Supporting Information for

Size: px
Start display at page:

Download "Supporting Information for"

Transcription

1 Supporting Information for Toward a Practical Solar-Driven CO 2 Flow Cell Electrolyzer: Design and Optimization Gowri M. Sriramagiri,, Nuha Ahmed,, Wesley Luc, Kevin D. Dobson, Steven S. Hegedus,, Feng Jiao* Institute of Energy Conversion, University of Delaware, 451 Wyoming Rd., Newark, DE 19716, USA. Dept. of Electrical and Computer Engineering, Evans Hall, University of Delaware, Newark, DE 19716, USA. Dept. of Chemical and Biomolecular Engineering, Colburn Lab, University of Delaware, Newark, DE 19716, USA. * Corresponding author. Address: jiao@udel.edu Number of pages: 7 Number of tables: 1 Number of figures: 3 S1

2 SUPPORTING INFORMATION 6-cell configuration. The modeled parameters of the 6-cell configuration and the results are shown in Figure S1. Figure S1(a) shows all I-V curves of all the modeled configurations, with varying illuminated areas. Figure S1(b) shows the resulting plot of operating voltage and current density as cell area changes and Figure S1(c) shows the modeled SFEs and the known FE (V). From this figure, it is clear that the FE (V) curve is what dictates the SFE of a configuration with more cells than optimum, in our case, 6 or more. It can be seen that, as the output voltages of the solar array are higher in this configuration, the electrolyzer curve now falls on the constant-current region of the module I-V curve, well to the left of the array maxiumum power point. This results in JOP remaining near-constant with varying illuminated area, as seen in Figure S1(b). The same can be said for an array with 7 or more cells, which would have even higher VOC (~3.5 V and greater), with the electrolyzer curve falling even further to the left, to lower voltages, of the maximum power points. This means that, in these conditions, only FE, a function of voltage, now affects device SFE, which can be observed as the overlap of the FE and SFE curves in Figure S1(c), when plotted on different linear scales. It can hence be concluded that in configurations with excess voltage, e.g. 6 or more cells in our case, SFE is directly proportional to FE. It can also be seen that SFE values in this configuration never exceed those obtained with a 5-cell array under the same conditions because with the increasing number of cells in the array, the maximum power point of the PV array moves to larger voltages and further from the electrolyzer operating or intersection point. Potential for High SFE s with Multijunction Tandem Solar Cells Under Concentration. A water electrolysis system having the highest-reported SFE of 3%, was recently demonstrated using a InGaP/GaAs/GaInNAsSb triple-junction solar cell under 42x concentration to drive two polymer electrolyte membrane electrolyzers in series. i Using the modeling procedure demonstrated in this work, the I-V parameters of the resulting system, i.e., the multijunction tandem solar cell under concentration from reference i, driving the flow-cell electrolyzer described in this work, were modeled for a few cell areas as given in Table S1. Calculating the resulting JOP in each case, and incorporating the FE (V) of our electrolyzer, the optimum solar cell area for this combination was determined to be 1.4 cm 2, where the FE peaks to 78% at 2.7 V, giving an SFE of 14.2%. Further improvement of SFE in beyond that predicted here should be possible through independent development of the various components of the electrochemical cells, viz., electrolytes, electrode technologies, ion-separation membranes etc. However, note that the high efficiency III-V concentrator system is significantly more expensive than the commercially available Si cells used here. S2

3 Current ( ma) V OP (V) J OP (ma/cm²) FE (%) SFE (%) Current (ma) a) Voltage (V) MPPT's Intersection Pt.s Electrolyzer I-V Curve 2 cm² 6 cm² 1 cm² 14 cm² 18 cm² 21 cm² 3 cm² 31 cm² 34 cm² 38 cm² 4cm² 5 cm² b) c) Vop Jop Solar Cell Area (cm²) FE 21. cm 2, 5.7% Modeled SFE Solar Cell Area (cm²) Figure S1. (a) Modeled IV curves for a 6-cell module configuration with CO2 electrolyzer linear voltammagram, and calculated (b) VOP and IOP and (c) SFE and FE with cell area for 6 cell PV array cm² cm² cm² cm² Time (hrs.) Figure S2. Measured IOP vs. time for the configurations listed in Table 2 (main text) with different PV illumination areas in 5-cell configuration S3

4 Table S1. SFE s calculated for a PV-EC designed using the flow cell electrolyzer discussed in this work with high efficiency multijunction tandem cells under 42x concentration, as reported in reference 29 Area (cm²) Voltage (V) Resistive loss included, theoretical Current (ma) J'OP (ma/cm²) JOP (ma/cm²) FE (%) SFE (%) EXPERIMENTAL METHODS CO 2 electrolyzer. The electrolyzer employed in this work is a sandwich-type flow-cell reactor, schematic shown in Figure S3, comprising a large-area-25 cm 2 -nanoporous silver (np-ag) cathode and an iridiumcoated catalyst membrane (Ir-CCM) anode as described in reference ii. The np-ag catalyst was synthesized using a modified de-alloying procedure. iii In brief, a 4 x 5 x 5 cm 3 Ag-Al ingot (Al/Ag = 8:2 atom %), made by vacuum induction processing, was purchased from Sophisticated Alloys Ltd. and was then cut in to 25 cm 2 Ag-Al sheets with a thickness of 5 m using electrical discharge machining. The precursor sheets were then annealed at 819 K for 24 hrs., then quenched in a water/ice bath. Subsequently, the precursor sheets were treated in dilute hydrochloric acid to leach out Al to form the monolithic np-ag catalyst. The as-leached sheets were immediately rinsed several times in de-ionized water and then dried in a vacuum oven overnight. The Ir-CCM anode was constructed following a previously reported procedure ii. In short, a catalyst slurry was prepared by sonicating a mixture of commercial iridium black nanoparticles (surface area m 2 per gram, Premetek Co.), Nafion solution (5 wt%, Dupont), DI water, and isopropanol with a weight ratio of catalyst to dry Nafion ionomer of 4:1. The slurry was then hand sprayed onto Nafion XL (Dupont) that has been sandwiched between two self-adhesive Mylar laminates (Dupont) with a 25 cm 2 window. After a catalyst loading of 1 mg cm -2 was achieved, the as-sprayed Ir-CCM was hot pressed at 135 o C and 2 MPa for 1 min. The CO2 electrolyzer was a two-electrode two-compartment electrochemical flow cell which was constructed out of stainless steel and then plated with a 2 m gold layer to prevent corrosion under operating conditions. The np-ag catalyst was used as the cathode for CO2 reduction to CO, while the Ir- CCM was used to both separate the two compartments, as well as the catalyst for the anode to facilitate water oxidation. A CO2-saturated.5 M NaHCO3 ( %, Sigma Aldrich) aqueous electrolyte solution was fed and recirculated at a flowrate of 15 ml min -1 through the cathode compartment as shown in Figure S4

