Fall 2004 Dawn Hettelsater, Yan Zhang and Ali Shakouri, 05/09/2002

Size: px
Start display at page:

Download "Fall 2004 Dawn Hettelsater, Yan Zhang and Ali Shakouri, 05/09/2002"

Transcription

1 University of California at Santa Cruz Jack Baskin School of Engineering Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 6: Solar Cells Fall 2004 Dawn Hettelsater, Yan Zhang and Ali Shakouri, 05/09/ References Sections of S.O. Kasap. Principles of Electrical Engineering Materials and Devices. 2 nd Ed The Semiconductor applet Service List of Simulation Applets #4 PN Junction Diode at Equilibrium #5 PN Junction Diode under Applied Bias Voltage Includes interactive applets on: Semiconductor statistics PN junction diode (In equilibrium, Applied bias, Fabrication) Also includes parameters, mathematical analysis, and detailed explanations. Solar Electricity How Solar Cells Work Includes solar cell simulations and general theory Institute of Electrical Power Engineering - Renewable Energy Sect. Includes theory as well as interactive components Center for Photovoltaic Engineering, University of New South Wales, Australia Useful tables, current research in photovoltaics. 2.0 Theory 2.1 Formation of the pn Junction A pn junction is formed when a p-type semiconductor material is brought into contact with an n-type material. The p side has an excess number of holes, whereas the n side has an excess number of electrons. When the two materials come into contact a concentration gradient is formed on each side due to the excess charges. The holes begin to diffuse toward areas of low concentration in the n side, and the electrons diffuse to the p side. Eventually, a region in the middle becomes devoid of any electrons or holes 1

2 because they have diffused to the opposite sides. Within the middle region are the ionized acceptor atoms in the p side and donors in the n type. This forms a negative charge on one side and a positive charge on the other, creating an electric field between. The built in equilibrium potential is given by V 0. Figure 1 below illustrates the pn junction. Figure 1 The middle region containing the electric field is referred to as the space charge region, or the depletion region. Due to the electric field, electrons and holes experience a drift current. Equilibrium is reached when the drift current exactly opposed the diffusion current. The net current flow is therefore zero. The total current density for either electrons or holes is given by: J = J + J (1) ntotol ptotol ndrift J = J + The current densities are therefore given by: J J p n pdrift J ndiff pdiff dn( x) = qnµ ne + qdn (2) dx dn( x) = qpµ pe qd p dx Where n and p are the electron and hole concentrations respectively, µ is the drift mobility, E is the electric field, and D n,p are the diffusion coefficients. 2.2 Forward Bias When a positive voltage is applied to the p-type material there is a net current flow in the positive direction. Figure 2 below demonstrates the pn junction under forward bias: 2

3 Figure 2 The applied voltage, V, results in an electric field that opposes the internal field across the space charge region. This effectively lowers the potential barrier by the amount V-V 0. In equilibrium, some of the majority carriers in the conduction band have a high enough energy to surmount the barrier. Under forward bias, the barrier is lowered, increasing the probability for majority charge carriers to diffuse across by a factor of e (qv/kt). As the majority charge carriers cross the junction they are injected into the other type of material, becoming minority charge carriers. This is referred to as minority carrier injection. Unlike the diffusion current, the drift current remains fairly insensitive to the applied bias. This current is caused by minority carriers wandering toward the barrier and then being swept away by the field. Comparatively, there are very few minority carries compared to the doped regions, therefore very few charges contributing to drift current. The total current is given by adding the diffusion and drift currents, with the diffusion current dominating. During equilibrium diffusion current is equal in magnitude to the absolute value of the drift current. Under forward bias, the diffusion current can be given by: qv kt I diff = I drift e (3) The total current is then the diffusion current minus the absolute value of the drift current, since the drift current is in the opposite direction. The current is therefore given by: 3

4 qv kt I = I 0 e 1 (4) Where I 0 is the absolute value of the drift current. This equation is referred to as the ideal diode equation. Using equation 2 and solving for the minority injection currents leads to a more accurate diode equation given by: D qv p D n kt I = qa p + 1 n n p e (5) L p Ln Where L p,n are the diffusion lengths of the holes and electrons, p n and n p are the minority charge concentrations, V is the applied voltage, and A is the area of the device. 2.3 Solar Cells Generation of photocurrent With semiconductors, it is possible to convert the energy of the solar radiation into electric energy. Theoretically, each absorbed light quantum (photon) could generate an electron-hole pair. If the energy of the photon surpasses the band gap, then such a generation takes place. The surplus energy is converted into heat. In order to generate more than one electron-hole pair(ehp), the photon must provide a multiple of the energy of the band gap. Figure 3 Generation of electron-hole pairs 4

5 Figure 4 Generation of photocurrent in a diode If the minority carrier created from the EHP diffuses toward the junction, it will be swept to the opposite side by the internal field. Due to the larger number of charges crossing the junction, the drift current increases. The charges then begin to build up on the other side, holes on the p side and electrons on the n-side, making the p-side positive and the n-side negative. This resembles the forward bias and creates the same diode current from equations 4 and 5. The excess majority charge carriers begin diffusing away from the junction. This creates diffusion current, called the photogeneration current (I PH ) that opposes the diode current. 2.4 Important characteristics of solar cells Two important characteristics of a solar cell are its open circuit voltage (V OC ) and short circuit current (I SC ). Under short circuit conditions, the charges are free to travel through the circuit and no build up bias is produced. The photogeneration current assumes a maximum since there is no opposing diode current. Because the minority carriers are produced from the EHP s, the photogeneration current is directly proportional to the intensity of the sunlight. Under direct sun conditions, the I SC is at its maximum. Under open circuit conditions there is a charge buildup on each side creating a diode current. The device reaches equilibrium when the diode current is equal and opposite to the photogeneration current. In order for the diode current, otherwise referred to as the internal or injection current, the internal potential barrier is lowered. This further demonstrates the forward bias characteristics. Figure 5 below demonstrates the short circuit and open circuit conditions. 5

