε + nhν exp i t and c n the Fourier coeff. of evac ħ 0 - Photon-assisted noise spectral density: S 2 Vdc +V ac t = + n= c n 2 S 2 (eq) evdc + nhν Where S 2 (eq) hν = G hνcoth hν 2k B T is the Johnson-Nyquist equilibrium noise

15 Photon-assisted noise in a tunnel junction S 2 /Ghν The tunnel junction is biased with a time-dependent voltage: V t = V dc + V ac (t) V dc + V ac (t) f Photon-assisted shot noise S 2 V dc +V ac (t) ev dc /hν probes the excitations created by pulses at frequency ν. The excess noise ΔS 2 = S 2 Vdc +V ac (t) S 2 Vdc at V dc = N e hν/e is related to the probability p k (N e ) (related to V ac ) to create k e-h pairs at zero temperature (hν k B T e ) S 2 (Nhº) = 2Ghº X k p k (N e ) / N e h M. Vanevic et al. (07)(08)(12)

16 Contents 1 Current noise measurement to probe electronic excitations Noise and photon-assisted noise in a tunnel junction Excess noise and electronic excitations 2 Photon-assisted noise under bi-harmonic excitation Lorentzian pulses vs. bi-harmonic excitation Exprimental setup Dynamical control of a non-equilibrium electronic distribution function Coherent scattering state and shot noise minimization 3 Outlook: power fluctuations in an ac-driven conductor Unlike current noise, energy noise reveals e-h correlations Case of Lorentzian pulses

17 Current noise measurement to probe electronic excitations - is minimal at unit-flux: Excess noise for different pulse shapes Á Z T 0 V (t)dt = N h e R. Schoelkopf et al. (98)(00)

18 Current noise measurement to probe electronic excitations - is minimal at unit-flux: Á Z T 0 Excess noise for different pulse shapes V (t)dt = N h e - reaches zero for Lorentzian pulses

19 Current noise measurement to probe electronic excitations - is minimal at unit-flux: Á Z T 0 Excess noise for different pulse shapes V (t)dt = N h e - reaches zero for Lorentzian pulses - Technical constrains: It is experimentally difficult to generate Lorentzian pulses with precise shape and high repetition rate ( ). The impedance of a single mode conductor induces a limitation of the detection bandwidth. bi-harmonic pulses to mimic Lorentzian pulses with width

20 Voltage pulses on a tunnel junction - Al/Al 2 O 3 /Al tunnel junction: channels transmission - For a N unit-flux Lorentzian pulse, the statistics of transferred charge corresponds to a coherent scattering state without e-h excitations : jãi = (2 ) X V (t) = ¹h 2= 1=2 e ²=¹h j1 ² i hhq n ii e 1 + (t= ) 2 = N R K ²>² F e n R - For N unit-flux (bi-)harmonic pulses, the coherent scattering state is surrounded by a ("small") cloud of e-h excitations :

21 Experimental setup dilution refrigerator sample holder 1 cm

22 Experimental setup V (t) = V dc + V ac1 cos (2¼ºt) + V ac2 cos (4¼ºt + ')

23 Experimental setup (calibration) V (t) = V dc + V ac1 cos (2¼ºt) + V ac2 cos (4¼ºt + ')

24 Dynamical control of a non-equilibrium electronic distribution function The non-equilibrium distribution is closely related to the derivative of the noise f ε = + n= c n 2 f ε + nhν Shot noise spectroscopy gives the non equilibrium distribution function, in the limit f ε F + ξ R S 2 (ev dc ) ξ=evdc Possibility to dynamically control and engineer the energy distribution function of the electrons in a mesoscopic conductor (e.g. dynamically control the amplitude of the critical current of a SNS tunnel junction).

25 Measurement of photon-assisted process probabilities

26 Coherent scattering state and shot noise minimization For a bi-harmonic excitation V (t) = V dc + V ac1 cos (2¼ºt) + V ac2 cos (4¼ºt + ') The total probability to create e-h pairs at zero temperature is: P X p k = S 2 2Ghº k V dc = 5hν/e and JG et al. (13), J. Dubois et al. (13)

27 Contents 1 Current noise measurement to probe electronic excitations Noise and photon-assisted noise in a tunnel junction Excess noise and electronic excitations 2 Photon-assisted noise under bi-harmonic excitation Lorentzian pulses vs. bi-harmonic excitation Exprimental setup Dynamical control of a non-equilibrium electronic distribution function Coherent scattering state and shot noise minimization 3 Outlook: power fluctuations in an ac-driven conductor Unlike current noise, energy noise reveals e-h correlations Case of Lorentzian pulses

28 Outlook: power fluctuations in an ac-driven conductor Motivated by the fluctuations relations, we could look at the dissipated work in the conductor and define the power operator provided by the source. P t = V(t) I L (t) where I L (t) is the current operator described in the scattering theory approach - For a conductor with energy-indep. transmission D, power fluctuations are given by: Δ P 2 = D(1 D) h e 2 h D2 + n= + n= c n 2 (nhν + ev dc ) 3 coth nhν + ev dc 2k B T v n 2 nhν coth - For transparent barrieres, an interference term appears in addition to the usual transport term nhν 2k B T v n = ν 0 1/ν + V t e i2πnνt dt F. Battista et al. (PRB 2014)