5 1. A gear pump (EW , Cole-Parmer) was used to drive the electrolyte from a reservoir, through a flow meter (1XLX3, Brooks), then through an in-line gas diffuser, and then finally through the cathode compartment. CO2 gas (Grade 5, Keen) was fed through the porous ceramic (Refractron) in excess at 25 ml min -1 to ensure saturation. The electrolyte was then fed from the electrolyzer to a gas/liquid separator, which was constructed out of a stainless-steel knockout drum for gas phase product quantification. Low solubility gases such as CO and H2 were separated while the electrolyte was recycled back to the reservoir for continuous operation. Gas products from the gas/liquid separator were fed into a 1 ml sample loop of a gas chromatograph (Shimadzu, GC- 21) equipped with PLOT Mol Sieve 5A and Q-bond PLOT columns to confirm and separate the CO and H2 products. Argon (99.999%) was used as the carrier gas and a thermal conductivity detector was used for product quantification. No electrolyte was used for the anode compartment, which prevented water from crossing over from the anode to cathode compartment that could dilute the catholyte and degrade performance. The full cell is operated between 2.4 to 3. V in different configurations, including all the voltage losses within the device due to the internal resistance, transport and kinetic limitations. For constant potential experiments, an Autolab PGSTAT128N potentiostat with a 1-amp booster was used. Figure S3. Schematic of sandwich-type electrolyzer design used in this work Photovoltaic power source. Commercially available, ~2% efficiency, SunPower Maxeon C6 TM halfarea crystalline silicon photovoltaic (PV) cells were chosen for the power source. Rated at 4 ma/cm 2 under standard sunlight (1 mw/cm 2 ), these interdigitated back contact (IBC) commercial silicon solar cells have the highest current density (JSC) and efficiency of those available on the market for terrestrial deployment. This single junction solar cell technology has all contacts processed on the rear of the device, maximizing the current generated by eliminating shading-associated optical losses on the front. The I-V curves of solar cells used in the array were measured under standard test conditions, 1 mw/cm 2 illumination at 25 o C and the measured I-V s of the individual cells were used to model the I-V performance of the array with 5 S5

6 and 6 cells connected in series. The cells were connected in series using commercial tabbing methods. The number of cells in series was determined by analysis described in the main text. Their output was measured individually and after tabbing. A small increase in series resistance (RS) which occurred due to the tabbing interconnection was characterized and addressed in the model. In each experimental configuration, the array was setup for the desired cell area using the shadow masks and connected to the electrolyzer via a Keithley 244TM Source Meter Unit in 2-wire mode as an ammeter in series. Voltage readings were taken every ten minutes at the electrolyzer, every fifteen minutes at the PV module terminal, and the operating current (IOP) was logged at 1 minute intervals. Gas products from the gas/liquid separator were fed every 15 minutes into a 1 ml sample loop of a gas chromatograph (Shimadzu, GC- 21) equipped with PLOT Mol Sieve 5A and Q-bond PLOT columns to confirm and separate the CO and H2 products. Solar Simulator Construction for Illumination Source. The cells were characterized individually under a calibrated AM1.5G class AAA simulator made by OAI, that illuminated up to 15 x15 cm 2 area. However, to achieve larger area illumination of the array, a home-made solar simulator, incorporating eight 15 W GE halogen light bulbs, was constructed. All the lamps are connected to a rheostat to control the input power and, hence, the light intensity output. Four lamps were attached to a rigid rail that could be raised to a desired height to adjust the light intensity variation and uniformity. The light intensity calibration is achieved by tuning the input power to the system to obtain the required short circuit current (ISC) output of the array based on the simulator value of ISC. For a module made with 5 cells of known I-V characteristics, the power to the four lamps was adjusted to achieve an array ISC equal to the lowest ISC of the individual cells in series. The bulbs rapidly heat the cells, so a cooling system comprising of a fan and a heat-sink under the stage was employed. However, there was still significant radiative heating, which heated the cells to around 4 o C, beyond the standard solar cell test conditions of 25 o C. This resulted in a voltage loss of 13 mv for the array which is a closer approximation to outdoor operation conditions, where the cells would typically operate at around 5 o C. Since ISC is relatively insensitive to temperature, no correction was made to the ISC used for lamp calibration. System Operation. Voltage can be adjusted in quanta of VMP (the voltage at maximum power) of cells in series while current can be adjusted by reducing the illuminated cell area. Experiments were designed to verify the model results and their dependence on cell area in a 5-cell configuration. This variation in illuminated solar cell area was achieved by using stainless steel adjustable shadow masks on each cell. Using masks was easier and more reversible than cutting cells into smaller areas. It is noted that using masks for area reduction did decrease measured cell efficiency due to an increasing ratio of dark to illuminated surface with small-area illumination, leading to a relative increase in dark current, hence lower VOC and fill-factor. For this reason, lower efficiencies for masked small cell areas are expected, compared S6

7 to those predicted from modeling. However, this loss would not occur in a dedicated PV module design for EC applications. REFERENCES i J. Jia, L. C. Seitz, J. D. Benck, Y. Huo, Y. Chen, J. W. Ng, T. Bilir, J. S. Harris and T. F. Jaramillo, (216) Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 3%. Nat. Commun. 7, (DOI:1.138/ncomms13237). ii Luc, W.; Rosen, J.; Jiao, F. An Ir-based anode for a practical CO2 electrolyzer. Catalysis Today 216. iii Lu, Q., Rosen, J., Zhou, Y., Hutchings, G. S., Kimmel, Y. C., Chen, J. G., & Jiao, F. (214) A selective and efficient electrocatalyst for carbon dioxide reduction. Nature Communications 5:3242. S7

Supplementary Figure 1. Reference spectrum AM 1.5D, spectrum for multi-sun Newport xenon arc lamp, and external quantum efficiency.