6 Figure 5 Short Circuit Current Figure 6 Open Circuit Voltage Under illumination, the total current is given by the diode current minus the photogeneration current: I qv kt ( e ) I Ph = I 1 0 (6) Where I Ph is the photogeneration current. The typical current for a solar cell is around 1mA and the typical voltage for a silicon cell is about 0.5V. Figure 6 below shows the IV curve for a cell. 6

7 Figure 7 Berlin University of Technology, Institute of Electrical Power engineering, Renewable Energy Section The power output of the cell is the product of the current and voltage. A measure of the quality of a cell is given by the fill factor (ff). The fill factor is defined as the ratio of the maximum power to the product of the open circuit voltage and the short circuit current: I V M M ff = (7) I SCV OC Typical values of the fill factor range from If the IV curve were in the shape of a rectangle, the fill factor would be 1. The efficiency is a measure of the maximum power over the input power. P out η = (8) Pin Where P out is the maximum power point and P in is the power due to the photons incident on the cell, given by: ( hc λ) dλ E = N (9) ph The value of E with the sun perpendicular to a solar cell s surface is referred to as the solar constant. Its average value is approximately 1kW/m 2. The efficiency can then be rewritten as: ff I SCV E A OC η = (10) 7

8 2.5 Factors Affecting Efficiency Typical values for solar cell efficiencies are 10-15% for thin film cells, 15-20% for crystalline silicon cells, and 30% or more for concentrating systems (focus sunlight onto small area sun, up to 1000 sun concentration). The best theoretical values for efficiencies are 20-28% for normal cells. The reason for this low value is simply that not all of the energy reaching a solar cell from sunlight can be converted into electricity. About 25% of incoming photons have energies below the bandgap energy and cannot produce an EHP. About 30% of the photons will have too much energy and will either be re-emitted or wasted as heat. This accounts for a total of 55% of the energy that can t be used. Of the ~75% of absorbed photons, about 43% of the energy from absorbed photons is lost as heat. In addition to this, electrons can be lost due to recombination with in the semiconductor material. The extent to which this is a problem depends on the type and purity of the material. Without treating the cell, about 30% of incoming photons can be reflected off the surface. For this reason the surface is texturized in the shape of pyramids, maximizing the chance that a photon is reflected back into the cell. Antireflection (AR) coatings are also applied. The combination of both can result in reflection losses of less than 1%. Another problem is the natural resistance to electron flow. Large metal contacts on the surface of the cell can minimize this, but will block the incoming light. The contacts are therefore designed as a grid with conducting fingers. Research is also being applied to creating back only contacts as well as transparent contacts. Temperature can also greatly affect a solar cell s efficiency. The warmer the cell, the less it behaves as a semiconductor and the efficiency falls. 2.6 Types of Solar Cells (Reference Reading) Types of solar cells fall into three categories. Table 1 below shows the different types of cells. Crystalline Thin Film Other Crystalline Silicon (c-si) Gallium Arsenide (GaAs) and Alloys Amorphous Silicon (a-si) Thin film Silicon Copper Indium Diselenide (CIS) Cadmium Telluride (CdTe) Quantum dot solar cells Dye sensitized photochemical cells Polymer cells Photoelectrochemical Cells Crystalline silicon currently makes up about 86% of the photovoltaic market. The reason for this dominance is that the material, technology, and equipment come right out the electronics industry. Whatever is wasted is used in the PV industry. The 8

9 development of c-si cells is very energy intensive. It is therefore very expensive to process these cells and the technology is leaning toward the production of polycrystalline Si cells and thin film technologies. Polycrystalline silicon cells use less energy to produce. Molten Si is allowed to solidify under specific conditions. The solidified Si is then sliced into rectangles and then individual square cells. This process eliminates the time and energy intensive step of growing a single ingot and then slicing wafers. The end product leaves small crystalline silicon areas separated by grain boundaries. The grain boundaries decrease the efficiency of the cell. However, the benefit of lower energy consumption and cost make up for this loss. Gallium arsenide can be alloyed with indium, phosphorous, and aluminum to produce multijunction cells with very high efficiencies. In forming multiple junctions with decreasing bandgap energies, the incoming photons can be sifted through with the longer wavelength photons being absorbed at the bottom. Currently two junction devices are used for spacecraft with GaInP as the top layer and GaAs as the bottom. Research is being conducted to make a four-junction device boosting its efficiency to more than 40%. Thin film semiconductors are only a few microns thick and therefore use much less material than their crystalline counterparts. These materials are cheaper to manufacture and likely to lead solar energy into a competitive market. Thin films are made by depositing the semiconductor material directly onto a low cost substrate. Amorphous silicon makes up most of the remaining 14% of the PV market. Stable modules have efficiencies of 6-9%. The minimal material used and therefore the inexpensive price of modules account for this low efficiency. The p and n regions are made very thin with a thicker intrinsic layer between in order to lengthen the space charge region. To maximize light absorption and minimize recombination, the layers need to be thinner than that needed to absorb the light. Several layers are therefore stacked on top of each other. Germanium is added to each successive layer in order to decrease the band gap energy and therefore absorb wavelengths previously unabsorbed. Cadmium telluride is a newer thin film technology with immature manufacturing steps. With time it is thought to be the most promising thin film to meet the cost goals needed for PV to be a competitive market. Laboratory cell efficiencies are around 16% with module efficiencies between 6-9%. Some benefits to CdTe are its high absorption coefficient, minimal amount of material, only 1µm, and the 12 or more manufacturing steps that can be used to make the modules. CIS and its alloys is also a promising thin film material with laboratory efficiencies of 18% and module efficiencies greater than 11%. This product is currently on the market and boasts 20+ years of research and development. Some problems include immature manufacturing step, slow vacuum steps, and a more complex structure than the other thin films. Another type of thin film is thin film crystalline silicon in which the inexpensive amorphous silicon is combined with the more efficient crystalline silicon. This is a new technology that is in the experimental stages. Among the other category include quantum dot solar cells in which a nanocyrstalline CdSe semiconductor is embedded in the conductive polymer/c60 composite. This has the potential for low-cost, large-area production. Dye-sensitized photochemical cells have a dye sensitizer that absorbs light and generates EHP s in a 9

