The (Speed and) Decay of Cosmic-Ray Muons

Size: px
Start display at page:

Download "The (Speed and) Decay of Cosmic-Ray Muons"

Transcription

1 The (Speed and) Decay of Cosmic-Ray Muons Jason Gross MIT - Department of Physics Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

2 Goals test relativity (time dilation) determine the mean lifetime of muons Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

3 Goals test relativity (time dilation) determine the mean lifetime of muons Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

4 Muons elementary particle unit negative charge spin 1/2 unstable Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

5 Why Muons? unstable long mean lifetime ( 2.2 µs) naturally abundant penetrating Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

6 Why Muons? unstable long mean lifetime ( 2.2 µs) naturally abundant penetrating Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

7 Why Muons? unstable long mean lifetime ( 2.2 µs) naturally abundant penetrating Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

8 Why Muons? unstable long mean lifetime ( 2.2 µs) naturally abundant penetrating Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

9 Why Muons? contact point between theory and reality (we can predict mean lifetime from Fermi β-decay, if we know the mass) Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

10 Experimental Outline muons generated by cosmic-rays above 15 km capture muons in a block of plastic scintillator record arrival & decay events Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

11 Experimental Outline muons generated by cosmic-rays above 15 km capture muons in a block of plastic scintillator record arrival & decay events Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

12 Experimental Outline muons generated by cosmic-rays above 15 km capture muons in a block of plastic scintillator record arrival & decay events Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

13 Expected Results N(t) = N 0 e t/τ Counts Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

14 Expected Results But only if there s no noise! Counts Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

15 Experimental Setup High Voltage Constant Fraction Discriminator Constant Fraction Discriminator Coincidence Circuit Delay Line Time to Amplitude Converter PMT PMT Multichannel Analyzer 11" Diameter x 12" High Plastic Scintillator Light Tight Box Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

16 Muon Detection High Voltage Constant Fraction Discriminator Constant Fraction Discriminator PMT PMT 11" Diameter x 12" High Plastic Scintillator Light Tight Box Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

17 Noise Removal High Voltage Constant Fraction Discriminator Constant Fraction Discriminator Coincidence Circuit PMT PMT 11" Diameter x 12" High Plastic Scintillator Light Tight Box Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

18 Noise Removal # Accidentals = Tn 1 n 2 t Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

19 Noise Removal If n 1 = 10 4 s 1, n 2 = s 1, T = 1 hour, t = 100 ns, Accidentals Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

20 Noise Removal If n 1 = 10 4 s 1, n 2 = s 1, T = 1 hour, t = 100 ns, Accidentals Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

21 Noise Removal If n 1 = 10 4 s 1, n 2 = s 1, T = 1 hour, t = 100 ns, Accidentals Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

22 Noise Removal High Voltage Constant Fraction Discriminator Constant Fraction Discriminator Coincidence Circuit PMT PMT 11" Diameter x 12" High Plastic Scintillator Light Tight Box Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

23 Experimental Setup High Voltage Constant Fraction Discriminator Constant Fraction Discriminator Coincidence Circuit Delay Line Time to Amplitude Converter PMT PMT Multichannel Analyzer 11" Diameter x 12" High Plastic Scintillator Light Tight Box Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

24 Experimental Setup Start Stop Delay Measured by TAC Delay Arrival times of pulses along the STOP input (red) and the START input (green) of the TAC. Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

25 Experimental Setup arrival interval decay time Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

26 Experimental Setup arrival interval 1 2 decay time Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

27 Experimental Setup arrival interval decay time Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

28 Experimental Setup Lifetime: 2.2 µs Arrival Rate: (0.2 ± 0.1) s 1 Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

29 Experimental Setup High Voltage Constant Fraction Discriminator Constant Fraction Discriminator Coincidence Circuit Delay Line Time to Amplitude Converter PMT PMT Multichannel Analyzer 11" Diameter x 12" High Plastic Scintillator Light Tight Box Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

30 Time Calibration t Μs 10 t 0.01 ± 0.03 Μs ± Μs Bin Χ Ν Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

31 Results Muon Decay Counts vs. Time Counts 50 Residuals Counts 0.24 ± ± 0.9 Χ Ν t 1.99±0.04 Μs Time Μs Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

32 Results My Value: τ = (1.986 ± 0.042) µs Book Value: τ = (21) µs My Value: m µ = ( ± 0.46) MeV/c 2 Book Value: m µ = (38) MeV/c 2 Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

33 Sources of Error systematic: didn t account for the delay in the cable, so all my times are shorter than they should be poor estimation of errors (least squares gives (2.30 ± 0.04) µs) not enough data to get an estimate of the accidentals (if I fit to ae t/τ, I get (2.06 ± 0.04) µs) Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

34 Sources of Error systematic: didn t account for the delay in the cable, so all my times are shorter than they should be poor estimation of errors (least squares gives (2.30 ± 0.04) µs) not enough data to get an estimate of the accidentals (if I fit to ae t/τ, I get (2.06 ± 0.04) µs) Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

35 Sources of Error systematic: didn t account for the delay in the cable, so all my times are shorter than they should be poor estimation of errors (least squares gives (2.30 ± 0.04) µs) not enough data to get an estimate of the accidentals (if I fit to ae t/τ, I get (2.06 ± 0.04) µs) Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

36 Testing Relativity: Muon Travel Time generated km above sea level others experiments suggest most likely momentum is 1 GeV / c to go km at this momentum (which corresponds to 0.994c) takes µs (but if we throw away all of special relativity, then this momentum corresponds to 9.5c, and it only takes 5 µs) Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

37 Testing Relativity: Muon Travel Time generated km above sea level others experiments suggest most likely momentum is 1 GeV / c to go km at this momentum (which corresponds to 0.994c) takes µs (but if we throw away all of special relativity, then this momentum corresponds to 9.5c, and it only takes 5 µs) Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