29 Outlook: power fluctuations in an ac-driven conductor For Lorentzian pulses: V (t) = X n V t+nt 2 Fluctuations of power yields an interference contribution related to the intrinsic energy spread of single particle excitation: Δ P 2 = D(1 D) h 0 1/ν ev t 3 dt + h τ 2 D 2 ν 2 ψ = 2τ ε>ε F e τε/ħ 1 ε F. Battista et al. (PRB 2014)

30 Outlook - Take home message The photon-assisted noise shows the possibility to dynamically control and engineer the energy distribution function of the electrons in a mesoscopic conductor. It is the first step towards the creation of the "electronic coherent states". - Outlook ψ = 2τ ε>ε F e τε/ħ 1 ε Is this source equivalent to single electron source based on a quantum dot (LPA experiment)? Study of Crooks and Jarzynski fluctuation relations for the tunneling current. How high order cumulant of power fluctuations have to be symmetrized? P + (W) P ( W) = exp W F k B T with W = V t I t dt

31 References [1] D. A. Ivanov, H. W. Lee and L. S. Levitov, Phys. Rev. B 56, 6839 (1997) [2] J. Keeling, I. Klich and L. S. Levitov, Phys. Rev. Lett. 97, (2006) [3] C. Grenier, R. Herve, E. Bocquillon, F. D. Parmentier, B. Placais, J.-M. Berroir, G. Feve, and P. Degiovanni, New J. Phys. 13, (2011) [4] M. Vanevic, Y. V. Nazarov, andw. Belzig, Phys. Rev. B 78, (2008) [5] M. Vanevic and W. Belzig, Phys. Rev. B 86, (R) (2012) [6] J. Dubois et al., Nature 502, 659 (2013) [7] J.G and B.R, Phys. Rev. B 87, (2013) Thank you!

32 Coherence of the electronic wave packet Collaboration with B. Reulet, Sherbrook University

arxiv: v2 [cond-mat.mes-hall] 15 Oct 2010

arxiv: v2 [cond-mat.mes-hall] 15 Oct 2010 Emission and Absorption quantum noise measurement with an on-chip resonant circuit arxiv:16.892v2 [cond-mat.mes-hall] 15 Oct 21 J. Basset, 1 H. Bouchiat, 1 and R. Deblock 1 1 Laboratoire de Physique des

More information

PHY 123/253 Shot Noise

PHY 123/253 Shot Noise PHY 123/253 Shot Noise HISTORY Complete Pre- Lab before starting this experiment In 1918, experimental physicist Walter Scottky working in the research lab at Siemens was investigating the origins of noise

More information

PHY 122 Shot Noise. Complete Shot Noise Pre- Lab before starting this experiment

PHY 122 Shot Noise. Complete Shot Noise Pre- Lab before starting this experiment PHY 122 Shot Noise HISTORY Complete Shot Noise Pre- Lab before starting this experiment In 1918, experimental physicist Walter Scottky working in the research lab at Siemens was investigating the origins

More information

Modeling and simulation of single-electron transistors

Modeling and simulation of single-electron transistors Available online at http://www.ibnusina.utm.my/jfs Journal of Fundamental Sciences Article Modeling and simulation of single-electron transistors Lee Jia Yen*, Ahmad Radzi Mat Isa, Karsono Ahmad Dasuki

More information

CHAPTER 8 The pn Junction Diode

CHAPTER 8 The pn Junction Diode CHAPTER 8 The pn Junction Diode Consider the process by which the potential barrier of a pn junction is lowered when a forward bias voltage is applied, so holes and electrons can flow across the junction

More information

CHAPTER 8 The PN Junction Diode

CHAPTER 8 The PN Junction Diode CHAPTER 8 The PN Junction Diode Consider the process by which the potential barrier of a PN junction is lowered when a forward bias voltage is applied, so holes and electrons can flow across the junction

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/2/e1700324/dc1 Supplementary Materials for Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures Long Yuan, Ting-Fung

More information

Radio-frequency scanning tunneling microscopy

Radio-frequency scanning tunneling microscopy doi: 10.1038/nature06238 SUPPLEMENARY INFORMAION Radio-frequency scanning tunneling microscopy U. Kemiktarak 1,. Ndukum 2, K.C. Schwab 2, K.L. Ekinci 3 1 Department of Physics, Boston University, Boston,

More information

Introduction to Phase Noise

Introduction to Phase Noise hapter Introduction to Phase Noise brief introduction into the subject of phase noise is given here. We first describe the conversion of the phase fluctuations into the noise sideband of the carrier. We

More information

Non-equilibrium quasi-particles in disordered superconductors

Non-equilibrium quasi-particles in disordered superconductors Non-equilibrium quasi-particles in disordered superconductors Julia S. Meyer with Anton Bespalov ( Nizhni-Novgorod), Manuel Houzet (Grenoble), and Yuli Nazarov (TU Delft) SPICE Workshop: Quantum Thermodynamics