10 nanocrystalline titanium dioxide semiconductor layer. Only certain wavelengths can be absorbed but because the device is clear, research is being conducted to create a clear window that will absorb and convert UV light into energy. 3.0 Experimental Procedure 3.1 Overview In this experiment we will plot the IV curve for a solar cell, using the open circuit voltage and short circuit current for the limits. Data will be taken along the IV curve using a variable resistor. Next perform a linear regression line and determine the maximum power point. 3.2 Questions to answer before starting the lab: Read through the first three references above. Next go to the last reference from the Institute of Electrical Power Engineering, Berlin. Run through the simulations on series and parallel resistance, and temperature effects. What are your observations? Will the current be positive or negative? What values of current and voltage should you expect to measure? What values will you use for the photocurrent and the voltage from the diode equation? How will you determine the fill factor and the efficiency? What are the factors to affect Isc and Voc, how about temperature, is it a factor? 3.3 Equipment Solar cell Multimeters Variable resister Light source Light intensity meter 3.4 Schematic setup Figure 8 below gives the schematic setup for measuring the IV curve for a solar cell. Figure 8 10

11 3.5 Procedures 1. Set up the circuit from figure Set up the light source directly above the circuit. 3. Set the resistance to zero in order to measure the short circuit current. Record the current and the voltage. 4. Turn off the light and observe the effect of decreased illumination on the short circuit current. 5. Increase resistance until current is very close to zero. This corresponds to the open circuit voltage. Record the current and voltage. 6. Turn off the light and observe the effect of decreased illumination on the open circuit voltage. 7. Vary the resistance and take a few current and voltage measurements along the curve. a. To get a good fit of the I-V curve, you need to measure most of your points near the elbow of the I-V curve; b. The strategy here is to start with the short circuit condition, and increase resistance until the current falls a few percent, take a measurement, then repeat. c. When the current drops by 30%, then it passed the elbow of the I-V curve and only need a few more measurements 3.6 Questions to answer after completing the lab 1. Calculate the fill factor. 2. Calculate the efficiency of the cell. Does this seem reasonable? Why would your value be incorrect? (What is the E value used?) 3. Why is the voltage not equal to zero when measuring I SC? 11

What is the highest efficiency Solar Cell?

What is the highest efficiency Solar Cell? What is the highest efficiency Solar Cell? GT CRC Roof-Mounted PV System Largest single PV structure at the time of it s construction for the 1996 Olympic games Produced more than 1 billion watt hrs. of

More information

Key Questions ECE 340 Lecture 28 : Photodiodes

Key Questions ECE 340 Lecture 28 : Photodiodes Things you should know when you leave Key Questions ECE 340 Lecture 28 : Photodiodes Class Outline: How do the I-V characteristics change with illumination? How do solar cells operate? How do photodiodes

More information

Solar Cell Parameters and Equivalent Circuit

Solar Cell Parameters and Equivalent Circuit 9 Solar Cell Parameters and Equivalent Circuit 9.1 External solar cell parameters The main parameters that are used to characterise the performance of solar cells are the peak power P max, the short-circuit

More information

LEDs, Photodetectors and Solar Cells

LEDs, Photodetectors and Solar Cells LEDs, Photodetectors and Solar Cells Chapter 7 (Parker) ELEC 424 John Peeples Why the Interest in Photons? Answer: Momentum and Radiation High electrical current density destroys minute polysilicon and

More information

10/14/2009. Semiconductor basics pn junction Solar cell operation Design of silicon solar cell

10/14/2009. Semiconductor basics pn junction Solar cell operation Design of silicon solar cell PHOTOVOLTAICS Fundamentals PV FUNDAMENTALS Semiconductor basics pn junction Solar cell operation Design of silicon solar cell SEMICONDUCTOR BASICS Allowed energy bands Valence and conduction band Fermi

More information

10/27/2009 Reading: Chapter 10 of Hambley Basic Device Physics Handout (optional)

10/27/2009 Reading: Chapter 10 of Hambley Basic Device Physics Handout (optional) EE40 Lec 17 PN Junctions Prof. Nathan Cheung 10/27/2009 Reading: Chapter 10 of Hambley Basic Device Physics Handout (optional) Slide 1 PN Junctions Semiconductor Physics of pn junctions (for reference

More information

Photodiode: LECTURE-5

Photodiode: LECTURE-5 LECTURE-5 Photodiode: Photodiode consists of an intrinsic semiconductor sandwiched between two heavily doped p-type and n-type semiconductors as shown in Fig. 3.2.2. Sufficient reverse voltage is applied

More information

Investigation of Photovoltaic Properties of In:ZnO/SiO 2 /p- Si Thin Film Devices

Investigation of Photovoltaic Properties of In:ZnO/SiO 2 /p- Si Thin Film Devices Universities Research Journal 2011, Vol. 4, No. 4 Investigation of Photovoltaic Properties of In:ZnO/SiO 2 /p- Si Thin Film Devices Kay Thi Soe 1, Moht Moht Than 2 and Win Win Thar 3 Abstract This study

More information

CHAPTER-2 Photo Voltaic System - An Overview

CHAPTER-2 Photo Voltaic System - An Overview CHAPTER-2 Photo Voltaic System - An Overview 15 CHAPTER-2 PHOTO VOLTAIC SYSTEM -AN OVERVIEW 2.1 Introduction With the depletion of traditional energies and the increase in pollution and greenhouse gases

More information

Lecture 18: Photodetectors

Lecture 18: Photodetectors Lecture 18: Photodetectors Contents 1 Introduction 1 2 Photodetector principle 2 3 Photoconductor 4 4 Photodiodes 6 4.1 Heterojunction photodiode.................... 8 4.2 Metal-semiconductor photodiode................