Supplementary Figure 1. Reference spectrum AM 1.5D, spectrum for multi-sun Newport xenon arc lamp, and external quantum efficiency. Supplementary Figure 1. Reference spectrum AM 1.5D, spectrum for multi-sun Newport xenon arc lamp, and external quantum efficiency. The lamp spectrum is the output of the Newport Model 66921 1000 W xenon

More information

Solar Cell Parameters and Equivalent Circuit

Solar Cell Parameters and Equivalent Circuit 9 Solar Cell Parameters and Equivalent Circuit 9.1 External solar cell parameters The main parameters that are used to characterise the performance of solar cells are the peak power P max, the short-circuit

More information

Selective co-sensitization approach to increase photon conversion efficiency and electron lifetime in dye-sensitized solar cells

Selective co-sensitization approach to increase photon conversion efficiency and electron lifetime in dye-sensitized solar cells Selective co-sensitization approach to increase photon conversion efficiency and electron lifetime in dye-sensitized solar cells Loc H. Nguyen, # ab Hemant K. Mulmudi, # ac Dharani Sabba, ac Sneha A. Kulkarni,

More information

Supporting Information. High Energy Density Asymmetric Quasi-Solid-State Supercapacitor based on Porous Vanadium Nitride Nanowire Anode

Supporting Information. High Energy Density Asymmetric Quasi-Solid-State Supercapacitor based on Porous Vanadium Nitride Nanowire Anode Supporting Information High Energy Density Asymmetric Quasi-Solid-State Supercapacitor based on Porous Vanadium Nitride Nanowire Anode Xihong Lu,, Minghao Yu, Teng Zhai, Gongming Wang, Shilei Xie, Tianyu

More information

Latest developments and future prospects of research in KCAP. K B Yoon. Korea Center for Artificial Photosynthesis

Latest developments and future prospects of research in KCAP. K B Yoon. Korea Center for Artificial Photosynthesis Latest developments and future prospects of research in KAP K B Yoon Korea enter for Artificial Photosynthesis Korea enter for Artificial Photosynthesis Established on Sep 30, 2009, Supported by NRF and

More information

10/27/2009 Reading: Chapter 10 of Hambley Basic Device Physics Handout (optional)

10/27/2009 Reading: Chapter 10 of Hambley Basic Device Physics Handout (optional) EE40 Lec 17 PN Junctions Prof. Nathan Cheung 10/27/2009 Reading: Chapter 10 of Hambley Basic Device Physics Handout (optional) Slide 1 PN Junctions Semiconductor Physics of pn junctions (for reference

More information

Voltage-dependent quantum efficiency measurements of amorphous silicon multijunction mini-modules

Voltage-dependent quantum efficiency measurements of amorphous silicon multijunction mini-modules Loughborough University Institutional Repository Voltage-dependent quantum efficiency measurements of amorphous silicon multijunction mini-modules This item was submitted to Loughborough University's Institutional

More information

Vertical Nanowall Array Covered Silicon Solar Cells

Vertical Nanowall Array Covered Silicon Solar Cells International Conference on Solid-State and Integrated Circuit (ICSIC ) IPCSIT vol. () () IACSIT Press, Singapore Vertical Nanowall Array Covered Silicon Solar Cells J. Wang, N. Singh, G. Q. Lo, and D.

More information

SOLARONIX. Solixon A-1525-V

SOLARONIX. Solixon A-1525-V SOLARONIX Solixon A-1525-V Based on Solaronix' exclusive light engine, our solar simulation equipment delivers a perfect and continuous artificial sunlight 24/7, allowing for accurate stability and performance

More information

Investigation of Photovoltaic Properties of In:ZnO/SiO 2 /p- Si Thin Film Devices

Investigation of Photovoltaic Properties of In:ZnO/SiO 2 /p- Si Thin Film Devices Universities Research Journal 2011, Vol. 4, No. 4 Investigation of Photovoltaic Properties of In:ZnO/SiO 2 /p- Si Thin Film Devices Kay Thi Soe 1, Moht Moht Than 2 and Win Win Thar 3 Abstract This study

More information

Understanding Potential Induced Degradation for LG NeON Model

Understanding Potential Induced Degradation for LG NeON Model Understanding Potential Induced Degradation for LG NeON Model Table of Contents 2 CONTENTS 1. Introduction 3 2. PID Mechanism 4 3. LG NeON model PID Characterization 5 4. Description 7 6. Test Result 11

More information

Monitoring of Galvanic Replacement Reaction. between Silver Nanowires and HAuCl 4 by In-Situ. Transmission X-Ray Microscopy

Monitoring of Galvanic Replacement Reaction. between Silver Nanowires and HAuCl 4 by In-Situ. Transmission X-Ray Microscopy Supporting Information Monitoring of Galvanic Replacement Reaction between Silver Nanowires and HAuCl 4 by In-Situ Transmission X-Ray Microscopy Yugang Sun *, and Yuxin Wang Center for Nanoscale Materials

More information

Chapter 4. Impact of Dust on Solar PV Module: Experimental Analysis

Chapter 4. Impact of Dust on Solar PV Module: Experimental Analysis Chapter 4 Impact of Dust on Solar PV Module: Experimental Analysis 53 CHAPTER 4 IMPACT OF DUST ON SOLAR PV MODULE: EXPERIMENTAL ANALYSIS 4.1 INTRODUCTION: On a bright, sunny day the sun shines approximately

More information

I-V, C-V and Impedance Characterization of Photovoltaic Cells using Solartron Instrumentation

I-V, C-V and Impedance Characterization of Photovoltaic Cells using Solartron Instrumentation MTSAP1 I-V, C-V and Impedance Characterization of Photovoltaic Cells using Solartron Instrumentation Introduction Harnessing energy from the sun offers an alternative to fossil fuels. Photovoltaic cells

More information

Laboratory 2: PV Module Current-Voltage Measurements

Laboratory 2: PV Module Current-Voltage Measurements Laboratory 2: PV Module Current-Voltage Measurements Introduction and Background The current-voltage (I-V) characteristic is the basic descriptor of photovoltaic device performance. A fundamental understanding