More information

Thermal Johnson Noise Generated by a Resistor

Thermal Johnson Noise Generated by a Resistor Thermal Johnson Noise Generated by a Resistor Complete Pre- Lab before starting this experiment HISTORY In 196, experimental physicist John Johnson working in the physics division at Bell Labs was researching

More information

INFN Laboratori Nazionali di Legnaro, Marzo 2007 FRONT-END ELECTRONICS PART 2

INFN Laboratori Nazionali di Legnaro, Marzo 2007 FRONT-END ELECTRONICS PART 2 INFN Laboratori Nazionali di Legnaro, 6-30 Marzo 007 FRONT-END ELECTRONICS PART Francis ANGHINOLFI Wednesday 8 March 007 Francis.Anghinolfi@cern.ch v1 1 FRONT-END Electronics Part A little bit about signal

More information

What is the highest efficiency Solar Cell?

What is the highest efficiency Solar Cell? What is the highest efficiency Solar Cell? GT CRC Roof-Mounted PV System Largest single PV structure at the time of it s construction for the 1996 Olympic games Produced more than 1 billion watt hrs. of

More information

Detectors. RIT Course Number Lecture Noise

Detectors. RIT Course Number Lecture Noise Detectors RIT Course Number 1051-465 Lecture Noise 1 Aims for this lecture learn to calculate signal-to-noise ratio describe processes that add noise to a detector signal give examples of how to combat

More information

Unless otherwise specified, assume room temperature (T = 300 K).

Unless otherwise specified, assume room temperature (T = 300 K). ECE 3040 Dr. Doolittle Homework 4 Unless otherwise specified, assume room temperature (T = 300 K). 1) Purpose: Understanding p-n junction band diagrams. Consider a p-n junction with N A = 5x10 14 cm -3

More information

The Josephson light-emitting diode

The Josephson light-emitting diode Marseille, 07.12.09 The Josephson light-emitting diode P. Recher, Yu.V. Nazarov, and L.P. Kouwenhoven, arxiv:0902.4468 Patrik Recher Institut für Theoretische Physik und Astrophysik, Universität Würzburg,

More information

Timing Noise Measurement of High-Repetition-Rate Optical Pulses

Timing Noise Measurement of High-Repetition-Rate Optical Pulses 564 Timing Noise Measurement of High-Repetition-Rate Optical Pulses Hidemi Tsuchida National Institute of Advanced Industrial Science and Technology 1-1-1 Umezono, Tsukuba, 305-8568 JAPAN Tel: 81-29-861-5342;

More information

Thermal management and thermal properties of high-brightness diode lasers

Thermal management and thermal properties of high-brightness diode lasers Thermal management and thermal properties of high-brightness diode lasers Jens W. Tomm Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie Berlin Max-Born-Str. 2 A, D-12489 Berlin, Germany

More information

8.2 Common Forms of Noise

8.2 Common Forms of Noise 8.2 Common Forms of Noise Johnson or thermal noise shot or Poisson noise 1/f noise or drift interference noise impulse noise real noise 8.2 : 1/19 Johnson Noise Johnson noise characteristics produced by

More information

CHAPTER 8 The PN Junction Diode

CHAPTER 8 The PN Junction Diode CHAPTER 8 The PN Junction Diode Consider the process by which the potential barrier of a PN junction is lowered when a forward bias voltage is applied, so holes and electrons can flow across the junction

More information

Realization of H.O.: Lumped Element Resonator

Realization of H.O.: Lumped Element Resonator Realization of H.O.: Lumped Element Resonator inductor L capacitor C a harmonic oscillator currents and magnetic fields +q -q charges and electric fields Realization of H.O.: Transmission Line Resonator

More information

Photomixer as a self-oscillating mixer

Photomixer as a self-oscillating mixer Photomixer as a self-oscillating mixer Shuji Matsuura The Institute of Space and Astronautical Sciences, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 9-8510, Japan. e-mail:matsuura@ir.isas.ac.jp Abstract Photomixing

More information

Homework Set 3.5 Sensitive optoelectronic detectors: seeing single photons

Homework Set 3.5 Sensitive optoelectronic detectors: seeing single photons Homework Set 3.5 Sensitive optoelectronic detectors: seeing single photons Due by 12:00 noon (in class) on Tuesday, Nov. 7, 2006. This is another hybrid lab/homework; please see Section 3.4 for what you

More information

Quasiparticle number fluctuations in superconductors

Quasiparticle number fluctuations in superconductors Quasiparticle number fluctuations in superconductors C.M. Wilson and D.E. Prober* Yale University, P.O. Box 208284, New Haven, CT 06520-8284 74.40.+k, 05.40.-a, 05.70.Ln, 85.25.Oj We present a general

More information

MMA Memo 161 Receiver Noise Temperature, the Quantum Noise Limit, and the Role of the Zero-Point Fluctuations *