More information

OPTOELECTRONIC and PHOTOVOLTAIC DEVICES

OPTOELECTRONIC and PHOTOVOLTAIC DEVICES OPTOELECTRONIC and PHOTOVOLTAIC DEVICES Outline 1. Introduction to the (semiconductor) physics: energy bands, charge carriers, semiconductors, p-n junction, materials, etc. 2. Light emitting diodes Light

More information

Intrinsic Semiconductor

Intrinsic Semiconductor Semiconductors Crystalline solid materials whose resistivities are values between those of conductors and insulators. Good electrical characteristics and feasible fabrication technology are some reasons

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica Analogue Electronics Paolo Colantonio A.A. 2015-16 Introduction: materials Conductors e.g. copper or aluminum have a cloud

More information

Introduction to Photovoltaics

Introduction to Photovoltaics Introduction to Photovoltaics PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo February 24, 2015 Only solar energy Of all the possible sources

More information

SILICON NANOWIRE HYBRID PHOTOVOLTAICS

SILICON NANOWIRE HYBRID PHOTOVOLTAICS SILICON NANOWIRE HYBRID PHOTOVOLTAICS Erik C. Garnett, Craig Peters, Mark Brongersma, Yi Cui and Mike McGehee Stanford Univeristy, Department of Materials Science, Stanford, CA, USA ABSTRACT Silicon nanowire

More information

Electronics The basics of semiconductor physics

Electronics The basics of semiconductor physics Electronics The basics of semiconductor physics Prof. Márta Rencz, Gábor Takács BME DED 17/09/2015 1 / 37 The basic properties of semiconductors Range of conductivity [Source: http://www.britannica.com]

More information

PHYSICAL ELECTRONICS(ECE3540) APPLICATIONS OF PHYSICAL ELECTRONICS PART I

PHYSICAL ELECTRONICS(ECE3540) APPLICATIONS OF PHYSICAL ELECTRONICS PART I PHYSICAL ELECTRONICS(ECE3540) APPLICATIONS OF PHYSICAL ELECTRONICS PART I Tennessee Technological University Monday, October 28, 2013 1 Introduction In the following slides, we will discuss the summary

More information

CHAPTER 5 CIRCUIT MODELING METHODOLOGY FOR THIN-FILM PHOTOVOLTAIC MODULES

CHAPTER 5 CIRCUIT MODELING METHODOLOGY FOR THIN-FILM PHOTOVOLTAIC MODULES 106 CHAPTER 5 CIRCUIT MODELING METHODOLOGY FOR THIN-FILM PHOTOVOLTAIC MODULES 5.1 INTRODUCTION In this Chapter, the constructional details of various thin-film modules required for modeling are given.

More information

Optical Amplifiers. Continued. Photonic Network By Dr. M H Zaidi

Optical Amplifiers. Continued. Photonic Network By Dr. M H Zaidi Optical Amplifiers Continued EDFA Multi Stage Designs 1st Active Stage Co-pumped 2nd Active Stage Counter-pumped Input Signal Er 3+ Doped Fiber Er 3+ Doped Fiber Output Signal Optical Isolator Optical

More information

CHAPTER 8 The PN Junction Diode

CHAPTER 8 The PN Junction Diode CHAPTER 8 The PN Junction Diode Consider the process by which the potential barrier of a PN junction is lowered when a forward bias voltage is applied, so holes and electrons can flow across the junction

More information

Simulation of silicon based thin-film solar cells. Copyright Crosslight Software Inc.

Simulation of silicon based thin-film solar cells. Copyright Crosslight Software Inc. Simulation of silicon based thin-film solar cells Copyright 1995-2008 Crosslight Software Inc. www.crosslight.com 1 Contents 2 Introduction Physical models & quantum tunneling Material properties Modeling

More information

Modelling and Analysis of Four-Junction Tendem Solar Cell in Different Environmental Conditions Mr. Biraju J. Trivedi 1 Prof. Surendra Kumar Sriwas 2

Modelling and Analysis of Four-Junction Tendem Solar Cell in Different Environmental Conditions Mr. Biraju J. Trivedi 1 Prof. Surendra Kumar Sriwas 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 08, 2015 ISSN (online): 2321-0613 Modelling and Analysis of Four-Junction Tendem Solar Cell in Different Environmental

More information

Electronic devices-i. Difference between conductors, insulators and semiconductors

Electronic devices-i. Difference between conductors, insulators and semiconductors Electronic devices-i Semiconductor Devices is one of the important and easy units in class XII CBSE Physics syllabus. It is easy to understand and learn. Generally the questions asked are simple. The unit

More information

CHAPTER 8 The PN Junction Diode

CHAPTER 8 The PN Junction Diode CHAPTER 8 The PN Junction Diode Consider the process by which the potential barrier of a PN junction is lowered when a forward bias voltage is applied, so holes and electrons can flow across the junction

More information

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices The Diode The diodes are rarely explicitly used in modern integrated circuits However, a MOS transistor contains at least two reverse biased

More information

EE Solar Cell Opreation. Y. Baghzouz Professor of Electrical Engineering

EE Solar Cell Opreation. Y. Baghzouz Professor of Electrical Engineering EE 495-695 4.2 Solar Cell Opreation Y. Baghzouz Professor of Electrical Engineering Characteristic Resistance The characteristic resistance of a solar cell is the output resistance of the solar cell at

More information

LAB V. LIGHT EMITTING DIODES

LAB V. LIGHT EMITTING DIODES LAB V. LIGHT EMITTING DIODES 1. OBJECTIVE In this lab you are to measure I-V characteristics of Infrared (IR), Red and Blue light emitting diodes (LEDs). The emission intensity as a function of the diode

More information

Semiconductor Devices Lecture 5, pn-junction Diode

Semiconductor Devices Lecture 5, pn-junction Diode Semiconductor Devices Lecture 5, pn-junction Diode Content Contact potential Space charge region, Electric Field, depletion depth Current-Voltage characteristic Depletion layer capacitance Diffusion capacitance

More information

Lecture 2 p-n junction Diode characteristics. By Asst. Prof Dr. Jassim K. Hmood

Lecture 2 p-n junction Diode characteristics. By Asst. Prof Dr. Jassim K. Hmood Electronic I Lecture 2 p-n junction Diode characteristics By Asst. Prof Dr. Jassim K. Hmood THE p-n JUNCTION DIODE The pn junction diode is formed by fabrication of a p-type semiconductor region in intimate

More information

NAME: Last First Signature

NAME: Last First Signature UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 130: IC Devices Spring 2003 FINAL EXAMINATION NAME: Last First Signature STUDENT