38 Testing Relativity: Muon Travel Time generated km above sea level others experiments suggest most likely momentum is 1 GeV / c to go km at this momentum (which corresponds to 0.994c) takes µs (but if we throw away all of special relativity, then this momentum corresponds to 9.5c, and it only takes 5 µs) Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

39 Testing Relativity Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

40 Testing Relativity: Muon Intensity about 10 2 cm 2 s 1 sr 1 (muons intensity at sea level) without time dilation, it takes at least 30 µs to get down to sea level if we take τ 2 µs, if there is no time dilation, we see % of muons corresponds to about 10 5 cm 2 s 1 sr 1 at 10 km up Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

41 Testing Relativity: Muon Intensity about 10 2 cm 2 s 1 sr 1 (muons intensity at sea level) without time dilation, it takes at least 30 µs to get down to sea level if we take τ 2 µs, if there is no time dilation, we see % of muons corresponds to about 10 5 cm 2 s 1 sr 1 at 10 km up Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

42 Testing Relativity: Muon Intensity about 10 2 cm 2 s 1 sr 1 (muons intensity at sea level) without time dilation, it takes at least 30 µs to get down to sea level if we take τ 2 µs, if there is no time dilation, we see % of muons corresponds to about 10 5 cm 2 s 1 sr 1 at 10 km up Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

43 Testing Relativity: Muon Intensity about 10 2 cm 2 s 1 sr 1 (muons intensity at sea level) without time dilation, it takes at least 30 µs to get down to sea level if we take τ 2 µs, if there is no time dilation, we see % of muons corresponds to about 10 5 cm 2 s 1 sr 1 at 10 km up Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

44 Testing Relativity Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

45 Testing Relativity Relativity Wins! Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

46 Thank You! Any questions? Jason Gross (8.13) Cosmic-Ray Muons November 4, / 30

Physics Experiment N -17. Lifetime of Cosmic Ray Muons with On-Line Data Acquisition on a Computer

Physics Experiment N -17. Lifetime of Cosmic Ray Muons with On-Line Data Acquisition on a Computer Introduction Physics 410-510 Experiment N -17 Lifetime of Cosmic Ray Muons with On-Line Data Acquisition on a Computer The experiment is designed to teach the techniques of particle detection using scintillation

More information

LIFETIME OF THE MUON

LIFETIME OF THE MUON Muon Decay 1 LIFETIME OF THE MUON Introduction Muons are unstable particles; otherwise, they are rather like electrons but with much higher masses, approximately 105 MeV. Radioactive nuclear decays do

More information

and N(t) ~ exp(-t/ ),

and N(t) ~ exp(-t/ ), Muon Lifetime Experiment Introduction Charged and neutral particles with energies in excess of 10 23 ev from Galactic and extra Galactic sources impinge on the earth. Here we speak of the earth as the

More information

Cosmic Ray Muon Detection

Cosmic Ray Muon Detection Cosmic Ray Muon Detection Department of Physics and Space Sciences Florida Institute of Technology Georgia Karagiorgi Julie Slanker Advisor: Dr. M. Hohlmann Cosmic Ray Muons π + > µ + + ν µ π > µ + ν µ

More information

What s a Counter Plateau. An introduction for the muon Lab

What s a Counter Plateau. An introduction for the muon Lab What s a Counter Plateau An introduction for the muon Lab Counters have noise and signal If you are lucky, a histogram of the pulse heights of all the signals coming out of a photomultiplier tube connected

More information

MuLan Experiment Progress Report

MuLan Experiment Progress Report BV 37 PSI February 16 2006 p. 1 MuLan Experiment Progress Report PSI Experiment R 99-07 Françoise Mulhauser, University of Illinois at Urbana Champaign (USA) The MuLan Collaboration: BERKELEY BOSTON ILLINOIS

More information

The Influence of Crystal Configuration and PMT on PET Time-of-Flight Resolution

The Influence of Crystal Configuration and PMT on PET Time-of-Flight Resolution The Influence of Crystal Configuration and PMT on PET Time-of-Flight Resolution Christopher Thompson Montreal Neurological Institute and Scanwell Systems, Montreal, Canada Jason Hancock Cross Cancer Institute,

More information

Contents. Why waveform? Waveform digitizer : Domino Ring Sampler CEX Beam test autumn 04. Summary

Contents. Why waveform? Waveform digitizer : Domino Ring Sampler CEX Beam test autumn 04. Summary Contents Why waveform? Waveform digitizer : Domino Ring Sampler CEX Beam test data @PSI autumn 04 Templates and time resolution Pulse Shape Discrimination Pile-up rejection Summary 2 In the MEG experiment

More information

ANTICOINCIDENCE LOW LEVEL COUNTING

ANTICOINCIDENCE LOW LEVEL COUNTING Med Phys 4RB3/6R3 LABORATORY EXPERIMENT #7 ANTICOINCIDENCE LOW LEVEL COUNTING Introduction This is the only experiment in this series which involves a multi- system. The low-level electronics used was

More information

EKA Laboratory Muon Lifetime Experiment Instructions. October 2006

EKA Laboratory Muon Lifetime Experiment Instructions. October 2006 EKA Laboratory Muon Lifetime Experiment Instructions October 2006 0 Lab setup and singles rate. When high-energy cosmic rays encounter the earth's atmosphere, they decay into a shower of elementary particles.

More information

Study of Resistive Plate Chambers Scintillation detectors and Reconstruction of muon tracks in RPCs

Study of Resistive Plate Chambers Scintillation detectors and Reconstruction of muon tracks in RPCs Study of Resistive Plate Chambers Scintillation detectors and Reconstruction of muon tracks in RPCs Medha Soni VSRP Student 2012 Under the guidance of Prof. Sudeshna Banerjee What are we trying to do?