MMA Memo 161 Receiver Noise Temperature, the Quantum Noise Limit, and the Role of the Zero-Point Fluctuations * 8th Int. Symp. on Space Terahertz Tech., March 25-27, 1997, pp. 101-111 MMA Memo 161 eceiver Noise Temperature, the Quantum Noise Limit, and the ole of the Zero-Point Fluctuations * A.. Kerr 1, M. J. Feldman

More information

Correlated 2D Electron Aspects of the Quantum Hall Effect

Correlated 2D Electron Aspects of the Quantum Hall Effect Correlated 2D Electron Aspects of the Quantum Hall Effect Magnetic field spectrum of the correlated 2D electron system: Electron interactions lead to a range of manifestations 10? = 4? = 2 Resistance (arb.

More information

Readout Electronics. P. Fischer, Heidelberg University. Silicon Detectors - Readout Electronics P. Fischer, ziti, Uni Heidelberg, page 1

Readout Electronics. P. Fischer, Heidelberg University. Silicon Detectors - Readout Electronics P. Fischer, ziti, Uni Heidelberg, page 1 Readout Electronics P. Fischer, Heidelberg University Silicon Detectors - Readout Electronics P. Fischer, ziti, Uni Heidelberg, page 1 We will treat the following questions: 1. How is the sensor modeled?

More information

Semiconductor Detector Systems

Semiconductor Detector Systems Semiconductor Detector Systems Helmuth Spieler Physics Division, Lawrence Berkeley National Laboratory OXFORD UNIVERSITY PRESS ix CONTENTS 1 Detector systems overview 1 1.1 Sensor 2 1.2 Preamplifier 3

More information

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes Abstract We report the fabrication and testing of a GaAs-based high-speed resonant cavity enhanced (RCE) Schottky photodiode. The

More information

Sensors, Signals and Noise

Sensors, Signals and Noise Sensors, Signals and Noise COURSE OUTLINE Introduction Signals and Noise Filtering: LPF2 Switched-Parameter Filters Sensors and associated electronics Sergio Cova SENSORS SIGNALS AND NOISE SSN05b LOW PASS

More information

arxiv: v1 [cond-mat.supr-con] 21 Oct 2011

arxiv: v1 [cond-mat.supr-con] 21 Oct 2011 Journal of Low Temperature Physics manuscript No. (will be inserted by the editor) arxiv:1110.4839v1 [cond-mat.supr-con] 21 Oct 2011 Peter J. Lowell Galen C. O Neil Jason M. Underwood Joel N. Ullom Andreev

More information

Communication using Synchronization of Chaos in Semiconductor Lasers with optoelectronic feedback

Communication using Synchronization of Chaos in Semiconductor Lasers with optoelectronic feedback Communication using Synchronization of Chaos in Semiconductor Lasers with optoelectronic feedback S. Tang, L. Illing, J. M. Liu, H. D. I. barbanel and M. B. Kennel Department of Electrical Engineering,

More information

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss Introduction Small-scale fading is used to describe the rapid fluctuation of the amplitude of a radio

More information

Introduction to Photovoltaics

Introduction to Photovoltaics Introduction to Photovoltaics PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo February 24, 2015 Only solar energy Of all the possible sources

More information

OPTOELECTRONIC and PHOTOVOLTAIC DEVICES

OPTOELECTRONIC and PHOTOVOLTAIC DEVICES OPTOELECTRONIC and PHOTOVOLTAIC DEVICES Outline 1. Introduction to the (semiconductor) physics: energy bands, charge carriers, semiconductors, p-n junction, materials, etc. 2. Light emitting diodes Light

More information

ECE 4606 Undergraduate Optics Lab Interface circuitry. Interface circuitry. Outline

ECE 4606 Undergraduate Optics Lab Interface circuitry. Interface circuitry. Outline Interface circuitry Interface circuitry Outline Photodiode Modifying capacitance (bias, area) Modifying resistance (transimpedance amp) Light emitting diode Direct current limiting Modulation circuits

More information

AC magnetic measurements etc

AC magnetic measurements etc physics 590 ruslan prozorov AC magnetic measurements etc lock-in amplifier lock-in summary with integrator integrate out phase-sensitive detector (PSD) AC magnetic susceptibility typical AC susceptometer

More information

Introduction to Analog And Digital Communications

Introduction to Analog And Digital Communications Introduction to Analog And Digital Communications Second Edition Simon Haykin, Michael Moher Chapter 11 System and Noise Calculations 11.1 Electrical Noise 11.2 Noise Figure 11.3 Equivalent Noise Temperature

More information

NETW 701: Wireless Communications. Lecture 5. Small Scale Fading

NETW 701: Wireless Communications. Lecture 5. Small Scale Fading NETW 701: Wireless Communications Lecture 5 Small Scale Fading Small Scale Fading Most mobile communication systems are used in and around center of population. The transmitting antenna or Base Station