More information

CHAPTER 3 PHOTOVOLTAIC SYSTEM MODEL WITH CHARGE CONTROLLERS

CHAPTER 3 PHOTOVOLTAIC SYSTEM MODEL WITH CHARGE CONTROLLERS 34 CHAPTER 3 PHOTOVOLTAIC SYSTEM MODEL WITH CHARGE CONTROLLERS Solar photovoltaics are used for the direct conversion of solar energy into electrical energy by means of the photovoltaic effect, that is,

More information

Lab VIII Photodetectors ECE 476

Lab VIII Photodetectors ECE 476 Lab VIII Photodetectors ECE 476 I. Purpose The electrical and optical properties of various photodetectors will be investigated. II. Background Photodiode A photodiode is a standard diode packaged so that

More information

Chap14. Photodiode Detectors

Chap14. Photodiode Detectors Chap14. Photodiode Detectors Mohammad Ali Mansouri-Birjandi mansouri@ece.usb.ac.ir mamansouri@yahoo.com Faculty of Electrical and Computer Engineering University of Sistan and Baluchestan (USB) Design

More information

FLATE Hillsborough Community College - Brandon (813)

FLATE Hillsborough Community College - Brandon (813) The Florida Advanced Technological Education (FLATE) Center wishes to make available, for educational and noncommercial purposes only, materials relevant to the EST1830 Introduction to Alternative/Renewable

More information

Downloaded from

Downloaded from SOLID AND SEMICONDUCTOR DEVICES (EASY AND SCORING TOPIC) 1. Distinction of metals, semiconductor and insulator on the basis of Energy band of Solids. 2. Types of Semiconductor. 3. PN Junction formation

More information

CHAPTER 8 The pn Junction Diode

CHAPTER 8 The pn Junction Diode CHAPTER 8 The pn Junction Diode Consider the process by which the potential barrier of a pn junction is lowered when a forward bias voltage is applied, so holes and electrons can flow across the junction

More information

Modelling and simulation of PV module for different irradiation levels Balachander. K Department of EEE, Karpagam University, Coimbatore.

Modelling and simulation of PV module for different irradiation levels Balachander. K Department of EEE, Karpagam University, Coimbatore. 6798 Available online at www.elixirpublishers.com (Elixir International Journal) Electrical Engineering Elixir Elec. Engg. 43 (2012) 6798-6802 Modelling and simulation of PV module for different irradiation

More information

EC T34 ELECTRONIC DEVICES AND CIRCUITS

EC T34 ELECTRONIC DEVICES AND CIRCUITS RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY PONDY-CUDDALORE MAIN ROAD, KIRUMAMPAKKAM-PUDUCHERRY DEPARTMENT OF ECE EC T34 ELECTRONIC DEVICES AND CIRCUITS II YEAR Mr.L.ARUNJEEVA., AP/ECE 1 PN JUNCTION

More information

IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Lecture-4

IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Lecture-4 2 P-n Lecture-4 20 Introduction: If a junction is formed between a p-type and a n-type semiconductor this combination is known as p-n junction diode and has the properties of a rectifier 21 Formation of

More information

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34 CONTENTS Preface x Prologue Semiconductors and the Integrated Circuit xvii PART I Semiconductor Material Properties CHAPTER 1 The Crystal Structure of Solids 1 1.0 Preview 1 1.1 Semiconductor Materials

More information

Chapter 4. Impact of Dust on Solar PV Module: Experimental Analysis

Chapter 4. Impact of Dust on Solar PV Module: Experimental Analysis Chapter 4 Impact of Dust on Solar PV Module: Experimental Analysis 53 CHAPTER 4 IMPACT OF DUST ON SOLAR PV MODULE: EXPERIMENTAL ANALYSIS 4.1 INTRODUCTION: On a bright, sunny day the sun shines approximately

More information

UNIT IX ELECTRONIC DEVICES

UNIT IX ELECTRONIC DEVICES UNT X ELECTRONC DECES Weightage Marks : 07 Semiconductors Semiconductors diode-- characteristics in forward and reverse bias, diode as rectifier. - characteristics of LED, Photodiodes, solarcell and Zener

More information

Laboratory No. 01: Small & Large Signal Diode Circuits. Electrical Enginnering Departement. By: Dr. Awad Al-Zaben. Instructor: Eng.

Laboratory No. 01: Small & Large Signal Diode Circuits. Electrical Enginnering Departement. By: Dr. Awad Al-Zaben. Instructor: Eng. Laboratory No. 01: Small & Large Signal Diode Circuits Electrical Enginnering Departement By: Dr. Awad Al-Zaben Instructor: Eng. Tamer Shahta Electronics Laboratory EE 3191 February 23, 2014 I. OBJECTIVES

More information

LAB V. LIGHT EMITTING DIODES

LAB V. LIGHT EMITTING DIODES LAB V. LIGHT EMITTING DIODES 1. OBJECTIVE In this lab you will measure the I-V characteristics of Infrared (IR), Red and Blue light emitting diodes (LEDs). Using a photodetector, the emission intensity

More information

Section 2.3 Bipolar junction transistors - BJTs

Section 2.3 Bipolar junction transistors - BJTs Section 2.3 Bipolar junction transistors - BJTs Single junction devices, such as p-n and Schottkty diodes can be used to obtain rectifying I-V characteristics, and to form electronic switching circuits

More information

Electronic Devices 1. Current flowing in each of the following circuits A and respectively are: (Circuit 1) (Circuit 2) 1) 1A, 2A 2) 2A, 1A 3) 4A, 2A 4) 2A, 4A 2. Among the following one statement is not

More information

Wish you all Very Happy New Year

Wish you all Very Happy New Year Wish you all Very Happy New Year Course: Basic Electronics (EC21101) Course Instructors: Prof. Goutam Saha (Sec. 2), Prof. Shailendra K. Varshney (Sec. 1), Prof. Sudip Nag (Sec. 3 ), Prof. Debashish Sen

More information

HipoCIGS: enamelled steel as substrate for thin film solar cells

HipoCIGS: enamelled steel as substrate for thin film solar cells HipoCIGS: enamelled steel as substrate for thin film solar cells Lecturer D. Jacobs*, Author S. Efimenko, Co-author C. Schlegel *:PRINCE Belgium bvba, Pathoekeweg 116, 8000 Brugge, Belgium, djacobs@princecorp.com

More information

OFCS OPTICAL DETECTORS 11/9/2014 LECTURES 1

OFCS OPTICAL DETECTORS 11/9/2014 LECTURES 1 OFCS OPTICAL DETECTORS 11/9/2014 LECTURES 1 1-Defintion & Mechanisms of photodetection It is a device that converts the incident light into electrical current External photoelectric effect: Electrons are

More information

FABRICATION AND CHARACTERIZATION FOR InAs QUANTUM DOTS IN GaAs SOLAR CELLS.