More information

--- preliminary Experiment F80

--- preliminary Experiment F80 --- preliminary Experiment F80 Measurement Methods of Nuclear and Particle Physics Introduction: This experiment is going to introduce you to important counting and measuring techniques of nuclear and

More information

A tracking detector to study O(1 GeV) ν μ CC interactions

A tracking detector to study O(1 GeV) ν μ CC interactions A tracking detector to study O(1 GeV) ν μ CC interactions Laura Pasqualini on behalf of the mm-tracker Collaboration IPRD16, 3-6 October 2016, Siena Motivations ν/μ Tracking system for a light magnetic

More information

Scintillators as an external trigger for cathode strip chambers

Scintillators as an external trigger for cathode strip chambers Scintillators as an external trigger for cathode strip chambers J. A. Muñoz Department of Physics, Princeton University, Princeton, NJ 08544 An external trigger was set up to test cathode strip chambers

More information

K 223 Angular Correlation

K 223 Angular Correlation K 223 Angular Correlation K 223.1 Aim of the Experiment The aim of the experiment is to measure the angular correlation of a γ γ cascade. K 223.2 Required Knowledge Definition of the angular correlation

More information

The optimal cosmic ray detector for High-Schools. By Floris Keizer

The optimal cosmic ray detector for High-Schools. By Floris Keizer The optimal cosmic ray detector for High-Schools By Floris Keizer An air shower Highly energetic cosmic rays Collision product: Pi-meson or pion Pions decay to muons and electrons A shower of Minimum Ionizing

More information

Evaluation of the performance of the Time over Threshold technique for the digitization of the signal of KM3NeT

Evaluation of the performance of the Time over Threshold technique for the digitization of the signal of KM3NeT Evaluation of the performance of the Time over Threshold technique for the digitization of the signal of KM3NeT G. Bourlis, A. Leisos, A. Tsirigotis, S.E. Tzamarias Physics Laboratory Hellenic Open University

More information

COMPTON SCATTERING. Purpose. Introduction. Fundamentals of Experiment

COMPTON SCATTERING. Purpose. Introduction. Fundamentals of Experiment COMPTON SCATTERING Purpose The purpose of this experiment is to verify the energy dependence of gamma radiation upon scattering angle and to compare the differential cross section obtained from the data

More information

ORTEC Experiment 13. Gamma-Gamma Coincidence with Angular Correlation. Equipment Required

ORTEC Experiment 13. Gamma-Gamma Coincidence with Angular Correlation. Equipment Required ORTEC Experiment 13 Equipment Required Two 905-3 2-in. x 2-in. NaI(Tl) Scintillation Detector Assemblies. Two 266 Photomultiplier Tube Bases. Two 113 Scintillation Preamplifiers. Two 556 High Voltage Power

More information

On the initiation of lightning in thunderclouds (Instrumentation, Supplementary information)

On the initiation of lightning in thunderclouds (Instrumentation, Supplementary information) On the initiation of lightning in thunderclouds (Instrumentation, Supplementary information) Ashot Chilingarian 1,2, Suren Chilingaryan 1, Tigran Karapetyan 1, Lev Kozliner 1, Yeghia Khanikyants 1, Gagik

More information

Purpose This experiment will use the coincidence method for time correlation to measure the lifetime in the decay scheme of 57

Purpose This experiment will use the coincidence method for time correlation to measure the lifetime in the decay scheme of 57 Equipment Required Two 113 Scintillation Preamplifiers Two 266 Photomultiplier Tube Bases 4001A/4002D Bin and Power Supply 414A Fast Coincidence Two 551 Timing Single-Channel Analyzers 567 Time-to-Amplitude

More information

arxiv:physics/ v1 [physics.ins-det] 19 Feb 2005

arxiv:physics/ v1 [physics.ins-det] 19 Feb 2005 A Compact Apparatus for Muon Lifetime Measurement and Time Dilation Demonstration in the Undergraduate Laboratory Thomas Coan, Tiankuan Liu, and Jingbo Ye Physics Department, Southern Methodist University,

More information

Construction of a Spark Chamber for Public Demonstration

Construction of a Spark Chamber for Public Demonstration Construction of a Spark Chamber for Public Demonstration By Nicholas McMahon Advised by Dr. David Doughty Abstract Spark chambers are particle detectors whose low cost and bright visuals make them excellent

More information

PARTICLE DETECTORS (V): ELECTRONICS

PARTICLE DETECTORS (V): ELECTRONICS Monday, April 13, 2015 1 PARTICLE DETECTORS (V): ELECTRONICS Zhenyu Ye April 13, 2015 Monday, April 13, 2015 2 References Techniques for Nuclear and Particle Physics Experiments by Leo, Chapter 15-17 Particle

More information

Detecting and Suppressing Background Signal

Detecting and Suppressing Background Signal Detecting and Suppressing Background Signal Valerie Gray St. Norbert College Advisors: Dr. Michael Wiescher Freimann Professor Nuclear Physics University of Notre Dame Dr. Ed Stech Associate Professional

More information

ORTEC. AN34 Experiment 14 Nuclear Lifetimes and the Coincidence Method. Equipment Needed from ORTEC. Equipment Required from Other Manufacturers

ORTEC. AN34 Experiment 14 Nuclear Lifetimes and the Coincidence Method. Equipment Needed from ORTEC. Equipment Required from Other Manufacturers Equipment Needed from ORTEC Two 113 Scintillation Preamplifiers Two 266 Photomultiplier Tube Bases 4001A/4002D Bin and Power Supply 414A Fast Coincidence Two 551 Timing Single-Channel Analyzers 567 Time-to-Amplitude