More information

Detectors for Optical Communications

Detectors for Optical Communications Optical Communications: Circuits, Systems and Devices Chapter 3: Optical Devices for Optical Communications lecturer: Dr. Ali Fotowat Ahmady Sep 2012 Sharif University of Technology 1 Photo All detectors

More information

Fast Electron Temperature Diagnostic Based on Langmuir Probe Current Harmonic Detection on D-IIID

Fast Electron Temperature Diagnostic Based on Langmuir Probe Current Harmonic Detection on D-IIID Fast Electron Temperature Diagnostic Based on Langmuir Probe Current Harmonic Detection on D-IIID D.L. Rudakov, J. A. Boedo, R. D. Lehmer*, R. A. Moyer, G. Gunner - University of California, San Diego

More information

anomalous excess of noise Jinuk Kim

anomalous excess of noise Jinuk Kim lose anomalous excess of noise orthogonality Jinuk Kim Journal Club 018-09-0 Olivier Arcizet Biography 006: PhD, Laboratoire Kastler Brossel(Advisor Professor Antonine Heidmann) 007-009: Postdoctoral Scholar,

More information

Optical Receivers Theory and Operation

Optical Receivers Theory and Operation Optical Receivers Theory and Operation Photo Detectors Optical receivers convert optical signal (light) to electrical signal (current/voltage) Hence referred O/E Converter Photodetector is the fundamental

More information

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1 Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

SQUID Amplifiers for Axion Search Experiments

SQUID Amplifiers for Axion Search Experiments SQUID Amplifiers for Axion Search Experiments Andrei Matlashov A, Woohyun Chang A, Vyacheslav Zakosarenko C,D, Matthias Schmelz C, Ronny Stolz C, Yannis Semertzidis A,B A IBS/CAPP, B KAIST, C IPHT, D Supracon

More information

Single-electron counting for

Single-electron counting for Single-electron counting for quantum metrology Jukka Pekola Low Temperature Laboratory Aalto University, Helsinki, Finland Ville Maisi (AALTO, MIKES), Olli-Pentti Saira (AALTO), Mikko Möttönen (AALTO),

More information

The (Speed and) Decay of Cosmic-Ray Muons

The (Speed and) Decay of Cosmic-Ray Muons The (Speed and) Decay of Cosmic-Ray Muons Jason Gross MIT - Department of Physics Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 1 / 30 Goals test relativity (time dilation) determine the mean lifetime

More information

Low-temperature STM using the ac-josephson Effect

Low-temperature STM using the ac-josephson Effect Low-temperature STM using the ac-josephson Effect Klaus Baberschke Institut für f r Experimentalphysik Freie Universität t Berlin Arnimallee 14 D-14195 D Berlin-Dahlem Germany e-mail: bab@physik.fu-berlin.de

More information

Mobile Radio Propagation Channel Models

Mobile Radio Propagation Channel Models Wireless Information Transmission System Lab. Mobile Radio Propagation Channel Models Institute of Communications Engineering National Sun Yat-sen University Table of Contents Introduction Propagation

More information

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Title: Roschier Leif &

More information

Physics 160 Lecture 5. R. Johnson April 13, 2015

Physics 160 Lecture 5. R. Johnson April 13, 2015 Physics 160 Lecture 5 R. Johnson April 13, 2015 Half Wave Diode Rectifiers Full Wave April 13, 2015 Physics 160 2 Note that there is no ground connection on this side of the rectifier! Output Smoothing

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 23 Mar 2001

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 23 Mar 2001 Coulomb Blockade and Coherent Single-Cooper-Pair Tunneling arxiv:cond-mat/0103502v1 [cond-mat.mes-hall] 23 Mar 2001 in Single Josephson Junctions Michio Watanabe and David B. Haviland Nanostructure Physics,

More information

Electron Spin Resonance v2.0

Electron Spin Resonance v2.0 Electron Spin Resonance v2.0 Background. This experiment measures the dimensionless g-factor (g s ) of an unpaired electron using the technique of Electron Spin Resonance, also known as Electron Paramagnetic

More information

ABSTRACT. Supported by U.S. DoE grant No. DE-FG02-96ER54375

ABSTRACT. Supported by U.S. DoE grant No. DE-FG02-96ER54375 ABSTRACT A CCD imaging system is currently being developed for T e (,t) and bolometric measurements on the Pegasus Toroidal Experiment. Soft X-rays (E

More information

A Simplified Extension of X-parameters to Describe Memory Effects for Wideband Modulated Signals

A Simplified Extension of X-parameters to Describe Memory Effects for Wideband Modulated Signals Jan Verspecht bvba Mechelstraat 17 B-1745 Opwijk Belgium email: contact@janverspecht.com web: http://www.janverspecht.com A Simplified Extension of X-parameters to Describe Memory Effects for Wideband

More information

Applications of Monte Carlo Methods in Charged Particles Optics

Applications of Monte Carlo Methods in Charged Particles Optics Sydney 13-17 February 2012 p. 1/3 Applications of Monte Carlo Methods in Charged Particles Optics Alla Shymanska alla.shymanska@aut.ac.nz School of Computing and Mathematical Sciences Auckland University