FABRICATION AND CHARACTERIZATION FOR InAs QUANTUM DOTS IN GaAs SOLAR CELLS. FABRICATION AND CHARACTERIZATION FOR InAs QUANTUM DOTS IN GaAs SOLAR CELLS. REU program, University at New Mexico Center for High Technology Materials August, 2011 Student: Thao Nguyen Mentor: Prof. Luke

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

2nd Asian Physics Olympiad

2nd Asian Physics Olympiad 2nd Asian Physics Olympiad TAIPEI, TAIWAN Experimental Competition Thursday, April 26, 21 Time Available : 5 hours Read This First: 1. Use only the pen provided. 2. Use only the front side of the answer

More information

UNIT-III SOURCES AND DETECTORS. According to the shape of the band gap as a function of the momentum, semiconductors are classified as

UNIT-III SOURCES AND DETECTORS. According to the shape of the band gap as a function of the momentum, semiconductors are classified as UNIT-III SOURCES AND DETECTORS DIRECT AND INDIRECT BAND GAP SEMICONDUCTORS: According to the shape of the band gap as a function of the momentum, semiconductors are classified as 1. Direct band gap semiconductors

More information

Study and Measurement of the Main Parameters of a Laser quadrant Detector

Study and Measurement of the Main Parameters of a Laser quadrant Detector Cairo University National Institute of Laser Enhanced Sciences Laser Sciences and Interactions Study and Measurement of the Main Parameters of a Laser quadrant Detector By Eng. Mohamed Abd-Elfattah Abd-Elazim

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 1 (CONT D) DIODES

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 1 (CONT D) DIODES KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 1 (CONT D) DIODES Most of the content is from the textbook: Electronic devices and circuit theory, Robert L.

More information

I D = I so e I. where: = constant T = junction temperature [K] I so = inverse saturating current I = photovoltaic current

I D = I so e I. where: = constant T = junction temperature [K] I so = inverse saturating current I = photovoltaic current H7. Photovoltaics: Solar Power I. INTRODUCTION The sun is practically an endless source of energy. Most of the energy used in the history of mankind originated from the sun (coal, petroleum, etc.). The

More information

EXPERIMENT 10: SCHOTTKY DIODE CHARACTERISTICS

EXPERIMENT 10: SCHOTTKY DIODE CHARACTERISTICS EXPERIMENT 10: SCHOTTKY DIODE CHARACTERISTICS AIM: To plot forward and reverse characteristics of Schottky diode (Metal Semiconductor junction) APPARATUS: D.C. Supply (0 15 V), current limiting resistor

More information

Electronics I - Physics of Bipolar Transistors

Electronics I - Physics of Bipolar Transistors Chapter 5 Electronics I - Physics of Bipolar Transistors B E N+ P N- C B E C Fall 2017 claudio talarico 1 source: Sedra & Smith Thin Base Types of Bipolar Transistors n+ p n- Figure - A simplified structure

More information

AC : INCORPORATION OF THE DYE SENSITIZED SOLAR CELL RESEARCH RESULTS INTO SOLAR CELLS AND MODULES COURSE

AC : INCORPORATION OF THE DYE SENSITIZED SOLAR CELL RESEARCH RESULTS INTO SOLAR CELLS AND MODULES COURSE AC 2011-1810: INCORPORATION OF THE DYE SENSITIZED SOLAR CELL RESEARCH RESULTS INTO SOLAR CELLS AND MODULES COURSE Lakshmi Munukutla, Arizona State University, Polytechnic campus Lakshmi Munukutla received

More information

6. Bipolar Diode. Owing to this one-direction conductance, current-voltage characteristic of p-n diode has a rectifying shape shown in Fig. 2.

6. Bipolar Diode. Owing to this one-direction conductance, current-voltage characteristic of p-n diode has a rectifying shape shown in Fig. 2. 33 6. Bipolar Diode 6.1. Objectives - to experimentally observe temperature dependence of the current flowing in p-n junction silicon and germanium diodes; - to measure current-voltage characteristics

More information

semiconductor p-n junction Potential difference across the depletion region is called the built-in potential barrier, or built-in voltage:

semiconductor p-n junction Potential difference across the depletion region is called the built-in potential barrier, or built-in voltage: Chapter four The Equilibrium pn Junction The Electric field will create a force that will stop the diffusion of carriers reaches thermal equilibrium condition Potential difference across the depletion

More information

Optical Receivers Theory and Operation

Optical Receivers Theory and Operation Optical Receivers Theory and Operation Photo Detectors Optical receivers convert optical signal (light) to electrical signal (current/voltage) Hence referred O/E Converter Photodetector is the fundamental

More information

Performance and Loss Analyses of High-Efficiency CBD-ZnS/Cu(In 1-x Ga x )Se 2 Thin-Film Solar Cells

Performance and Loss Analyses of High-Efficiency CBD-ZnS/Cu(In 1-x Ga x )Se 2 Thin-Film Solar Cells Performance and Loss Analyses of High-Efficiency CBD-ZnS/Cu(In 1-x Ga x )Se 2 Thin-Film Solar Cells Alexei Pudov 1, James Sites 1, Tokio Nakada 2 1 Department of Physics, Colorado State University, Fort

More information

Detectors for Optical Communications

Detectors for Optical Communications Optical Communications: Circuits, Systems and Devices Chapter 3: Optical Devices for Optical Communications lecturer: Dr. Ali Fotowat Ahmady Sep 2012 Sharif University of Technology 1 Photo All detectors

More information

Design and Performance of InGaAs/GaAs Based Tandem Solar Cells

Design and Performance of InGaAs/GaAs Based Tandem Solar Cells American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-5, Issue-11, pp-64-69 www.ajer.org Research Paper Open Access Design and Performance of InGaAs/GaAs Based Tandem

More information

Problem 4 Consider a GaAs p-n + junction LED with the following parameters at 300 K: Electron diusion coecient, D n = 25 cm 2 =s Hole diusion coecient

Problem 4 Consider a GaAs p-n + junction LED with the following parameters at 300 K: Electron diusion coecient, D n = 25 cm 2 =s Hole diusion coecient Prof. Jasprit Singh Fall 2001 EECS 320 Homework 7 This homework is due on November 8. Problem 1 An optical power density of 1W/cm 2 is incident on a GaAs sample. The photon energy is 2.0 ev and there is

More information

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc.