More information

Instructions for gg Coincidence with 22 Na. Overview of the Experiment

Instructions for gg Coincidence with 22 Na. Overview of the Experiment Overview of the Experiment Instructions for gg Coincidence with 22 Na 22 Na is a radioactive element that decays by converting a proton into a neutron: about 90% of the time through β + decay and about

More information

Testing of the NSC Electronics Module with the GSI Clover Detector

Testing of the NSC Electronics Module with the GSI Clover Detector Testing of the NSC Electronics Module with the GSI Clover Detector Rakesh Kumar 1, P. Queiroz 2, H.-J. Wollersheim 2 (Tutor) 1 Inter University Accelerator Centre Aruna Asaf Ali Marg Post Box No 10502

More information

Charge Reconstruction with a Magnetised Muon Range Detector in TITUS

Charge Reconstruction with a Magnetised Muon Range Detector in TITUS Charge Reconstruction with a Magnetised Muon Range Detector in TITUS Mark A. Rayner Université de Genève 5 th open Hyper-Kamiokande meeting, Vancouver 19 th July 2014, Near Detector pre-meeting Motivation

More information

ORTEC. Time-to-Amplitude Converters and Time Calibrator. Choosing the Right TAC. Timing with TACs

ORTEC. Time-to-Amplitude Converters and Time Calibrator. Choosing the Right TAC. Timing with TACs ORTEC Time-to-Amplitude Converters Choosing the Right TAC The following topics provide the information needed for selecting the right time-to-amplitude converter (TAC) for the task. The basic principles

More information

Cosmic Rays in MoNA. Eric Johnson 8/08/03

Cosmic Rays in MoNA. Eric Johnson 8/08/03 Cosmic Rays in MoNA Eric Johnson 8/08/03 National Superconducting Cyclotron Laboratory Department of Physics and Astronomy Michigan State University Advisors: Michael Thoennessen and Thomas Baumann Abstract:

More information

CATIROC a multichannel front-end ASIC to read out the SPMT system of the JUNO experiment

CATIROC a multichannel front-end ASIC to read out the SPMT system of the JUNO experiment CATIROC a multichannel front-end ASIC to read out the SPMT system of the JUNO experiment Dr. Selma Conforti (OMEGA/IN2P3/CNRS) OMEGA microelectronics group Ecole Polytechnique & CNRS IN2P3 http://omega.in2p3.fr

More information

Testing the Electronics for the MicroBooNE Light Collection System

Testing the Electronics for the MicroBooNE Light Collection System Testing the Electronics for the MicroBooNE Light Collection System Kathleen V. Tatem Nevis Labs, Columbia University & Fermi National Accelerator Laboratory August 3, 2012 Abstract This paper discusses

More information

OPERA RPC: installation and underground test results

OPERA RPC: installation and underground test results VII Workshop on Resistive Plate Chambers and Related Detectors Korea University, Seoul October 10-12, 2005 The OPERA RPC system: installation and underground test results A. Longhin (INFN & Padova University)

More information

The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment

The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment Shruti Shrestha On Behalf of the Mu3e Collaboration International Conference on Technology and Instrumentation in Particle Physics

More information

Fast first practical help -- detailed instructions will follow- preliminary Experiment F80

Fast first practical help -- detailed instructions will follow- preliminary Experiment F80 Fast first practical help -- detailed instructions will follow- preliminary Experiment F80 Measurement Methods of Nuclear and Particle Physics Introduction: This experiment is going to introduce you to

More information

MEG II 実験液体キセノン検出器実機 MPPC のコミッショニング. Commissioning of all MPPCs for MEG II LXe detector 小川真治 他 MEG II 日本物理学会 2017 年秋季大会

MEG II 実験液体キセノン検出器実機 MPPC のコミッショニング. Commissioning of all MPPCs for MEG II LXe detector 小川真治 他 MEG II 日本物理学会 2017 年秋季大会 1 MEG II 実験液体キセノン検出器実機 MPPC のコミッショニング Commissioning of all MPPCs for MEG II LXe detector 小川真治 他 MEG II コラボレーション @ 日本物理学会 217 年秋季大会 217.9.13 Table of contents 2 1. Introduction 2. MPPC commissioning 3.

More information

Cosmic Ray Detector Hardware

Cosmic Ray Detector Hardware Cosmic Ray Detector Hardware How it detects cosmic rays, what it measures and how to use it Matthew Jones Purdue University 2012 QuarkNet Summer Workshop 1 What are Cosmic Rays? Mostly muons down here

More information

Attenuation length in strip scintillators. Jonathan Button, William McGrew, Y.-W. Lui, D. H. Youngblood

Attenuation length in strip scintillators. Jonathan Button, William McGrew, Y.-W. Lui, D. H. Youngblood Attenuation length in strip scintillators Jonathan Button, William McGrew, Y.-W. Lui, D. H. Youngblood I. Introduction The ΔE-ΔE-E decay detector as described in [1] is composed of thin strip scintillators,

More information

8.882 LHC Physics. Detectors: Muons. [Lecture 11, March 11, 2009] Experimental Methods and Measurements

8.882 LHC Physics. Detectors: Muons. [Lecture 11, March 11, 2009] Experimental Methods and Measurements 8.882 LHC Physics Experimental Methods and Measurements Detectors: Muons [Lecture 11, March 11, 2009] Organization Project 1 (charged track multiplicity) no one handed in so far... well deadline is tomorrow