More information

I-V, C-V and AC Impedance Techniques and Characterizations of Photovoltaic Cells

I-V, C-V and AC Impedance Techniques and Characterizations of Photovoltaic Cells I-V, C-V and AC Impedance Techniques and Characterizations of Photovoltaic Cells John Harper 1, Xin-dong Wang 2 1 AMETEK Advanced Measurement Technology, Southwood Business Park, Hampshire,GU14 NR,United

More information

HipoCIGS: enamelled steel as substrate for thin film solar cells

HipoCIGS: enamelled steel as substrate for thin film solar cells HipoCIGS: enamelled steel as substrate for thin film solar cells Lecturer D. Jacobs*, Author S. Efimenko, Co-author C. Schlegel *:PRINCE Belgium bvba, Pathoekeweg 116, 8000 Brugge, Belgium, djacobs@princecorp.com

More information

Supporting Information

Supporting Information Supporting Information Roll-to-roll anodization and etching of aluminum foils for high-throughput surface nano-texturing Min Hyung Lee 1,2,3, *, Namsoo Lim 4, *, Daniel J. Ruebusch 1,2,3,*, Arash Jamshidi

More information

Major Fabrication Steps in MOS Process Flow

Major Fabrication Steps in MOS Process Flow Major Fabrication Steps in MOS Process Flow UV light Mask oxygen Silicon dioxide photoresist exposed photoresist oxide Silicon substrate Oxidation (Field oxide) Photoresist Coating Mask-Wafer Alignment

More information

SHORT TECHNICAL DESCRIPTION

SHORT TECHNICAL DESCRIPTION Ioffe Physical-Technical Institute of Russian Academy of Sciences PV Laboratory 26 Polytechnicheskaya str., 194021 St-Petersburg, Russia tel: +7(812) 297-56-49, E-mail: vmandreev@mail.ioffe.ru FOUR-LAMP

More information

Electrical Characterization

Electrical Characterization Listing and specification of characterization equipment at ISC Konstanz 30.05.2016 Electrical Characterization µw-pcd (Semilab) PV2000 (Semilab) - spatially resolved minority charge carrier lifetime -diffusion

More information

Introduction to Photovoltaics

Introduction to Photovoltaics Introduction to Photovoltaics PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo February 24, 2015 Only solar energy Of all the possible sources

More information

Nanofluidic Diodes based on Nanotube Heterojunctions

Nanofluidic Diodes based on Nanotube Heterojunctions Supporting Information Nanofluidic Diodes based on Nanotube Heterojunctions Ruoxue Yan, Wenjie Liang, Rong Fan, Peidong Yang 1 Department of Chemistry, University of California, Berkeley, CA 94720, USA

More information

Supporting Information. Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of

Supporting Information. Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Supporting Information Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Porous Graphene in Electrochemical Devices Ping Hu, Mengyu Yan, Xuanpeng Wang, Chunhua Han,*

More information

Optical design of a low concentrator photovoltaic module

Optical design of a low concentrator photovoltaic module Optical design of a low concentrator photovoltaic module MA Benecke*, JD Gerber, FJ Vorster and EE van Dyk Nelson Mandela Metropolitan University Centre for Renewable and Sustainable Energy Studies Abstract

More information

A large-area wireless power transmission sheet using printed organic. transistors and plastic MEMS switches

A large-area wireless power transmission sheet using printed organic. transistors and plastic MEMS switches Supplementary Information A large-area wireless power transmission sheet using printed organic transistors and plastic MEMS switches Tsuyoshi Sekitani 1, Makoto Takamiya 2, Yoshiaki Noguchi 1, Shintaro

More information

Non-Volatile Memory Based on Solid Electrolytes

Non-Volatile Memory Based on Solid Electrolytes Non-Volatile Memory Based on Solid Electrolytes Michael Kozicki Chakku Gopalan Murali Balakrishnan Mira Park Maria Mitkova Center for Solid State Electronics Research Introduction The electrochemical redistribution

More information

LAB V. LIGHT EMITTING DIODES

LAB V. LIGHT EMITTING DIODES LAB V. LIGHT EMITTING DIODES 1. OBJECTIVE In this lab you are to measure I-V characteristics of Infrared (IR), Red and Blue light emitting diodes (LEDs). The emission intensity as a function of the diode

More information

Initial solar cell characterisation test and comparison with a LED-based solar simulator with variable flash speed and spectrum

Initial solar cell characterisation test and comparison with a LED-based solar simulator with variable flash speed and spectrum Loughborough University Institutional Repository Initial solar cell characterisation test and comparison with a LED-based solar simulator with variable flash speed and spectrum This item was submitted

More information

A complete solution for your Electrochemistry research initiative

A complete solution for your Electrochemistry research initiative Kanopy Techno Solutions A complete solution for your Electrochemistry research initiative Kanopy Techno Solutions introduces EC-Lyte, a complete solution for your Electrochemistry research initiative which

More information

Supporting Information. Novel Onion-Like Graphene Aerogel Beads for Efficient Solar Vapor Generation. under Non-concentrated Illumination

Supporting Information. Novel Onion-Like Graphene Aerogel Beads for Efficient Solar Vapor Generation. under Non-concentrated Illumination Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2019 Supporting Information Novel Onion-Like Graphene Aerogel Beads for Efficient

More information

Single wearable sensing energy device based on photoelectric biofuel cells for simultaneous analysis of perspiration and illuminance

Single wearable sensing energy device based on photoelectric biofuel cells for simultaneous analysis of perspiration and illuminance Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2017 Single wearable sensing energy device based on photoelectric biofuel cells for simultaneous analysis

More information

IMPLEMENTATION OF MAXIMUM POWER POINT TRACKING ALGORITHM USING RASPBERRY PI

IMPLEMENTATION OF MAXIMUM POWER POINT TRACKING ALGORITHM USING RASPBERRY PI IMPLEMENTATION OF MAXIMUM POWER POINT TRACKING ALGORITHM USING RASPBERRY PI B. Evangeline kiruba K.Gerard Joe Nigel PG Scholar Department of Electrical Technology Karunya University, Coimbatore, India

More information

SILICON NANOWIRE HYBRID PHOTOVOLTAICS

SILICON NANOWIRE HYBRID PHOTOVOLTAICS SILICON NANOWIRE HYBRID PHOTOVOLTAICS Erik C. Garnett, Craig Peters, Mark Brongersma, Yi Cui and Mike McGehee Stanford Univeristy, Department of Materials Science, Stanford, CA, USA ABSTRACT Silicon nanowire

More information

Subminiature Photoionization VOC Sensor Boris Dolgov, Baseline-MOCON, Inc.