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc. Optodevice Data Book ODE-408-001I Rev.9 Mar. 2003 Opnext Japan, Inc. Section 1 Operating Principles 1.1 Operating Principles of Laser Diodes (LDs) and Infrared Emitting Diodes (IREDs) 1.1.1 Emitting Principles

More information

Reference: Photovoltaic Systems, p

Reference: Photovoltaic Systems, p PV systems are comprised of building blocks of cells, modules and arrays to form a DC power generating unit with specified electrical output. Reference: Photovoltaic Systems, p. 115-118 Reference: Photovoltaic

More information

1 Semiconductor-Photon Interaction

1 Semiconductor-Photon Interaction 1 SEMICONDUCTOR-PHOTON INTERACTION 1 1 Semiconductor-Photon Interaction Absorption: photo-detectors, solar cells, radiation sensors. Radiative transitions: light emitting diodes, displays. Stimulated emission:

More information

EE/COE 152: Basic Electronics. Lecture 3. A.S Agbemenu. https://sites.google.com/site/agbemenu/courses/ee-coe-152

EE/COE 152: Basic Electronics. Lecture 3. A.S Agbemenu. https://sites.google.com/site/agbemenu/courses/ee-coe-152 EE/COE 152: Basic Electronics Lecture 3 A.S Agbemenu https://sites.google.com/site/agbemenu/courses/ee-coe-152 Books: Microelcetronic Circuit Design (Jaeger/Blalock) Microelectronic Circuits (Sedra/Smith)

More information

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Current Transport: Diffusion, Thermionic Emission & Tunneling For Diffusion current, the depletion layer is

More information

COMPARISON OF DIFFERENT COMMERCIAL SOLAR

COMPARISON OF DIFFERENT COMMERCIAL SOLAR WU YUANYUAN COMPARISON OF DIFFERENT COMMERCIAL SOLAR PHOTOVOLTAIC MODULES Master of science thesis Examiner: Professor Seppo Valkealahti the examiner and topic of the thesis were approved by the Council

More information

An Analysis of a Photovoltaic Panel Model

An Analysis of a Photovoltaic Panel Model An Analysis of a Photovoltaic Panel Model Comparison Between Measurements and Analytical Models Ciprian Nemes, Florin Munteanu Faculty of Electrical Engineering Technical University of Iasi Iasi, Romania

More information

PERFORMANCE EVALUATION OF POLYCRYSTALLINE SOLAR PHOTOVOLTAIC MODULE IN WEATHER CONDITIONS OF MAIDUGURI, NIGERIA

PERFORMANCE EVALUATION OF POLYCRYSTALLINE SOLAR PHOTOVOLTAIC MODULE IN WEATHER CONDITIONS OF MAIDUGURI, NIGERIA Arid Zone Journal of Engineering, Technology and Environment. August, 2013; Vol. 9, 69-81 PERFORMANCE EVALUATION OF POLYCRYSTALLINE SOLAR PHOTOVOLTAIC MODULE IN WEATHER CONDITIONS OF MAIDUGURI, NIGERIA

More information

Simulation of multi-junction compound solar cells. Copyright 2009 Crosslight Software Inc.

Simulation of multi-junction compound solar cells. Copyright 2009 Crosslight Software Inc. Simulation of multi-junction compound solar cells Copyright 2009 Crosslight Software Inc. www.crosslight.com 1 Introduction 2 Multi-junction (MJ) solar cells space (e.g. NASA Deep Space 1) & terrestrial

More information

Thin film PV Technologies III- V PV Technology

Thin film PV Technologies III- V PV Technology Thin film PV Technologies III- V PV Technology Week 5.1 Arno Smets ` (Source: NASA) III V PV Technology Semiconductor Materials III- V semiconductors: GaAs: GaP: InP: InAs: GaInAs: GaInP: AlGaInAs: AlGaInP:

More information

Microelectronic Circuits, Kyung Hee Univ. Spring, Bipolar Junction Transistors

Microelectronic Circuits, Kyung Hee Univ. Spring, Bipolar Junction Transistors Bipolar Junction Transistors 1 Introduction physical structure of the bipolar transistor and how it works How the voltage between two terminals of the transistor controls the current that flows through

More information

LED lecture. Wei Chih Wang University of Washington

LED lecture. Wei Chih Wang University of Washington LED lecture Wei Chih Wang University of Washington Linear and Nonlinear electronics current voltage Vaccum tube (i.e. type 2A3) voltage Thermistor (large negative temperature coefficient of resistivity)

More information

Physics of Waveguide Photodetectors with Integrated Amplification

Physics of Waveguide Photodetectors with Integrated Amplification Physics of Waveguide Photodetectors with Integrated Amplification J. Piprek, D. Lasaosa, D. Pasquariello, and J. E. Bowers Electrical and Computer Engineering Department University of California, Santa

More information

Chapter 3 OPTICAL SOURCES AND DETECTORS

Chapter 3 OPTICAL SOURCES AND DETECTORS Chapter 3 OPTICAL SOURCES AND DETECTORS 3. Optical sources and Detectors 3.1 Introduction: The success of light wave communications and optical fiber sensors is due to the result of two technological breakthroughs.