More information

LABORATORY MANUAL FOR PHYSICS 180F

LABORATORY MANUAL FOR PHYSICS 180F LABORATORY MANUAL FOR PHYSICS 180F Rene A. Ong & William E. Slater UCLA, March 2017 Version 5.7 TABLE OF CONTENTS Table of Contents 1 0. This Manual 2 I. Introduction 2 II. The Source and Properties of

More information

GAMMA-GAMMA CORRELATION Latest Revision: August 21, 2007

GAMMA-GAMMA CORRELATION Latest Revision: August 21, 2007 C1-1 GAMMA-GAMMA CORRELATION Latest Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: decay event? What is the angular correlation between two gamma rays emitted by a single INTRODUCTION & THEORY:

More information

Direct Dark Matter Search with XMASS --- modulation analysis ---

Direct Dark Matter Search with XMASS --- modulation analysis --- Direct Dark Matter Search with XMASS --- modulation analysis --- ICRR, University of Tokyo K. Kobayashi On behalf of the XMASS collaboration September 8 th, 2015 TAUP 2015, Torino, Italy XMASS experiment

More information

Week 11: Chap. 16b Pulse Shaping

Week 11: Chap. 16b Pulse Shaping Week 11: Chap. 16b Pulse Shaping Pulse Processing (passive) Pulse Shaping (active) -- Op Amps -- CR/RC network -- Bipolar pulses --- Shaping network --- Pole Zero network --- Baseline Restorer -- Delay-line

More information

The Pierre Auger Observatory

The Pierre Auger Observatory The Pierre Auger Observatory Hunting the Highest Energy Cosmic Rays II EAS Detection at the Pierre Auger Observatory March 07 E.Menichetti - Villa Gualino, March 2007 1 EAS The Movie March 07 E.Menichetti

More information

Investigation of effects associated with electrical charging of fused silica test mass

Investigation of effects associated with electrical charging of fused silica test mass Investigation of effects associated with electrical charging of fused silica test mass V. Mitrofanov, L. Prokhorov, K. Tokmakov Moscow State University P. Willems LIGO Project, California Institute of

More information

Digital coincidence acquisition applied to portable β liquid scintillation counting device

Digital coincidence acquisition applied to portable β liquid scintillation counting device Nuclear Science and Techniques 24 (2013) 030401 Digital coincidence acquisition applied to portable β liquid scintillation counting device REN Zhongguo 1,2 HU Bitao 1 ZHAO Zhiping 2 LI Dongcang 1,* 1 School

More information

A BaF2 calorimeter for Mu2e-II

A BaF2 calorimeter for Mu2e-II A BaF2 calorimeter for Mu2e-II I. Sarra, on behalf of LNF group Università degli studi Guglielmo Marconi Laboratori Nazionali di Frascati NEWS General Meeting 218 13 March 218 Proposal (1) q This technological

More information

Backgrounds in DMTPC. Thomas Caldwell. Massachusetts Institute of Technology DMTPC Collaboration

Backgrounds in DMTPC. Thomas Caldwell. Massachusetts Institute of Technology DMTPC Collaboration Backgrounds in DMTPC Thomas Caldwell Massachusetts Institute of Technology DMTPC Collaboration Cygnus 2009 June 12, 2009 Outline Expected backgrounds for surface run Detector operation Characteristics

More information

Trigger and Data Acquisition (DAQ)

Trigger and Data Acquisition (DAQ) Trigger and Data Acquisition (DAQ) Manfred Jeitler Institute of High Energy Physics (HEPHY) of the Austrian Academy of Sciences Level-1 Trigger of the CMS experiment LHC, CERN 1 contents aiming at a general

More information

Attenuation study for Tibet Water Cherenkov Muon detector array-a

Attenuation study for Tibet Water Cherenkov Muon detector array-a Nuclear Science and Techniques 22 (2011) xxx xxx Attenuation study for Tibet Water Cherenkov Muon detector array-a GOU Quanbu 1,* GUO Yiqing 1 LIU Cheng 1 QIAN Xiangli 1,2 HOU Zhengtao 1,3 1 Key Laboratory

More information

High granularity scintillating fiber trackers based on Silicon Photomultiplier

High granularity scintillating fiber trackers based on Silicon Photomultiplier High granularity scintillating fiber trackers based on Silicon Photomultiplier A. Papa Paul Scherrer Institut, Villigen, Switzerland E-mail: angela.papa@psi.ch Istituto Nazionale di Fisica Nucleare Sez.

More information

A CMOS INTEGRATED CIRCUIT FOR PULSE-SHAPE DISCRIMINATION*

A CMOS INTEGRATED CIRCUIT FOR PULSE-SHAPE DISCRIMINATION* A CMOS INTEGRATED CIRCUIT FOR PULSE-SHAPE DISCRIMINATION* S. S. Frank, M. N. Ericson, M. L. Simpson, R. A. Todd, and D. P. Hutchinson Oak Ridge National Laboratory, Oak Ridge, TN 3783 1 Abstract and Summary

More information

Plan for Accelerator Beam Study Towards J-PARC Muon Project. Koji YOSHIMURA (KEK) for KEK Muon Working Group at NuFACT08 July 2nd, 2008

Plan for Accelerator Beam Study Towards J-PARC Muon Project. Koji YOSHIMURA (KEK) for KEK Muon Working Group at NuFACT08 July 2nd, 2008 Plan for Accelerator Beam Study Towards J-PARC Muon Project Koji YOSHIMURA (KEK) for KEK Muon Working Group at NuFACT08 July 2nd, 2008 Contents Introduction Muon Project at J-PARC Beam Requirements R&D

More information

NMI3 Meeting JRA8 MUON-S WP1: Fast Timing Detectors High Magnetic Field µsr Spectrometer Project at PSI Status Report

