SENSOR LESS VOLTAGE CONTROL OF CHB MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR WITH ONE DC SOURCE PER EACH PHASE

Size: px
Start display at page:

Download "SENSOR LESS VOLTAGE CONTROL OF CHB MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR WITH ONE DC SOURCE PER EACH PHASE"

Transcription

1 Volume 120 No , ISSN: (on-line version) url: SENSOR LESS VOLTAGE CONTROL OF CHB MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR WITH ONE DC SOURCE PER EACH PHASE G. V. V. Nagaraju 1, G. Sambasiva Rao 2, CH Rami Reddy 3 1 Department of Electrical & Electronics Engineering, Acharya Nagarjuna University, Guntur, India 2 Department of Electrical & Electronics Engineering, RVR & JC college of Engineering, Guntur, India 3 Department of Electrical & Electronics Engineering, Nalanda Institute of Engineering & Technology, Guntur, India 1 nagaraju006@gmail.com, 2 sambasiva.gudapati@gmail.com, 3 crreddy229@gmail.com. June 20, 2018 Abstract In this paper a single DC source per phase cascaded h bridge (CHB) three phase five level inverter fed induction motor with minimum number of switches and a single capacitor is proposed. Maximum all available switching

2 states are evaluated and a sensor less voltage regulating technique is suggested which controls the second bus voltage as half of the applied single DC voltage source. Voltage levels at the output are zero, the voltage across the capacitor and voltage of DC voltage source. The switching method is mixed with a simple voltage balancing technique which can be possible to implement even with small, simple microcontrollers and Simulation results exhibit the dynamic performance of this method in controlling the second bus capacitor voltage. The low harmonic desired value of five level voltage is regulated by the voltage across the capacitor. Keywords:Three phase CHB inverter; Single DC voltage source; Sensor less voltage regulating technique; Regulating capacitor; Induction motor load. 1 INTRODUCTION The world power demand in the energy market leads to redesign of power converters. The complications with the two level inverter topology are low efficiency and high power losses, which leads to the development of Multi level inverters (MLI). Now a days the use of multilevel inverters is increasing due their advantages and attraction by industries. MLI produces a number of voltage levels at output with the use of many switches with different configurations and DC links, so that the output quasi sine wave has low harmonic distortion [1-3]. The researchers introduce so many types of MLI, among CHB and Neutral point clamped (NPC) inverters are the best ones [4-7]. NPC inverters are finest ones which are attracted by many industries, and provides common DC bus for the application of three phase loads [8]. The CHB inverters have interesting structures and it provides more levels for high power applications, but suffers with many separated DC supplies [9]. Many of the MLI are facing the above mentioned problem [10-20]. Freshly, an attractive structure is designed with the modification of the flying capacitor (FC) inverter, but, suffering with separate voltage ratings and switching frequency [15-17, 21-27]. With the advantages of h bridge inverters a single DC source three phases MLI is designed in Fig

3 [28], which has two cells, one cell is connected to DC source and next cell is connected to a charging capacitor. So many studies are implemented for balancing the capacitor voltage for different loads [29-34]. To track the voltage of the source and capacitor it needs a voltage sensor In this paper a new CHB sensor three less inverter fed by induction motor is proposed for generating three phase five level output with single DC source per phase and a single capacitor phase. In each phase when the capacitor is in series to the source and load, it will charge upto half of the source voltage. When it is in series with load the energy is discharged through the load. It has the drawback of reducing voltage levels from seven levels to five levels, but has an advantage of removing sensors at DC source and capacitor. 2 FIVE LEVEL THREE PHASE CHB INVERTER The block diagram of the three phase CHB inverter is presented in Fig.1. It has three single phase CHB inverters, each one is fed by one DC source and one capacitor. Each inverter will act as a single phase CHB inverter, but when connected to induction motor they has a phase difference of 120 degrees. Each one has eight switches and two H- bridge cells in which one cell is connected to supply DC voltage source and other is connected to storage capacitor shown in Fig.2. The voltage across capacitor should be managed as half of the applied voltage source. If the source voltage Vdc is 2E, then the capacitor voltage Vc was E. In the fast published works, the CHB inverter is employed as a seven level inverter with distinct modulation technique, but it is facing voltage balancing problem [32]. But in this paper, we are presenting a sensor less voltage regulating technique which can produce five level output. The switching states of five level voltage waveforms are indexed in the Table. I. Due to no effect on charging and discharging of capacitor voltage some switching positions which produce zero at voltage output are not considered. These switching states are used for reducing the frequency of the inverter. From the switching states listed in Table. I, with paths