More information

Ranging detection algorithm for indoor UWB channels and research activities relating to a UWB-RFID localization system

Ranging detection algorithm for indoor UWB channels and research activities relating to a UWB-RFID localization system Ranging detection algorithm for indoor UWB channels and research activities relating to a UWB-RFID localization system Dr Choi Look LAW Founding Director Positioning and Wireless Technology Centre School

More information

Coherent Receivers Principles Downconversion

Coherent Receivers Principles Downconversion Coherent Receivers Principles Downconversion Heterodyne receivers mix signals of different frequency; if two such signals are added together, they beat against each other. The resulting signal contains

More information

PoS(PhotoDet 2012)058

PoS(PhotoDet 2012)058 Absolute Photo Detection Efficiency measurement of Silicon PhotoMultipliers Vincent CHAUMAT 1, Cyril Bazin, Nicoleta Dinu, Véronique PUILL 1, Jean-François Vagnucci Laboratoire de l accélérateur Linéaire,

More information

The Cosmic Microwave Background Radiation B. Winstein, U of Chicago

The Cosmic Microwave Background Radiation B. Winstein, U of Chicago The Cosmic Microwave Background Radiation B. Winstein, U of Chicago Lecture #1 Lecture #2 What is it? How its anisotropies are generated? What Physics does it reveal? How it is measured. Lecture #3 Main

More information

arxiv:cond-mat/ v1 19 May 1993

arxiv:cond-mat/ v1 19 May 1993 SU-ITP-93-14 Quasi-Fermi Distribution and Resonant Tunneling of Quasiparticles with Fractional Charges arxiv:cond-mat/9305021v1 19 May 1993 V.L. Pokrovsky Physics Dept., Texas A&M University, College Stat.,

More information

Quantum Condensed Matter Physics Lecture 16

Quantum Condensed Matter Physics Lecture 16 Quantum Condensed Matter Physics Lecture 16 David Ritchie QCMP Lent/Easter 2018 http://www.sp.phy.cam.ac.uk/drp2/home 16.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

Mobile Radio Systems OPAM: Understanding OFDM and Spread Spectrum

Mobile Radio Systems OPAM: Understanding OFDM and Spread Spectrum Mobile Radio Systems OPAM: Understanding OFDM and Spread Spectrum Klaus Witrisal witrisal@tugraz.at Signal Processing and Speech Communication Laboratory www.spsc.tugraz.at Graz University of Technology

More information

Channel-based Optimization of Transmit-Receive Parameters for Accurate Ranging in UWB Sensor Networks

Channel-based Optimization of Transmit-Receive Parameters for Accurate Ranging in UWB Sensor Networks J. Basic. ppl. Sci. Res., 2(7)7060-7065, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal of Basic and pplied Scientific Research www.textroad.com Channel-based Optimization of Transmit-Receive Parameters

More information

Notes on Optical Amplifiers

Notes on Optical Amplifiers Notes on Optical Amplifiers Optical amplifiers typically use energy transitions such as those in atomic media or electron/hole recombination in semiconductors. In optical amplifiers that use semiconductor

More information

Department of Physics & Astronomy. Kelvin Building, University of Glasgow,

Department of Physics & Astronomy. Kelvin Building, University of Glasgow, Department of Physics & Astronomy Experimental Particle Physics Group Kelvin Building, University of Glasgow, Glasgow, G12 8QQ, Scotland Telephone: +44 (0)141 339 8855 Fax: +44 (0)141 334 9029 GLAS{PPE/95{06

More information

A 200 h two-stage dc SQUID amplifier for resonant gravitational wave detectors

A 200 h two-stage dc SQUID amplifier for resonant gravitational wave detectors A 200 h two-stage dc SQUID amplifier for resonant gravitational wave detectors Andrea Vinante 1, Michele Bonaldi 2, Massimo Cerdonio 3, Paolo Falferi 2, Renato Mezzena 1, Giovanni Andrea Prodi 1 and Stefano

More information

Measuring the Ion Current to the Substrate During Deposition of Thin Films by Hollow Cathode Plasma Jet

Measuring the Ion Current to the Substrate During Deposition of Thin Films by Hollow Cathode Plasma Jet WDS'07 Proceedings of Contributed Papers, Part II, 212 217, 2007. ISBN 978-80-7378-024-1 MATFYZPRESS Measuring the Ion Current to the Substrate During Deposition of Thin Films by Hollow Cathode Plasma

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses Yoichi Shiota 1, Takayuki Nozaki 1, 2,, Frédéric Bonell 1, Shinichi Murakami 1,2, Teruya Shinjo 1, and

More information

Energy Transfer and Message Filtering in Chaos Communications Using Injection locked Laser Diodes

Energy Transfer and Message Filtering in Chaos Communications Using Injection locked Laser Diodes 181 Energy Transfer and Message Filtering in Chaos Communications Using Injection locked Laser Diodes Atsushi Murakami* and K. Alan Shore School of Informatics, University of Wales, Bangor, Dean Street,