NMI3 Meeting JRA8 MUON-S WP1: Fast Timing Detectors High Magnetic Field µsr Spectrometer Project at PSI Status Report NMI3 - Integrated Infrastructure Initiative for Neutron Scattering and Muon Spectroscopy NMI3 Meeting 26.-29.9.05 JRA8 MUON-S WP1: Fast Timing Detectors High Magnetic Field µsr Spectrometer Project at

More information

Scintillator/WLS Fiber Readout with Geiger-mode APD Arrays

Scintillator/WLS Fiber Readout with Geiger-mode APD Arrays Scintillator/WLS Fiber Readout with Geiger-mode APD Arrays David Warner, Robert J. Wilson, Qinglin Zeng, Rey Nann Ducay Department of Physics Colorado State University Stefan Vasile apeak 63 Albert Road,

More information

The software and hardware for the ground testing of ALFA- ELECTRON space spectrometer

The software and hardware for the ground testing of ALFA- ELECTRON space spectrometer Journal of Physics: Conference Series PAPER OPEN ACCESS The software and hardware for the ground testing of ALFA- ELECTRON space spectrometer To cite this article: A G Batischev et al 2016 J. Phys.: Conf.

More information

Gamma Ray Spectroscopy with NaI(Tl) and HPGe Detectors

Gamma Ray Spectroscopy with NaI(Tl) and HPGe Detectors Nuclear Physics #1 Gamma Ray Spectroscopy with NaI(Tl) and HPGe Detectors Introduction: In this experiment you will use both scintillation and semiconductor detectors to study γ- ray energy spectra. The

More information

Use of a Hybrid Photo Detector (HPD) in the MAGIC micro power LIDAR system

Use of a Hybrid Photo Detector (HPD) in the MAGIC micro power LIDAR system Use of a Hybrid Photo Detector (HPD) in the MAGIC micro power LIDAR system Christian Fruck cfruck@ph.tum.de Max-Planck-Institut für Physik LIGHT 11 - Ringberg 03.11.2011 1 / 18 Overview MAGIC uses the

More information

Highly Segmented Detector Arrays for. Studying Resonant Decay of Unstable Nuclei. Outline

Highly Segmented Detector Arrays for. Studying Resonant Decay of Unstable Nuclei. Outline Highly Segmented Detector Arrays for Studying Resonant Decay of Unstable Nuclei MASE: Multiplexed Analog Shaper Electronics C. Metelko, S. Hudan, R.T. desouza Outline 1. Resonant Decay 2. Detectors 3.

More information

Studies of Scintillator Tile Geometries for direct SiPM Readout of Imaging Calorimeters

Studies of Scintillator Tile Geometries for direct SiPM Readout of Imaging Calorimeters Studies of Scintillator Tile Geometries for direct SiPM Readout of Imaging Calorimeters Frank Simon MPI for Physics & Excellence Cluster Universe Munich, Germany for the CALICE Collaboration Outline The

More information

Coincidence Rates. QuarkNet. summer workshop June 24-28, 2013

Coincidence Rates. QuarkNet. summer workshop June 24-28, 2013 Coincidence Rates QuarkNet summer workshop June 24-28, 2013 1 Example Pulse input Threshold level (-10 mv) Discriminator output Once you have a digital logic pulse, you can analyze it using digital electronics

More information

A high-performance, low-cost, leading edge discriminator

A high-performance, low-cost, leading edge discriminator PRAMANA c Indian Academy of Sciences Vol. 65, No. 2 journal of August 2005 physics pp. 273 283 A high-performance, low-cost, leading edge discriminator S K GUPTA a, Y HAYASHI b, A JAIN a, S KARTHIKEYAN

More information

The PERDaix Detector. Thomas Kirn I. Physikalisches Institut B. July 5 th 2011, 6 th International Conference on New Developments In Photodetection

The PERDaix Detector. Thomas Kirn I. Physikalisches Institut B. July 5 th 2011, 6 th International Conference on New Developments In Photodetection Proton Electron Radiation Detector Aix la Chapelle The PERDaix Detector Thomas Kirn I. Physikalisches Institut B July 5 th 2011, 6 th International Conference on New Developments In Photodetection Motivation

More information

Trigger and data acquisition

Trigger and data acquisition Trigger and data acquisition N. Ellis CERN, Geneva, Switzerland 1 Introduction These lectures concentrate on experiments at high-energy particle colliders, especially the generalpurpose experiments at

More information

arxiv: v2 [physics.ins-det] 17 Oct 2015

arxiv: v2 [physics.ins-det] 17 Oct 2015 arxiv:55.9v2 [physics.ins-det] 7 Oct 25 Performance of VUV-sensitive MPPC for Liquid Argon Scintillation Light T.Igarashi, S.Naka, M.Tanaka, T.Washimi, K.Yorita Waseda University, Tokyo, Japan E-mail:

More information

The detector system of the EPOS system

The detector system of the EPOS system The detector system of the EPOS system 1. The detector arrangement 2. The lifetime system 3. Digital Doppler measurement 4. AMOC Martin-Luther-Universität RK Halle R Detector system 3 experiments: lifetime

More information

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS NOTE 1997/084 The Compact Muon Solenoid Experiment CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 29 August 1997 Muon Track Reconstruction Efficiency

More information

Positron Emission Tomography

Positron Emission Tomography Positron Emission Tomography UBC Physics & Astronomy / PHYS 409 1 Introduction Positron emission tomography (PET) is a non-invasive way to produce the functional 1 image of a patient. It works by injecting

More information

Experiment 10. The Speed of Light c Introduction Apparatus

Experiment 10. The Speed of Light c Introduction Apparatus Experiment 10 The Speed of Light c 10.1 Introduction In this experiment you will measure the speed of light, c. This is one of the most fundamental constants in physics, and at the same time the fastest