4 2, 3, 5 & 6 we can analyze whether the capacitor is charging or discharging. With paths 2 & 6, the capacitor is in series with the DC voltage source and load, hence the capacitor would charge up to E and delivers power to a load. In the sequence 3 & 5 the capacitor is only connected to load so it will discharges power to the load. By introducing the voltage balancing technique into switching techniques, the controller structure gets simple which can be easy to implement by using cheap microcontrollers. The charging and discharging effects of a capacitor after introducing voltage balancing techniques into switching techniques are listed in Table. I Figure 1: Block diagram of the three phase CHB five level inverter fed Induction motor 3 SENSOR-LESS VOLTAGE REGULATING TECHNIQUE From Table. I, it is well known that the capacitor may be charged or discharged in any one half cycle, But to maintain the capacitor voltage fixed, the switching technique of the capacitor is designed in such a way that it should be charged during the positive half cycle and discharged in the negative half cycle. Due to switching technique of capacitor and output waveform frequency the

5 Figure 2: Single DC source multilevel inverter R Phase

6 capacitor charge is increases to half of Vdc supply. The capacitor charge increases when it is connected in series with the load and Vdc source, the charging states of capacitor are 2 and 6, and the load voltage is E. These charging and discharging states are mathematically represented in the equation (1) If the primary source voltage Vdc is 2E, to produce the desired load voltage the charging capacitor voltage Vc must be E. The charging time and discharging time of the capacitor will matain the capacitor voltagevc to E. Hence, to have equivalent charging time and discharging times, in the charging state 2 the capacitor is connected in series with the voltage source in the positive half cycle and from switching state 5 the capacitor is discharged in the negative half cycle by connecting in series with the load. It should be known that the capacitor charging and discharging depends on the type of load only, but not on the output frequency or switching frequency. The type of load connected will directly affect the size of the capacitor. The self regulating voltage procedure is mathematically proved with energy storage relations of the capacitor. The output voltage and current waveforms of a five level CHB inverter is shown in Fig.2. Mathematically the output voltage and current waveforms can be written as an equation (2) and (3) Where Vm, Im and are the maximum value of voltage, current and phase angle between voltage and current. The load current flowing through capacitor can be written as Where I, V, q and U are the current flowing through the capacitor, the voltage across the capacitor, the charge on capacitor plates and energy stored in the capacitor respectively. From equations (3) and (4) the charging energy of the capacitor can be written as

7 7 4085

8 8 4086

9 In the same way the discharging energy of the capacitor can be written as From equation (5) and (6), we can observe that the output voltage is symmetric about positive and negative half. Hence we can assume an equation (7) as The energy stored in positive half cycle and negative half cycles are same but has opposite in polarity From equation (8) the energy stored or discharged by the capacitor is balanced and constant and also it keeps the capacitor output voltage constant irrespective of all conditions. For preparing the hardware setup the sensor less voltage regulating technique is integrated with modulation technique. The Multi carrier switching technique is used as modulation technique [17]. For a five level inverter PWM scheme is implemented with four carrier waveforms (Cr1, Cr2, Cr3, and Cr4) and reference sine wave are shown in Fig

10 Figure 3: Five-level PWM scheme using four level shifted carrier waves Figure 4: Proposed sensor-less voltage regulating approach integrated into switching technique