More information

Wideband Channel Measurements and Modeling for In-House Power Line Communication

Wideband Channel Measurements and Modeling for In-House Power Line Communication Wideband Channel Measurements and Modeling for In-House Power Line Communication Yong-Hwa Kim, Hak-Hoon Song, Jong-Ho Lee, Seong-Cheol Kim School of Electrical Engineering and Computer Science, Seoul National

More information

Mechanical detection of magnetic resonance using nanowire cantilevers: opportunities and challenges

Mechanical detection of magnetic resonance using nanowire cantilevers: opportunities and challenges Mechanical detection of magnetic resonance using nanowire cantilevers: opportunities and challenges John Nichol and Raffi Budakian Deparment of Physics, University of Illinois at Urbana Champaign Eric

More information

Lecture 18: Photodetectors

Lecture 18: Photodetectors Lecture 18: Photodetectors Contents 1 Introduction 1 2 Photodetector principle 2 3 Photoconductor 4 4 Photodiodes 6 4.1 Heterojunction photodiode.................... 8 4.2 Metal-semiconductor photodiode................

More information

Investigation of effects associated with electrical charging of fused silica test mass

Investigation of effects associated with electrical charging of fused silica test mass Investigation of effects associated with electrical charging of fused silica test mass V. Mitrofanov, L. Prokhorov, K. Tokmakov Moscow State University P. Willems LIGO Project, California Institute of

More information

Dynamics of Charge Carriers in Silicon Nanowire Photoconductors Revealed by Photo Hall. Effect Measurements. (Supporting Information)

Dynamics of Charge Carriers in Silicon Nanowire Photoconductors Revealed by Photo Hall. Effect Measurements. (Supporting Information) Dynamics of Charge Carriers in Silicon Nanowire Photoconductors Revealed by Photo Hall Effect Measurements (Supporting Information) Kaixiang Chen 1, Xiaolong Zhao 2, Abdelmadjid Mesli 3, Yongning He 2*

More information

Erratum Energy distribution of electrons in an out-of-equilibrium metallic wire

Erratum Energy distribution of electrons in an out-of-equilibrium metallic wire Z. Phys. B 104, 178 182 1997) Erratum Energy distribution of electrons in an out-of-equilibrium metallic wire ZEITSCHRIFT FÜR PHYSIK B c Springer-Verlag 1997 H. Pothier, S. Guéron, Norman O. Birge, D.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS2518 Spin imbalance and spin-charge separation in a mesoscopic superconductor C. H. L. Quay, D. Chevallier, C. Bena 1, and M. Aprili 2 Laboratoire de Physique

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 20

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 20 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 20 Photo-Detectors and Detector Noise Fiber Optics, Prof. R.K. Shevgaonkar, Dept.

More information

A soft X-ray view on ultrafast demagnetization

A soft X-ray view on ultrafast demagnetization A soft X-ray view on ultrafast demagnetization Boris Vodungbo Laboratoire de Chimie Physique Matière et Rayonnement Université Pierre et Marie Curie CNRS Paris, France Laboratoire d Optique Appliquée ENSTA

More information

Superconducting Transition-Edge Sensors and Superconducting Tunnel Junctions for Optical/UV Time-Energy Resolved Single-Photon Counters

Superconducting Transition-Edge Sensors and Superconducting Tunnel Junctions for Optical/UV Time-Energy Resolved Single-Photon Counters Superconducting Transition-Edge Sensors and Superconducting Tunnel Junctions for Optical/UV Time-Energy Resolved Single-Photon Counters NHST Meeting STScI - Baltimore 10 April 2003 TES & STJ Detector Summary

More information

NAME: Last First Signature

NAME: Last First Signature UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 130: IC Devices Spring 2003 FINAL EXAMINATION NAME: Last First Signature STUDENT

More information

Noise and Distortion in Microwave System

Noise and Distortion in Microwave System Noise and Distortion in Microwave System Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 1 Introduction Noise is a random process from many sources: thermal,

More information

Cavity QED with quantum dots in semiconductor microcavities

Cavity QED with quantum dots in semiconductor microcavities Cavity QED with quantum dots in semiconductor microcavities M. T. Rakher*, S. Strauf, Y. Choi, N.G. Stolz, K.J. Hennessey, H. Kim, A. Badolato, L.A. Coldren, E.L. Hu, P.M. Petroff, D. Bouwmeester University

More information

Microwave Seminar. Noise and Bit Error Ratio. J. Richie. Spring 2013

Microwave Seminar. Noise and Bit Error Ratio. J. Richie. Spring 2013 Microwave Seminar Noise and Bit Error Ratio J. Richie Spring 2013 Outline Noise Noise and Equivalent Temperature Noise Figure Small Scale Fade and Multipath Impulse Response Model Types of Fading Modulation

More information

CHAPTER 2 WIRELESS CHANNEL

CHAPTER 2 WIRELESS CHANNEL CHAPTER 2 WIRELESS CHANNEL 2.1 INTRODUCTION In mobile radio channel there is certain fundamental limitation on the performance of wireless communication system. There are many obstructions between transmitter