More information

AMS-02 Anticounter. Philip von Doetinchem I. Physics Institute B, RWTH Aachen Bad Honnef, August 2007

AMS-02 Anticounter. Philip von Doetinchem I. Physics Institute B, RWTH Aachen Bad Honnef, August 2007 AMS-02 Anticounter Philip von Doetinchem philip.doetinchem@rwth-aachen.de I. Physics Institute B, RWTH Aachen Bad Honnef, August 2007 Michael Griffin, NASA Head AMS does not have a shuttle flight! Philip

More information

The MoNA Project. Module Assembly and Testing Manual. Version 1.0 June 21, B. Luther T. Baumann

The MoNA Project. Module Assembly and Testing Manual. Version 1.0 June 21, B. Luther T. Baumann The MoNA Project Module Assembly and Testing Manual Version 1.0 June 21, 2002 B. Luther T. Baumann Outline 1 The MoNA Project 1.1 Nuclear Physics at the Neutron Drip-Line 1.2 The National Superconducting

More information

Understanding the Poor Resolution from Test Beam Run. aah

Understanding the Poor Resolution from Test Beam Run. aah Understanding the Poor Resolution from Test Beam Run aah 1 2004 Straw Test beam results! Doc # 3308 v#3 by A. Ledovskoy " Using Data from 2004 Test Beam " Used triplet method for beam nominally perpendicular

More information

Signal Reconstruction of the ATLAS Hadronic Tile Calorimeter: implementation and performance

Signal Reconstruction of the ATLAS Hadronic Tile Calorimeter: implementation and performance Signal Reconstruction of the ATLAS Hadronic Tile Calorimeter: implementation and performance G. Usai (on behalf of the ATLAS Tile Calorimeter group) University of Texas at Arlington E-mail: giulio.usai@cern.ch

More information

PoS(ICRC2017)449. First results from the AugerPrime engineering array

PoS(ICRC2017)449. First results from the AugerPrime engineering array First results from the AugerPrime engineering array a for the Pierre Auger Collaboration b a Institut de Physique Nucléaire d Orsay, INP-CNRS, Université Paris-Sud, Université Paris-Saclay, 9106 Orsay

More information

Cosmic Rays with LOFAR

Cosmic Rays with LOFAR Cosmic Rays with LOFAR Andreas Horneffer for the LOFAR-CR Team Cosmic Rays High energy particles Dominated by hadrons (atomic nuclei) Similar in composition to solar system Broad range in flux and energy

More information

Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment

Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment K. Matsuoka (KMI, Nagoya Univ.) on behalf of the Belle II TOP group 5th International Workshop on New

More information

The trigger system of the muon spectrometer of the ALICE experiment at the LHC

The trigger system of the muon spectrometer of the ALICE experiment at the LHC The trigger system of the muon spectrometer of the ALICE experiment at the LHC Francesco Bossù for the ALICE collaboration University and INFN of Turin Siena, 09 June 2010 Outline 1 Introduction 2 Muon

More information

Design and Performance of the FAST Detector

Design and Performance of the FAST Detector Design and Performance of the FAST Detector FAST Collaboration: C. Casella a 1, A. Barczyk b, J. Berdugo c, J. Casaus c, K. Deiters d, S. De Laere a, P. Dick d, J. Kirkby b, L. Malgeri b, C. Mañá c, J.

More information

PH2510 Nuclear Physics Laboratory Use of Scintillation Counters (NP5)

PH2510 Nuclear Physics Laboratory Use of Scintillation Counters (NP5) Physics Department Royal Holloway University of London PH2510 Nuclear Physics Laboratory Use of Scintillation Counters (NP5) 1. Introduction 1.1 Object of the Experiment The object of this experiment is

More information

The KM3NeT Digital Optical Module NNN16 IHEP,Beijing. Ronald Bruijn Universiteit van Amsterdam/Nikhef

The KM3NeT Digital Optical Module NNN16 IHEP,Beijing. Ronald Bruijn Universiteit van Amsterdam/Nikhef The KM3NeT Digital Optical Module NNN16 IHEP,Beijing Ronald Bruijn Universiteit van Amsterdam/Nikhef 1 Large Volume Neutrino Telescopes Cherenkov light from the charged products of neutrino interactions

More information

Method for digital particle spectrometry Khryachkov Vitaly

Method for digital particle spectrometry Khryachkov Vitaly Method for digital particle spectrometry Khryachkov Vitaly Institute for physics and power engineering (IPPE) Obninsk, Russia The goals of Analog Signal Processing Signal amplification Signal filtering

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P82.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [UWB Channel Model for Indoor Residential Environment] Date Submitted: [2 September, 24] Source: [Chia-Chin

More information

Construction and Performance of Fine Grained Detector for T2K Experiment

Construction and Performance of Fine Grained Detector for T2K Experiment Construction and Performance of Fine Grained Detector for T2K Experiment Kyoto University Graduate School of Science High energy physics group Kei Ieki January 28, 2010 Abstract T2K (Tokai to Kamioka)

More information

ORTEC Experiment 19. Gamma-Ray Decay Scheme and Angular Correlation for 60 Co. Equipment Required. Purpose. Introduction

ORTEC Experiment 19. Gamma-Ray Decay Scheme and Angular Correlation for 60 Co. Equipment Required. Purpose. Introduction ORTEC Experiment 19 Equipment Required Two 905-3 NaI(Tl) 2- x 2-in. Detectors with Phototubes. Two 266 PMT Bases. Two 556 High Voltage Power Supplies. Two 113 Scintillation Preamplifiers. Two 575A Amplifiers.