11 The four carrier waves are chipped vertically for modulating the reference sine wave. The firing pulses related to Table.I are produced after comparing the carrier waves with the reference waveform. The algorithms for producing the firing pulses are presented in Fig.4. This algorithm produces the five level output after seting the capacitor voltage at a currect value without any feedback sensor. This technique does not depend on the type of the system model (e.g. average modelling), modulation index, feedback sensors, grid frequency and switching frequency. It can operate the system voltage to any arbitrary value and also at varying DC source conditions. 4 SIMULATION RESULTS AND DISCUSSION The CHB inverter depicted in Fig.1 is simulated with Matlab/ Simulink, the results shows its performance in standalone mode with induction motor as a load. We can use the standalone inverters as power supply units for motor drives. The simulation parameters of the test system are listed in Table. II. To evaluate the behavior of the proposed method induction motor load is connected to the inverter. When the capacitor is connected with the source and induction motor capacitor voltage starts rising and it reaches the desired value which is half of the Vdc value within 20 cycles. From Fig.5, when the source voltage Vdc is 200 V, the capacitor voltagevc starts increasing and tracks the desired value which is half of the source voltage is 100 V. To observe the changes in the voltage and currents, in Fig.5, the corresponding waveforms are captured. The skyrocket of the three phase multilevel output voltage of the proposed converter is shown in Fig.6. And its zoom is represented in Fig.7. These results, which show that when the frequency of switching is low, then switching pulses are visualized. The load current and its harmonic spectrum without filters are shown in the Fig.8. Due to high starting torque of induction motor, initially it draws more current and after some time it will come to steady state. The symmetrical five level balanced voltage will regulate the voltage of the second bus. The speed and torque waveforms are

12 Figure 5: Voltage across the capacitor voltage Figure 6: Output voltage of the proposed CHB three phase inverter Figure 7: Zoomed waveform of the output voltage of the proposed CHB three phase inverter

13 Figure 8: (a) Load current of inverter for induction motor load (b) THD spectrum of load current in R phase shown in Fig.9. Which shows that the induction motor starting torque is 12 times the rated torque starting. Figure 9: Speed and torque waveforms of induction motor with proposed converter

14 5 CONCLUSION In this paper a new sensor less voltage controlling technique is suggested for the multilevel inverter fed induction motor with single DC source and a capacitor for each phase. The capacitor is charged in the second bus up to half of source voltage, when it is connected to the DC source and an induction motor. Without having any feedback from DC links and loads it will provide five level output voltage. By integrating it with the switching technique industrial products are implemented with a very less number of switches and one DC source and capacitor per phase. The demerits of diode clamped and flying capacitor inverters like capacitor voltage balancing, isolated DC sources are eliminated by this converter. This method is simulated in Matlab, the results shows the good dynamic performance of this method for induction motor load. The power quality is improved. References [1] L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, and M. A. M. Prats, The age of multilevel converters arrives, IEEE Ind. Electron. Mag., vol. 2, pp , [2] H. Abu-Rub, M. Malinowski, and K. Al-Haddad, Power electronics for renewable energy systems, transportation and industrial applications: John Wiley & Sons, [3] B. Singh, A. Chandra, and K. Al-Haddad, Power Quality: Problems and Mitigation Techniques: John Wiley & Sons, [4] H. Abu-Rub, J. Holtz, J. Rodriguez, and G. Baoming, Medium voltage multilevel convertersstate of the art, challenges, and requirements in industrial applications, IEEE Trans. Ind. Electron., vol. 57, pp , [5] M. Sharifzade, H. Vahedi, A. Sheikholeslami, H. Ghoreyshi, and K. Al-Haddad, Modified selective harmonic elimination employed in four-leg NPC inverters, in IECON th