Subminiature Photoionization VOC Sensor Boris Dolgov, Baseline-MOCON, Inc. Subminiature Photoionization VOC Sensor Boris Dolgov, Baseline-MOCON, Inc. Lyons, CO 80540, USA (303) 823-6661 boris.dolgov@baseline.cc 1 1. Objective Monitoring of Volatile Organic Compounds (VOCs) is

More information

Fall 2004 Dawn Hettelsater, Yan Zhang and Ali Shakouri, 05/09/2002

Fall 2004 Dawn Hettelsater, Yan Zhang and Ali Shakouri, 05/09/2002 University of California at Santa Cruz Jack Baskin School of Engineering Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 6: Solar Cells Fall 2004 Dawn Hettelsater, Yan

More information

Quantum Efficiency Measurement System with Internal Quantum Efficiency Upgrade

Quantum Efficiency Measurement System with Internal Quantum Efficiency Upgrade Quantum Efficiency Measurement System with Internal Quantum Efficiency Upgrade QE / IPCE SYSTEM Upgraded with Advanced Features Includes IV Testing, Spectral Response, Quantum Efficiency System/ IPCE System

More information

PV Activity 3 PV Loads

PV Activity 3 PV Loads The purpose of this activity is to investigate the current and voltage output of photovoltaic cells when connected to various loads. This activity includes an optional extra investigation related to power

More information

Grid Connected photovoltaic system based on Chain cell converter Using Simulink

Grid Connected photovoltaic system based on Chain cell converter Using Simulink Grid Connected photovoltaic system based on Chain cell converter Using Simulink Problem statement To prove Chain cell converter performance superior when compared with the traditional Pulse width modulation

More information

NON-TRADITIONAL MACHINING PROCESSES ULTRASONIC, ELECTRO-DISCHARGE MACHINING (EDM), ELECTRO-CHEMICAL MACHINING (ECM)

NON-TRADITIONAL MACHINING PROCESSES ULTRASONIC, ELECTRO-DISCHARGE MACHINING (EDM), ELECTRO-CHEMICAL MACHINING (ECM) NON-TRADITIONAL MACHINING PROCESSES ULTRASONIC, ELECTRO-DISCHARGE MACHINING (EDM), ELECTRO-CHEMICAL MACHINING (ECM) A machining process is called non-traditional if its material removal mechanism is basically

More information

[Sathya, 2(11): November, 2013] ISSN: Impact Factor: 1.852

[Sathya, 2(11): November, 2013] ISSN: Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Modelling and Simulation of Solar Photovoltaic array for Battery charging Application using Matlab-Simulink P.Sathya *1, G.Aarthi

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Low boiling point solvent additive

More information

Modelling and Analysis of Four-Junction Tendem Solar Cell in Different Environmental Conditions Mr. Biraju J. Trivedi 1 Prof. Surendra Kumar Sriwas 2

Modelling and Analysis of Four-Junction Tendem Solar Cell in Different Environmental Conditions Mr. Biraju J. Trivedi 1 Prof. Surendra Kumar Sriwas 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 08, 2015 ISSN (online): 2321-0613 Modelling and Analysis of Four-Junction Tendem Solar Cell in Different Environmental

More information

Hierarchical CoNiSe2 nano-architecture as a highperformance electrocatalyst for water splitting

Hierarchical CoNiSe2 nano-architecture as a highperformance electrocatalyst for water splitting Nano Res. Electronic Supplementary Material Hierarchical CoNiSe2 nano-architecture as a highperformance electrocatalyst for water splitting Tao Chen and Yiwei Tan ( ) State Key Laboratory of Materials-Oriented

More information

Profiles for floors of same height Proclassic Proclassic F

Profiles for floors of same height Proclassic Proclassic F PROFILPAS S.P.A. VIA EINSTEIN, 38 35010 CADONEGHE (PADOVA) ITALY TEL. +39 (0)49 8878411 +39 (0)49 8878412 FAX. +39 (0)49-706692 EMAIL: INFO@PROFILPAS.COM Profiles for floors of same height Proclassic Proclassic

More information

Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks

Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks Supporting Information Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks Aaron R. Rathmell, Minh Nguyen, Miaofang Chi, and Benjamin J. Wiley * Department

More information

LAB V. LIGHT EMITTING DIODES

LAB V. LIGHT EMITTING DIODES LAB V. LIGHT EMITTING DIODES 1. OBJECTIVE In this lab you will measure the I-V characteristics of Infrared (IR), Red and Blue light emitting diodes (LEDs). Using a photodetector, the emission intensity

More information

Nolan Rebernick, Kyle Montgomery, and Kenneth Walz Quantifying Electroluminescence Image Data for Multijunction Solar Cells

Nolan Rebernick, Kyle Montgomery, and Kenneth Walz Quantifying Electroluminescence Image Data for Multijunction Solar Cells Nolan Rebernick, Kyle Montgomery, and Kenneth Walz Quantifying Electroluminescence Image Data for Multijunction Solar Cells Summary: This study explores developing characterization methods for multijunction

More information

Characterization of Silicon-based Ultrasonic Nozzles

Characterization of Silicon-based Ultrasonic Nozzles Tamkang Journal of Science and Engineering, Vol. 7, No. 2, pp. 123 127 (24) 123 Characterization of licon-based Ultrasonic Nozzles Y. L. Song 1,2 *, S. C. Tsai 1,3, Y. F. Chou 4, W. J. Chen 1, T. K. Tseng

More information

ESD Ground Testing of Triple-Junction Space Solar Cells with Monolithic Diodes *

ESD Ground Testing of Triple-Junction Space Solar Cells with Monolithic Diodes * Trans. JSASS Space Tech. Japan Vol. 7, pp. 11-17, 2009 ESD Ground Testing of Triple-Junction Space Solar Cells with Monolithic Diodes * By Yukishige NOZAKI 1), Hirokazu MASUI 2), Kazuhiro TOYODA 2), Mengu