More information

CMS Silicon Strip Tracker: Operation and Performance

CMS Silicon Strip Tracker: Operation and Performance CMS Silicon Strip Tracker: Operation and Performance Laura Borrello Purdue University, Indiana, USA on behalf of the CMS Collaboration Outline The CMS Silicon Strip Tracker (SST) SST performance during

More information

Pixel hybrid photon detectors

Pixel hybrid photon detectors Pixel hybrid photon detectors for the LHCb-RICH system Ken Wyllie On behalf of the LHCb-RICH group CERN, Geneva, Switzerland 1 Outline of the talk Introduction The LHCb detector The RICH 2 counter Overall

More information

Ph 3324 The Scintillation Detector and Gamma Ray Spectroscopy

Ph 3324 The Scintillation Detector and Gamma Ray Spectroscopy Ph 3324 The Scintillation Detector and Gamma Ray Spectroscopy Required background reading Attached are several pages from an appendix on the web for Tipler-Llewellyn Modern Physics. Read the section on

More information

The 2017 IEEE NSS-MIC. Industrial Presentation

The 2017 IEEE NSS-MIC. Industrial Presentation Industrial Presentation 1 Introduction of new ultra high count rate Pileup Separator Processor ideal for silicon drift detector and LaBr 3 scintillation detector Tuesday, October 24 2:30:00 PM Hanover

More information

Spontaneous Fission Spectrum of Neutrons from 252 Cf with Kinetic Energies Less than 1 MeV. Suraj Bastola. A senior thesis submitted to the faculty of

Spontaneous Fission Spectrum of Neutrons from 252 Cf with Kinetic Energies Less than 1 MeV. Suraj Bastola. A senior thesis submitted to the faculty of Spontaneous Fission Spectrum of Neutrons from 252 Cf with Kinetic Energies Less than 1 MeV Suraj Bastola A senior thesis submitted to the faculty of Brigham Young University in partial fulfillment of the

More information

Digital Signal Processing Electronics for Nuclear Physics Applications

Digital Signal Processing Electronics for Nuclear Physics Applications Digital Signal Processing Electronics for Nuclear Physics Applications Small Business Innovation Research Department Of Energy Grant DE-FG02-03ER83778 Wojtek Skulski SkuTek Instrumentation and University

More information

Uniformity and Crosstalk in MultiAnode Photomultiplier Tubes

Uniformity and Crosstalk in MultiAnode Photomultiplier Tubes Uniformity and Crosstalk in MultiAnode Photomultiplier Tubes A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science degree in Physics from the College of William

More information

Goal of the project. TPC operation. Raw data. Calibration

Goal of the project. TPC operation. Raw data. Calibration Goal of the project The main goal of this project was to realise the reconstruction of α tracks in an optically read out GEM (Gas Electron Multiplier) based Time Projection Chamber (TPC). Secondary goal

More information

ILC Prototype Muon Scintillation Counter Tests

ILC Prototype Muon Scintillation Counter Tests ILC Prototype Muon Scintillation Counter Tests Robert Abrams Indiana University August 23, 2005 ALCPG R.J. Abrams 1 Update on Testing At FNAL New Test Setup in Lab 6 with Fermilab Support Testing Two New

More information

Physics 342 Laboratory. Scattering of Photons from Free Electrons: Compton Scattering

Physics 342 Laboratory. Scattering of Photons from Free Electrons: Compton Scattering RR Oct 2001 SS Dec 2001 Physics 342 Laboratory Scattering of Photons from Free Electrons: Compton Scattering Objective: To measure the energy of high energy photons scattered from electrons in a brass

More information

Chemistry 985. Some constants: q e 1.602x10 19 Coul, ɛ x10 12 F/m h 6.626x10 34 J-s, c m/s, 1 atm = 760 Torr = 101,325 Pa

Chemistry 985. Some constants: q e 1.602x10 19 Coul, ɛ x10 12 F/m h 6.626x10 34 J-s, c m/s, 1 atm = 760 Torr = 101,325 Pa Chemistry 985 Fall, 2o17 Distributed: Mon., 17 Oct. 17, 8:30AM Exam # 1 OPEN BOOK Due: 17 Oct. 17, 10:00AM Some constants: q e 1.602x10 19 Coul, ɛ 0 8.854x10 12 F/m h 6.626x10 34 J-s, c 299 792 458 m/s,

More information

PHY 123/253 Shot Noise

PHY 123/253 Shot Noise PHY 123/253 Shot Noise HISTORY Complete Pre- Lab before starting this experiment In 1918, experimental physicist Walter Scottky working in the research lab at Siemens was investigating the origins of noise

More information

2. Can the charge resolution and/or time resolution. be improved by changing the RC time of the integration circuit in the frontend

2. Can the charge resolution and/or time resolution. be improved by changing the RC time of the integration circuit in the frontend Simulation of the PMT-TOT System R. W. Ellsworth February 2, 21 1 Questions to be Addressed 1. Can the charge resolution and/or time resolution be improved by changing the RC time of the integration circuit

More information

Data acquisi*on and Trigger - Trigger -

Data acquisi*on and Trigger - Trigger - Experimental Methods in Par3cle Physics (HS 2014) Data acquisi*on and Trigger - Trigger - Lea Caminada lea.caminada@physik.uzh.ch 1 Interlude: LHC opera3on Data rates at LHC Trigger overview Coincidence

More information

The CMS Outer HCAL SiPM Upgrade.

The CMS Outer HCAL SiPM Upgrade. The CMS Outer HCAL SiPM Upgrade. Artur Lobanov on behalf of the CMS collaboration DESY Hamburg CALOR 2014, Gießen, 7th April 2014 Outline > CMS Hadron Outer Calorimeter > Commissioning > Cosmic data Artur

More information