15 Annual Conference of the IEEE Industrial Electronics Society, 2014, pp [6] F. Sebaaly, H. Vahedi, H. Kanaan, N. Moubayed, and K. Al-Haddad, Sliding-mode current control design for a gridconnected three-level NPC inverter, in Renewable Energies for Developing Countries (REDEC), 2014 International Conference on, 2014, pp [7] M. Sharifzadeh, H. Vahedi, A. Sheikholeslami, P.-A. Labbe, and K. Al-Haddad, Hybrid SHM-SHE Modulation Technique for Four-Leg NPC Inverter with DC Capacitors Self-Voltage- Balancing, IEEE Trans. Ind. Electron., vol. 62, pp , [8] J. Rodriguez, S. Bernet, P. K. Steimer, and I. E. Lizama, A survey on neutral-point-clamped inverters, IEEE Trans. Ind. Electron., vol. 57, pp , [9] M. Malinowski, K. Gopakumar, J. Rodriguez, and M. A. Perez, A survey on cascaded multilevel inverters, IEEE Trans. Ind. Electron., vol. 57, pp , [10] Y.-S. Lai and F.-S. Shyu, Topology for hybrid multilevel inverter, IEE Proc. Electric Power Applications, vol. 149, pp , [11] V. Guennegues, B. Gollentz, F. Meibody-Tabar, S. Rael, and L. Leclere, A converter topology for high speed motor drive applications, in Power Electronics and Applications, EPE th European Conference on, 2009, pp [12] A. Nami, F. Zare, A. Ghosh, and F. Blaabjerg, A hybrid cascade converter topology with series-connected symmetrical and asymmetrical diode-clamped H-bridge cells, IEEE Trans. Power Electron., vol. 26, pp , [13] E. Najafi and A. H. M. Yatim, Design and implementation of a new multilevel inverter topology, IEEE Trans. Ind. Electron., vol. 59, pp ,

16 [14] K. Gupta and S. Jain, Topology for multilevel inverters to attain maximum number of levels from given DC sources, IET Power Electron., vol. 5, pp , [15] H. Vahedi, S. Rahmani, and K. Al-Haddad, Pinned Mid- Points Multilevel Inverter (PMP): Three-Phase Topology with High Voltage Levels and One Bidirectional Switch, in IECON th Annual Conference on IEEE Industrial Electronics Society, Austria, 2013, pp [16] H. Vahedi and K. Al-Haddad, Half-Bridge Based Multilevel Inverter Generating Higher Voltage and Power, in Electric Power and Energy Conference (EPEC), Canada, 2013, pp [17] H. Vahedi, K. Al-Haddad, P.-A. Labbe, and S. Rahmani, Cascaded Multilevel Inverter with Multicarrier PWM Technique and Voltage Balancing Feature, in ISIE rd IEEE International Symposium on Industrial Electronics, Turkey, 2014, pp [18] M. F. Kangarlu and E. Babaei, A Generalized Cascaded Multilevel Inverter Using Series Connection of Sub multilevel Inverters, IEEE Trans. Power Electron., vol. 28, p. 625, [19] M. F. Kangarlu, E. Babaei, and M. Sabahi, Cascaded crossswitched multilevel inverter in symmetric and asymmetric conditions, IET Power Electron., vol. 6, pp , [20] E. Babaei and S. S. Gowgani, Hybrid multilevel inverter using switched capacitor units, IEEE Trans. Ind. Electron., vol. 61, pp , [21] M. F. Escalante, J. C. Vannier, and A. Arzande, Flying capacitor multilevel inverters and DTC motor drive applications, IEEE Trans. Ind. Electron., vol. 49, pp , [22] A. Shukla, A. Ghosh, and A. Joshi, Improved multilevel hysteresis current regulation and capacitor voltage balancing schemes for flying capacitor multilevel inverter, IEEE Trans. Power Electron., vol. 23, pp ,