More information

Thermal Conductivity Sensor for Leak or Pressure Detection MTCS2601. MTCS2601 silicon sensing die in SMD ceramic package

Thermal Conductivity Sensor for Leak or Pressure Detection MTCS2601. MTCS2601 silicon sensing die in SMD ceramic package Sensor Description Thermal Conductivity Sensor for Leak or Pressure Detection MTCS2601 MTCS2601 silicon sensing die in SMD ceramic package Thermal conductivity sensor for primary vacuum measurement Silicon

More information

Reference: Photovoltaic Systems, p

Reference: Photovoltaic Systems, p PV systems are comprised of building blocks of cells, modules and arrays to form a DC power generating unit with specified electrical output. Reference: Photovoltaic Systems, p. 115-118 Reference: Photovoltaic

More information

Structural, optical, and electrical properties of phasecontrolled cesium lead iodide nanowires

Structural, optical, and electrical properties of phasecontrolled cesium lead iodide nanowires Electronic Supplementary Material Structural, optical, and electrical properties of phasecontrolled cesium lead iodide nanowires Minliang Lai 1, Qiao Kong 1, Connor G. Bischak 1, Yi Yu 1,2, Letian Dou

More information

10/14/2009. Semiconductor basics pn junction Solar cell operation Design of silicon solar cell

10/14/2009. Semiconductor basics pn junction Solar cell operation Design of silicon solar cell PHOTOVOLTAICS Fundamentals PV FUNDAMENTALS Semiconductor basics pn junction Solar cell operation Design of silicon solar cell SEMICONDUCTOR BASICS Allowed energy bands Valence and conduction band Fermi

More information

CHAPTER-2 Photo Voltaic System - An Overview

CHAPTER-2 Photo Voltaic System - An Overview CHAPTER-2 Photo Voltaic System - An Overview 15 CHAPTER-2 PHOTO VOLTAIC SYSTEM -AN OVERVIEW 2.1 Introduction With the depletion of traditional energies and the increase in pollution and greenhouse gases

More information

INCREASING THE CO TOLERANCE OF PEM FUEL CELLS VIA CURRENT PULSING AND SELF-OXIDATION. A Thesis ARTHUR H. THOMASON

INCREASING THE CO TOLERANCE OF PEM FUEL CELLS VIA CURRENT PULSING AND SELF-OXIDATION. A Thesis ARTHUR H. THOMASON i INCREASING THE CO TOLERANCE OF PEM FUEL CELLS VIA CURRENT PULSING AND SELF-OXIDATION A Thesis by ARTHUR H. THOMASON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment

More information

Multi-Wire Drift Chambers (MWDC)

Multi-Wire Drift Chambers (MWDC) Multi-Wire Drift Chambers (MWDC) Mitra Shabestari August 2010 Introduction The detailed procedure for construction of multi-wire drift chambers is presented in this document. Multi-Wire Proportional Counters

More information

Characterization of Water Management in PEM Fuel Cells with Microporous Layer Using Electrochemical Impedance Spectroscopy

Characterization of Water Management in PEM Fuel Cells with Microporous Layer Using Electrochemical Impedance Spectroscopy Characterization of Water Management in PEM Fuel Cells with Microporous Layer Using Electrochemical Impedance Spectroscopy Dzmity Malevich, Ela Halliop, Kunal Karan, Brant A Peppley and Jon Pharoah WWW.FCRC.CA

More information

Substrate as Efficient Counter Electrode for Dye- Sensitized Solar Cells

Substrate as Efficient Counter Electrode for Dye- Sensitized Solar Cells Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Vertical Ultrathin MoS 2 Nanosheets on Flexible Substrate

More information

Applications Overview

Applications Overview Applications Overview Galvanic Cycling of Rechargeable Batteries I-V Characterization of Solar Cells and Panels Making Low Resistance Measurements Using High Current DC I-V Characterization of Transistors

More information

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Current Transport: Diffusion, Thermionic Emission & Tunneling For Diffusion current, the depletion layer is

More information

1) Solar simulator with I-V measurement setup and software

1) Solar simulator with I-V measurement setup and software Department of Optoelectronics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India 695581, Ph: 91 471 2308167 OPTO/Nanophotonics-Phase II/P-1/2014-15 Quotation Notice Quotations are invited

More information

Engineering Thesis Project. By Evgeniya Polyanskaya. Supervisor: Greg Crebbin

Engineering Thesis Project. By Evgeniya Polyanskaya. Supervisor: Greg Crebbin Simulation of the effects of global irradiance, ambient temperature and partial shading on the output of the photovoltaic module using MATLAB/Simulink and ICAP/4 A report submitted to the School of Engineering

More information

Printing versus coating technology Which way Printed Electronics with solution coating will go?

Printing versus coating technology Which way Printed Electronics with solution coating will go? Printing versus coating technology Which way Printed Electronics with solution coating will go? Frank Schäfer, Andrea Glawe, Dr. Daniel Eggerath, KROENERT GmbH& Co KG, Schuetzenstrasse 105, 22761 Hamburg

More information

Metrohm Autolab Instruments for Electrochemistry

Metrohm Autolab Instruments for Electrochemistry Metrohm Autolab Instruments for Electrochemistry History of Metrohm Autolab Founded in 1986 as Eco Chemie in Utrecht Develops state of the art instruments for electrochemistry Joined the Metrohm group

More information

(Refer Slide Time: 00:16)

(Refer Slide Time: 00:16) Advanced Machining Processes Professor Vijay K. Jain Department of Mechanical Engineering Indian Institute of Technology, Kanpur Lecture 07 Electrochemical Machining Processes 1 (Refer Slide Time: 00:16)

More information

Multilayer Foil Metallization for All Back Contact Cells

Multilayer Foil Metallization for All Back Contact Cells Multilayer Foil Metallization for All Back Contact Cells David Levy, Natcore Technology David Carlson, CarlsonPV 44 th IEEE-PVSC Conference (June 30, 2017) 1 Overview Multilayer foil metallization Benefits