More information

Silicon Nano Wires Solar cell

Silicon Nano Wires Solar cell The American University in Cairo School of Sciences and Engineering Physics Department Silicon Nano Wires Solar cell A Thesis in Physics by Sara Hussein Abdel Razek Mohamed Submitted in Partial Fulfillment

More information

UNIT III. By Ajay Kumar Gautam Asst. Prof. Electronics & Communication Engineering Dev Bhoomi Institute of Technology & Engineering, Dehradun

UNIT III. By Ajay Kumar Gautam Asst. Prof. Electronics & Communication Engineering Dev Bhoomi Institute of Technology & Engineering, Dehradun UNIT III By Ajay Kumar Gautam Asst. Prof. Electronics & Communication Engineering Dev Bhoomi Institute of Technology & Engineering, Dehradun SYLLABUS Optical Absorption in semiconductors, Types of Photo

More information

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a)

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a) Optical Sources (a) Optical Sources (b) The main light sources used with fibre optic systems are: Light-emitting diodes (LEDs) Semiconductor lasers (diode lasers) Fibre laser and other compact solid-state

More information

(Refer Slide Time: 02:05)

(Refer Slide Time: 02:05) Electronics for Analog Signal Processing - I Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Lecture 27 Construction of a MOSFET (Refer Slide Time:

More information

CCD Analogy BUCKETS (PIXELS) HORIZONTAL CONVEYOR BELT (SERIAL REGISTER) VERTICAL CONVEYOR BELTS (CCD COLUMNS) RAIN (PHOTONS)

CCD Analogy BUCKETS (PIXELS) HORIZONTAL CONVEYOR BELT (SERIAL REGISTER) VERTICAL CONVEYOR BELTS (CCD COLUMNS) RAIN (PHOTONS) CCD Analogy RAIN (PHOTONS) VERTICAL CONVEYOR BELTS (CCD COLUMNS) BUCKETS (PIXELS) HORIZONTAL CONVEYOR BELT (SERIAL REGISTER) MEASURING CYLINDER (OUTPUT AMPLIFIER) Exposure finished, buckets now contain

More information

Optical Fiber Communication Lecture 11 Detectors

Optical Fiber Communication Lecture 11 Detectors Optical Fiber Communication Lecture 11 Detectors Warriors of the Net Detector Technologies MSM (Metal Semiconductor Metal) PIN Layer Structure Semiinsulating GaAs Contact InGaAsP p 5x10 18 Absorption InGaAs

More information

NAVAL POSTGRADUATE SCHOOL THESIS

NAVAL POSTGRADUATE SCHOOL THESIS NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS MODELING RADIATION EFFECTS ON A TRIPLE JUNCTION SOLAR CELL USING SILVACO ATLAS by Daniel Schiavo June 2012 Thesis Advisor: Second Reader: Sherif Michael

More information

Chapter 6. Silicon-Germanium Technologies

Chapter 6. Silicon-Germanium Technologies Chapter 6 licon-germanium Technologies 6.0 Introduction The design of bipolar transistors requires trade-offs between a number of parameters. To achieve a fast base transit time, hence achieving a high

More information

1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is

1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is 1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is A [ ]) the diode is open. B [ ]) the diode is shorted to ground. C [v]) the diode is

More information

Resonant Tunneling Device. Kalpesh Raval

Resonant Tunneling Device. Kalpesh Raval Resonant Tunneling Device Kalpesh Raval Outline Diode basics History of Tunnel diode RTD Characteristics & Operation Tunneling Requirements Various Heterostructures Fabrication Technique Challenges Application

More information

Quantum Condensed Matter Physics Lecture 16

Quantum Condensed Matter Physics Lecture 16 Quantum Condensed Matter Physics Lecture 16 David Ritchie QCMP Lent/Easter 2018 http://www.sp.phy.cam.ac.uk/drp2/home 16.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

NAVAL POSTGRADUATE SCHOOL THESIS

NAVAL POSTGRADUATE SCHOOL THESIS NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS QUANTUM TUNNELING MODEL OF A P-N JUNCTION IN SILVACO by Jeffrey Lavery September 2008 Thesis Advisor: Second Reader: Sherif Michael Todd Weatherford

More information

Solar Cell I-V Characteristics

Solar Cell I-V Characteristics Chapter 3 Solar Cell I-V Characteristics It is well known that the behaviour of a PhotoVoltaic PV) System is greatly influenced by factors such as the solar irradiance availability and distribution and

More information

Electronic Circuits I. Instructor: Dr. Alaa Mahmoud

Electronic Circuits I. Instructor: Dr. Alaa Mahmoud Electronic Circuits I Instructor: Dr. Alaa Mahmoud alaa_y_emam@hotmail.com Chapter 27 Diode and diode application Outline: Semiconductor Materials The P-N Junction Diode Biasing P-N Junction Volt-Ampere

More information

Luminous Equivalent of Radiation

Luminous Equivalent of Radiation Intensity vs λ Luminous Equivalent of Radiation When the spectral power (p(λ) for GaP-ZnO diode has a peak at 0.69µm) is combined with the eye-sensitivity curve a peak response at 0.65µm is obtained with

More information

Chapter 14 Semiconductor Electronics Materials Devices And Simple Circuits

Chapter 14 Semiconductor Electronics Materials Devices And Simple Circuits Class XII Chapter 14 Semiconductor Electronics Materials Devices And Simple Circuits Physics Question 14.1: In an n-type silicon, which of the following statement is true: (a) Electrons are majority carriers

More information

Grid Connected photovoltaic system based on Chain cell converter Using Simulink

Grid Connected photovoltaic system based on Chain cell converter Using Simulink Grid Connected photovoltaic system based on Chain cell converter Using Simulink Problem statement To prove Chain cell converter performance superior when compared with the traditional Pulse width modulation

More information

SEMICONDUCTOR EECTRONICS MATERIAS, DEVICES AND SIMPE CIRCUITS Important Points: 1. In semiconductors Valence band is almost filled and the conduction band is almost empty. The energy gap is very small

More information

MOSFET short channel effects

MOSFET short channel effects MOSFET short channel effects overview Five different short channel effects can be distinguished: velocity saturation drain induced barrier lowering (DIBL) impact ionization surface scattering hot electrons

More information