17 [23] M. Ben Smida and F. Ben Ammar, Modeling and DBC- PSC-PWM control of a three-phase flying-capacitor stacked multilevel voltage source inverter, IEEE Trans. Ind. Electron., vol. 57, pp , [24] P. Roshankumar, P. Rajeevan, K. Mathew, K. Gopakumar, J. I. Leon, and L. G. Franquelo, A Five-Level Inverter Topology with Single- DC Supply by Cascading a Flying Capacitor Inverter and an HBridge, IEEE Trans. Power Electron., vol. 27, pp , [25] Y. Hinago and H. Koizumi, A single-phase multilevel inverter using switched series/parallel dc voltage sources, IEEE Trans. Ind. Electron., vol. 57, pp , [26] H. Vahedi, K. Al-Haddad, Y. Ounejjar, and K. Addoweesh, Crossover Switches Cell (CSC): A New Multilevel Inverter Topology with Maximum Voltage Levels and Minimum DC Sources, in IECON th Annual Conference on IEEE Industrial Electronics Society, Austria, 2013, pp [27] H. Vahedi, K. Al-Haddad, and H. Y. Kanaan, A New Voltage Balancing Controller Applied on 7-Level PUC Inverter, in IECON th Annual Conference on IEEE Industrial Electronics Society, USA, 2014, pp [28] Z. Du, L. M. Tolbert, J. N. Chiasson, and B. Ozpineci, A cascade multilevel inverter using a single DC source, in Applied Power Electronics Conference and Exposition, APEC 06. Twenty- First Annual IEEE, 2006, p. 5 pp. [29] S. Vazquez, J. I. Leon, L. G. Franquelo, J. J. Padilla, and J. M. Carrasco, DC-voltage-ratio control strategy for multilevel cascaded converters fed with a single DC source, IEEE Trans. Ind. Electron., vol. 56, pp , [30] H. Sepahvand,J. Liao, M. Ferdowsi, and K. A. Corzine, Capacitor voltage regulation in single-dc-source cascaded H-bridge multilevel converters using phase-shift modulation, IEEE Trans. Ind. Electron., vol. 60, pp ,

18 [31] Z. Du, L. M. Tolbert, B. Ozpineci, and J. N. Chiasson, Fundamental frequency switching strategies of a seven-level hybrid cascaded Hbridge multilevel inverter, IEEE Trans. Power Electron., vol. 24, pp , [32] H. Sepahvand, J. Liao, and M. Ferdowsi, Investigation on capacitor voltage regulation in cascaded H-bridge multilevel converters with fundamental frequency switching, IEEE Trans. Ind. Electron., vol. 58, pp , [33] Z. Du, L. M. Tolbert, J. N. Chiasson, B. Ozpineci, H. Li, and A. Q. Huang, Hybrid cascaded H-bridges multilevel motor drive control for electric vehicles, in 37th IEEE Power Electronics Specialists Conference (PESC), 2006, pp [34] F. Khoucha, A. Ales, A. Khoudiri, K. Marouani, M. Benbouzid, and A. Kheloui, A 7-level single DC source cascaded H-bridge multilevel inverters control using hybrid modulation, in International Conference on Electrical Machines (ICEM), 2010, pp

19 4097

20 4098

Crossover Switches Cell (CSC): A New Multilevel Inverter Topology with Maximum Voltage Levels and Minimum DC Sources

Crossover Switches Cell (CSC): A New Multilevel Inverter Topology with Maximum Voltage Levels and Minimum DC Sources Crossover Switches Cell (CSC): A New Multilevel Inverter Topology with Maximum Voltage Levels and Minimum DC Sources Hani Vahedi, Kamal Al-Haddad, Youssef Ounejjar, Khaled Addoweesh GREPCI, Ecole de Technologie

More information

Modeling and Analysis of Novel Multilevel Inverter Topology with Minimum Number of Switching Components

Modeling and Analysis of Novel Multilevel Inverter Topology with Minimum Number of Switching Components Copyright 2017 Tech Science Press CMES, vol.113, no.4, pp.461-473, 2017 Modeling and Analysis of Novel Multilevel Inverter Topology with Minimum Number of Switching Components V. Thiyagarajan 1 and P.