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Enhanced Thermoelectric Performance of Rough Silicon Nanowires Allon I. Hochbaum 1 *, Renkun Chen 2 *, Raul Diaz Delgado 1, Wenjie Liang 1, Erik C. Garnett 1, Mark Najarian 3, Arun Majumdar 2,3,4, Peidong

More information

CHAPTER 9 CURRENT VOLTAGE CHARACTERISTICS

CHAPTER 9 CURRENT VOLTAGE CHARACTERISTICS CHAPTER 9 CURRENT VOLTAGE CHARACTERISTICS 9.1 INTRODUCTION The phthalocyanines are a class of organic materials which are generally thermally stable and may be deposited as thin films by vacuum evaporation

More information

Performance and Loss Analyses of High-Efficiency CBD-ZnS/Cu(In 1-x Ga x )Se 2 Thin-Film Solar Cells

Performance and Loss Analyses of High-Efficiency CBD-ZnS/Cu(In 1-x Ga x )Se 2 Thin-Film Solar Cells Performance and Loss Analyses of High-Efficiency CBD-ZnS/Cu(In 1-x Ga x )Se 2 Thin-Film Solar Cells Alexei Pudov 1, James Sites 1, Tokio Nakada 2 1 Department of Physics, Colorado State University, Fort

More information

Supplementary Information. Zn doped p type Gallium Phosphide Nanowire Photocathodes from a. Surfactant free Solution Synthesis

Supplementary Information. Zn doped p type Gallium Phosphide Nanowire Photocathodes from a. Surfactant free Solution Synthesis Supplementary Information Zn doped p type Gallium Phosphide Nanowire Photocathodes from a Surfactant free Solution Synthesis Chong Liu,, Jianwei Sun, Jinyao Tang, Peidong Yang *,,, Department of Chemistry,

More information

How to Evaluate PV Project Energy Yield

How to Evaluate PV Project Energy Yield How to Evaluate PV Project Energy Yield There are three main characteristics of a PV module that could affect the real energy generation of a PV plant: Temperature coefficient; Low light performance; IAM

More information

Design and Modeling of PEM Fuel Cell Using PWM Based Interleaved Boost Converter

Design and Modeling of PEM Fuel Cell Using PWM Based Interleaved Boost Converter Design and Modeling of PEM Fuel Cell Using PWM Based Interleaved Boost Converter M. Vijayalakshmi Department of Electrical and Electronics Engineering Rajalakshmi Engineering college, Chennai, Tamil nadu,

More information

Enhancing Induction Heating Processes by Applying Magnetic Flux Controllers

Enhancing Induction Heating Processes by Applying Magnetic Flux Controllers Oval Coil/Flat Plate Comparison Page 1 ASM 1999 Enhancing Induction Heating Processes by Applying Magnetic Flux Controllers Mr. Robert S. Ruffini, President Mr. Robert T. Ruffini, Vice-President Fluxtrol

More information

BETTER DESIGN BETTER MATERIALS BETTER PROCESSES BETTER MODULES

BETTER DESIGN BETTER MATERIALS BETTER PROCESSES BETTER MODULES BETTER DESIGN BETTER MATERIALS BETTER PROCESSES BETTER MODULES TM FULL RANGE OF CERTIFIED MODULES Mono Crystalline Watt to 50 Watt Poly (Multi) Crystalline Watt to 80 Watt Glass Cells High Efficiency A-Grade

More information

Photovoltaic Properties of Pb(Zr x,ti 1-x )O 3 /n-si and Pb(Zr x,ti 1-x )O 3 /n-ps Hetero junction Solar Cell

Photovoltaic Properties of Pb(Zr x,ti 1-x )O 3 /n-si and Pb(Zr x,ti 1-x )O 3 /n-ps Hetero junction Solar Cell International Journal of Physics, 2017, Vol. 5, No. 3, 82-86 Available online at http://pubs.sciepub.com/ijp/5/3/3 Science and Education Publishing DOI:10.12691/ijp-5-3-3 Photovoltaic Properties of Pb(Zr

More information

LABORATORY INSTRUCTION NO. 8-OS a CHARACTERISTIC OF SOLAR CELLS

LABORATORY INSTRUCTION NO. 8-OS a CHARACTERISTIC OF SOLAR CELLS RENEWABLE ENERGY SOURCES LABORATORY Department of Chemical Apparatus and Theory of Machines Faculty of Chemistry, Gdańsk University of Technology LABORATORY INSTRUCTION NO. 8-OS a CHARACTERISTIC OF SOLAR

More information

AEROSOL JET PRINTING SYSTEM FOR HIGH SPEED, NON-CONTACT FRONT SIDE METALLIZATION OF SILICON SOLAR CELLS

AEROSOL JET PRINTING SYSTEM FOR HIGH SPEED, NON-CONTACT FRONT SIDE METALLIZATION OF SILICON SOLAR CELLS AEROSOL JET PRINTING SYSTEM FOR HIGH SPEED, NON-CONTACT FRONT SIDE METALLIZATION OF SILICON SOLAR CELLS Bruce H. King and Stephen M. Barnes Optomec, Inc. 3911 Singer NE, Albuquerque, NM 87109, US Phone

More information

Type the title of your paper here Effect of the focused light from the xenon arc lamp on the surface tension of the molten enamel

Type the title of your paper here Effect of the focused light from the xenon arc lamp on the surface tension of the molten enamel Type the title of your paper here Effect of the focused light from the xenon arc lamp on the surface tension of the molten enamel A D Aleutdinov, S A Ghyngazov, T S Mylnikova and K A Aleutdinov National

More information

Technical Information

Technical Information Technical Information Handling, Inspecting and Fabricating Pilkington Activ Self-Cleaning Glass Pilkington Activ Self-Cleaning Glass has a thin, clear, permanent, pyrolytic Titanium Oxide coating on one

More information

CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM

CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM 52 CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM 3.1 INTRODUCTION The power electronics interface, connected between a solar panel and a load or battery bus, is a pulse width modulated

More information

Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces

Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces SUPPLEMENTARY INFORMATION Articles https://doi.org/10.1038/s41928-018-0056-6 In the format provided by the authors and unedited. Low-power carbon nanotube-based integrated circuits that can be transferred

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Nonideal Effect The experimental characteristics of MOSFETs deviate to some degree from the ideal relations that have been theoretically derived. Semiconductor Physics and Devices Chapter 11. MOSFET: Additional