More information

Supporting Information: Determination of n-type doping level in single GaAs. nanowires by cathodoluminescence

Supporting Information: Determination of n-type doping level in single GaAs. nanowires by cathodoluminescence Supporting Information: Determination of n-type doping level in single GaAs nanowires by cathodoluminescence Hung-Ling Chen 1, Chalermchai Himwas 1, Andrea Scaccabarozzi 1,2, Pierre Rale 1, Fabrice Oehler

More information

Review of Semiconductor Physics

Review of Semiconductor Physics Review of Semiconductor Physics k B 1.38 u 10 23 JK -1 a) Energy level diagrams showing the excitation of an electron from the valence band to the conduction band. The resultant free electron can freely

More information

Route Ain El-Bey, 25000, Constantine, Algéria 2 Professor, Laboratoire des Microsystèmeset Instrumentations (LMI), University of Constantine,

Route Ain El-Bey, 25000, Constantine, Algéria 2 Professor, Laboratoire des Microsystèmeset Instrumentations (LMI), University of Constantine, Modeling of a PIN Photodiode using the VHDL-AMS Language Fatima Zohra Baouche 1,2, Farida Hobar 1, Yannick Hervé 3 1 Phd Student, Laboratoire des Microsystèmeset Instrumentations (LMI), University of Constantine,

More information

1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier. (2 points)

1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier. (2 points) Exam 1 Name: Score /60 Question 1 Short Takes 1 point each unless noted otherwise. 1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier.

More information

HMPP-386x Series MiniPak Surface Mount RF PIN Diodes

HMPP-386x Series MiniPak Surface Mount RF PIN Diodes HMPP-86x Series MiniPak Surface Mount RF PIN Diodes Data Sheet Description/Applications These ultra-miniature products represent the blending of Avago Technologies proven semiconductor and the latest in

More information

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1 Spectral phase shaping for high resolution CARS spectroscopy around 3 cm A.C.W. van Rhijn, S. Postma, J.P. Korterik, J.L. Herek, and H.L. Offerhaus Mesa + Research Institute for Nanotechnology, University

More information

Small-Scale Fading I PROF. MICHAEL TSAI 2011/10/27

Small-Scale Fading I PROF. MICHAEL TSAI 2011/10/27 Small-Scale Fading I PROF. MICHAEL TSAI 011/10/7 Multipath Propagation RX just sums up all Multi Path Component (MPC). Multipath Channel Impulse Response An example of the time-varying discrete-time impulse

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature10864 1. Supplementary Methods The three QW samples on which data are reported in the Letter (15 nm) 19 and supplementary materials (18 and 22 nm) 23 were grown

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NPHOTON.212.11 Supplementary information Avalanche amplification of a single exciton in a semiconductor nanowire Gabriele Bulgarini, 1, Michael E. Reimer, 1, Moïra Hocevar, 1 Erik P.A.M. Bakkers,

More information

!"#$%&'()"*)+,"-)."&/$)&')0$/"'1'-

!#$%&'()*)+,-).&/$)&')0$/'1'- Università di Pisa!"#$%&'()"*)+,"-)."&/$)&')0$/"'1'- ( "#$%&''&()*++*,,-+&( ;-=%2C-D)&C(#E-#$&1)1&)2-%#E)00F$&G(2D%H-(&)I#J0)CC2(&-'%*#$&G(2D%C-'%*#K)0)'(D,&-'%H-(&-*# L&-M)2

More information

Ti/Au TESs as photon number resolving detectors

Ti/Au TESs as photon number resolving detectors Ti/Au TESs as photon number resolving detectors LAPO LOLLI, E. MONTICONE, C. PORTESI, M. RAJTERI, E. TARALLI SIF XCVI National Congress, Bologna 20 24 September 2010 1 Introduction: What are TES? TESs

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Physical Acoustics Session 2pPA: Material Characterization 2pPA9. Experimental

More information

Fund. of Digital Communications Ch. 3: Digital Modulation

Fund. of Digital Communications Ch. 3: Digital Modulation Fund. of Digital Communications Ch. 3: Digital Modulation Klaus Witrisal witrisal@tugraz.at Signal Processing and Speech Communication Laboratory www.spsc.tugraz.at Graz University of Technology November

More information

power loss under square wave excitation JC Sun San Antonio,

power loss under square wave excitation JC Sun San Antonio, power loss under square wave excitation JC Sun San Antonio, 2018-03-03 Bs & T Analyzer Sinus Magnetization AC Pulse Magnetization high excitation low excitation fast transit of magnetic state IEC 62044-3

More information

Simultaneous amplitude and frequency noise analysis in Chua s circuit

Simultaneous amplitude and frequency noise analysis in Chua s circuit Typeset using jjap.cls Simultaneous amplitude and frequency noise analysis in Chua s circuit J.-M. Friedt 1, D. Gillet 2, M. Planat 2 1 : IMEC, MCP/BIO, Kapeldreef 75, 3001 Leuven, Belgium

More information