More information

A New Multilevel Inverter Topology of Reduced Components

A New Multilevel Inverter Topology of Reduced Components A New Multilevel Inverter Topology of Reduced Components Pallakila Lakshmi Nagarjuna Reddy 1, Sai Kumar 2 PG Student, Department of EEE, KIET, Kakinada, India. 1 Asst.Professor, Department of EEE, KIET,

More information

COMPARISON STUDY OF THREE PHASE CASCADED H-BRIDGE MULTI LEVEL INVERTER BY USING DTC INDUCTION MOTOR DRIVES

COMPARISON STUDY OF THREE PHASE CASCADED H-BRIDGE MULTI LEVEL INVERTER BY USING DTC INDUCTION MOTOR DRIVES International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 5, May 214 COMPARISON STUDY OF THREE PHASE CASCADED H-BRIDGE MULTI LEVEL INVERTER BY USING DTC INDUCTION

More information

A Novel Cascaded Multilevel Inverter Using A Single DC Source

A Novel Cascaded Multilevel Inverter Using A Single DC Source A Novel Cascaded Multilevel Inverter Using A Single DC Source Nimmy Charles 1, Femy P.H 2 P.G. Student, Department of EEE, KMEA Engineering College, Cochin, Kerala, India 1 Associate Professor, Department

More information

Hybrid Five-Level Inverter using Switched Capacitor Unit

Hybrid Five-Level Inverter using Switched Capacitor Unit IJIRST International Journal for Innovative Research in Science & Technology Volume 3 Issue 04 September 2016 ISSN (online): 2349-6010 Hybrid Five-Level Inverter using Switched Capacitor Unit Minu M Sageer

More information

Voltage Unbalance Elimination in Multilevel Inverter using Coupled Inductor and Feedback Control

Voltage Unbalance Elimination in Multilevel Inverter using Coupled Inductor and Feedback Control Voltage Unbalance Elimination in Multilevel Inverter using Coupled Inductor and Feedback Control Divya S 1, G.Umamaheswari 2 PG student [Power Electronics and Drives], Department of EEE, Paavai Engineering

More information

Harmonic Reduction in Induction Motor: Multilevel Inverter

Harmonic Reduction in Induction Motor: Multilevel Inverter International Journal of Multidisciplinary and Current Research Research Article ISSN: 2321-3124 Available at: http://ijmcr.com Harmonic Reduction in Induction Motor: Multilevel Inverter D. Suganyadevi,

More information

International Journal Of Engineering And Computer Science ISSN: Volume 2 Issue 12 December, 2013 Page No Abstract

International Journal Of Engineering And Computer Science ISSN: Volume 2 Issue 12 December, 2013 Page No Abstract www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 2 Issue 12 December, 2013 Page No. 3566-3571 Modelling & Simulation of Three-phase Induction Motor Fed by an

More information

SEVEN LEVEL HYBRID ACTIVE NEUTRAL POINT CLAMPED FLYING CAPACITOR INVERTER

SEVEN LEVEL HYBRID ACTIVE NEUTRAL POINT CLAMPED FLYING CAPACITOR INVERTER SEVEN LEVEL HYBRID ACTIVE NEUTRAL POINT CLAMPED FLYING CAPACITOR INVERTER 1 GOVINDARAJULU.D, 2 NAGULU.SK 1,2 Dept. of EEE, Eluru college of Engineering & Technology, Eluru, India Abstract Multilevel converters

More information

A New Transistor Clamped 5-Level H-Bridge Multilevel Inverter with voltage Boosting Capacity

A New Transistor Clamped 5-Level H-Bridge Multilevel Inverter with voltage Boosting Capacity A New Transistor Clamped 5-Level H-Bridge Multilevel Inverter with voltage Boosting Capacity Prakash Singh, Dept. of Electrical & Electronics Engineering Oriental Institute of Science & Technology Bhopal,

More information

Seven-level cascaded ANPC-based multilevel converter

Seven-level cascaded ANPC-based multilevel converter University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences Seven-level cascaded ANPC-based multilevel converter

More information

Literature Survey: Multilevel Voltage Source Inverter With Optimized Convention Of Bidirectional Switches