More information

Characterisation of a Photovoltaic Module

Characterisation of a Photovoltaic Module Characterisation of a Photovoltaic Module Name MMU ID Unit Leader Subject Unit code Course Mohamed Alsubaie 09562211 Dr. Nader Anani Renewable Power Systems 64ET3901 BEng (Hons) Computer and Communication

More information

Performance Characterization Of A Simultaneous Positive and Negative Ion Detector For Mass Spectrometry Applications

Performance Characterization Of A Simultaneous Positive and Negative Ion Detector For Mass Spectrometry Applications Performance Characterization Of A Simultaneous Positive and Negative Ion Detector For Mass Spectrometry Applications Bruce Laprade and Raymond Cochran Introduction Microchannel Plates (Figures 1) are parallel

More information

Supporting Information

Supporting Information Supporting Information Highly Stretchable and Transparent Supercapacitor by Ag-Au Core Shell Nanowire Network with High Electrochemical Stability Habeom Lee 1, Sukjoon Hong 2, Jinhwan Lee 1, Young Duk

More information

Understanding Temperature Effects on Crystalline PV Modules

Understanding Temperature Effects on Crystalline PV Modules Understanding Temperature Effects on Crystalline PV Modules The following is a discussion on temperature and how it affects solar module voltages and power output. This is particularly important in solar-battery

More information

Conductance switching in Ag 2 S devices fabricated by sulphurization

Conductance switching in Ag 2 S devices fabricated by sulphurization 3 Conductance switching in Ag S devices fabricated by sulphurization The electrical characterization and switching properties of the α-ag S thin films fabricated by sulfurization are presented in this

More information

Large Area Steady State Solar Simulator - Apollo

Large Area Steady State Solar Simulator - Apollo AllReal APOLLO series steady-state solar simulator are AAA class which is the highest class on the world. AllReal APOLLO solar simulators designed with specific optical technology by tandem Xenon lamps,

More information

Multiband Solar Concentrator using Transmissive Dichroic Beamsplitting

Multiband Solar Concentrator using Transmissive Dichroic Beamsplitting Multiband Solar Concentrator using Transmissive Dichroic Beamsplitting Jason H. Karp and Joseph E. Ford Photonics Systems Integration Lab University of California, San Diego Jacobs School of Engineering

More information

Identification and Control of Impressed Current Cathodic Protection System

Identification and Control of Impressed Current Cathodic Protection System Identification and Control of Impressed Current Cathodic Protection System Bassim N. Abdul Sada Ramzy S. Ali Khearia A. Mohammed Ali Electrical Eng. Department, Electrical Eng. Department, Electrical Eng.

More information

Project full title: "Nanowire based Tandem Solar Cells" Project acronym: Nano-Tandem Grant agreement no: Deliverable D6.1:

Project full title: Nanowire based Tandem Solar Cells Project acronym: Nano-Tandem Grant agreement no: Deliverable D6.1: Ref. Ares(2016)1038382-01/03/2016 Project full title: "Nanowire based Tandem Solar Cells" Project acronym: Nano-Tandem Grant agreement no: 641023 Deliverable D6.1: Report on adaption of EQE and IV measurement

More information

The Nanosolar Utility Panel An Overview of the Solar Panel and its Advantages. May 2010

The Nanosolar Utility Panel An Overview of the Solar Panel and its Advantages. May 2010 May 2010 The Nanosolar Utility Panel 1 Designed for Utility-Scale Performance The Nanosolar Utility Panel is specifically designed for utility-scale systems. Engineered to reduce totalsystem cost, the

More information

Supporting Information

Supporting Information Copyright WILEY VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015. Supporting Information for Adv. Energy Mater., DOI: 10.1002/aenm.201501065 Water Ingress in Encapsulated Inverted Organic Solar

More information

Electrical and Optical Tunability in All-Inorganic Halide. Perovskite Alloy Nanowires

Electrical and Optical Tunability in All-Inorganic Halide. Perovskite Alloy Nanowires Supporting Information for: Electrical and Optical Tunability in All-Inorganic Halide Perovskite Alloy Nanowires Teng Lei, 1 Minliang Lai, 1 Qiao Kong, 1 Dylan Lu, 1 Woochul Lee, 2 Letian Dou, 3 Vincent

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Photodetectors Introduction Most important characteristics Photodetector

More information

Enameled Wire Having Polyimide-silica Hybrid Insulation Layer Prepared by Sol-gel Process

Enameled Wire Having Polyimide-silica Hybrid Insulation Layer Prepared by Sol-gel Process Journal of Photopolymer Science and Technology Volume 28, Number 2 (2015) 151 155 2015SPST Enameled Wire Having Polyimide-silica Hybrid Insulation Layer Prepared by Sol-gel Process Atsushi Morikawa 1,

More information

Experiment 6: Franck Hertz Experiment v1.3

Experiment 6: Franck Hertz Experiment v1.3 Experiment 6: Franck Hertz Experiment v1.3 Background This series of experiments demonstrates the energy quantization of atoms. The concept was first implemented by James Franck and Gustaf Ludwig Hertz

More information

Characterisation of Photovoltaic Materials and Cells

Characterisation of Photovoltaic Materials and Cells Standard Measurement Services and Prices No. Measurement Description Reference 1 Large area, 0.35-sun biased spectral response (SR) 2 Determination of linearity of spectral response with respect to irradiance

More information

THE 4TH INTERNATIONAL CONFERENCE ON ALUMINUM ALLOYS THE INFLUENCE OF THE BRAZING PROCESS ON THE MECHANICAL STRENGTH OF BRAZING SHEET MATERIAL

THE 4TH INTERNATIONAL CONFERENCE ON ALUMINUM ALLOYS THE INFLUENCE OF THE BRAZING PROCESS ON THE MECHANICAL STRENGTH OF BRAZING SHEET MATERIAL THE 4TH INTERNATIONAL CONFERENCE ON ALUMINUM ALLOYS THE INFLUENCE OF THE BRAZING PROCESS ON THE MECHANICAL STRENGTH OF BRAZING SHEET MATERIAL Xingyan Fan, Zhong Li and J.G. Morris Light Metals Research

More information