Literature Survey: Multilevel Voltage Source Inverter With Optimized Convention Of Bidirectional Switches Literature Survey: Multilevel Voltage Source Inverter With Optimized Convention Of Bidirectional Switches P.Bhagya [1], M.Thangadurai [2], V.Mohamed Ibrahim [3] PG Scholar [1],, Assistant Professor [2],

More information

Three Phase 15 Level Cascaded H-Bridges Multilevel Inverter for Motor Drives

Three Phase 15 Level Cascaded H-Bridges Multilevel Inverter for Motor Drives American-Eurasian Journal of Scientific Research 11 (1): 21-27, 2016 ISSN 1818-6785 IDOSI Publications, 2016 DOI: 10.5829/idosi.aejsr.2016.11.1.22817 Three Phase 15 Level Cascaded H-Bridges Multilevel

More information

Simulation and Experimental Results of 7-Level Inverter System

Simulation and Experimental Results of 7-Level Inverter System Research Journal of Applied Sciences, Engineering and Technology 3(): 88-95, 0 ISSN: 040-7467 Maxwell Scientific Organization, 0 Received: November 3, 00 Accepted: January 0, 0 Published: February 0, 0

More information

Generating 17 Voltage Levels Using a Three Level Flying Capacitor Inverter and Cascaded Hbridge

Generating 17 Voltage Levels Using a Three Level Flying Capacitor Inverter and Cascaded Hbridge Generating 17 Voltage Levels Using a Three Level Flying Capacitor Inverter and Cascaded Hbridge Dareddy Lakshma Reddy B.Tech, Sri Satya Narayana Engineering College, Ongole. D.Sivanaga Raju, M.Tech Sri

More information

Harmonic elimination control of a five-level DC- AC cascaded H-bridge hybrid inverter

Harmonic elimination control of a five-level DC- AC cascaded H-bridge hybrid inverter University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers Faculty of Engineering and Information Sciences 2 Harmonic elimination control of a five-level DC- AC cascaded

More information

SIMULATION, DESIGN AND CONTROL OF A MODIFIED H-BRIDGE SINGLE PHASE SEVEN LEVEL INVERTER 1 Atulkumar Verma, 2 Prof. Mrs.

SIMULATION, DESIGN AND CONTROL OF A MODIFIED H-BRIDGE SINGLE PHASE SEVEN LEVEL INVERTER 1 Atulkumar Verma, 2 Prof. Mrs. SIMULATION, DESIGN AND CONTROL OF A MODIFIED H-BRIDGE SINGLE PHASE SEVEN LEVEL INVERTER Atulkumar Verma, Prof. Mrs. Preeti Khatri Assistant Professor pursuing M.E. Electrical Power Systems in PVG s College

More information

II. WORKING PRINCIPLE The block diagram depicting the working principle of the proposed topology is as given below in Fig.2.

II. WORKING PRINCIPLE The block diagram depicting the working principle of the proposed topology is as given below in Fig.2. PIC Based Seven-Level Cascaded H-Bridge Multilevel Inverter R.M.Sekar, Baladhandapani.R Abstract- This paper presents a multilevel inverter topology in which a low switching frequency is made use taking

More information

Single Phase Multi- Level Inverter using Single DC Source and Reduced Switches

Single Phase Multi- Level Inverter using Single DC Source and Reduced Switches DOI: 10.7763/IPEDR. 2014. V75. 12 Single Phase Multi- Level Inverter using Single DC Source and Reduced Switches Varsha Singh 1 +, Santosh Kumar Sappati 2 1 Assistant Professor, Department of EE, NIT Raipur

More information

ISSN Vol.07,Issue.11, August-2015, Pages:

ISSN Vol.07,Issue.11, August-2015, Pages: ISSN 2348 2370 Vol.07,Issue.11, August-2015, Pages:2041-2047 www.ijatir.org Simulation of Three-Phase Multilevel Inverter with Reduced Switches for Induction Motor Applications T. SRIPAL REDDY 1, A. RAJABABU

More information

Performance Evaluation of Multi Carrier Based PWM Techniques for Single Phase Five Level H-Bridge Type FCMLI

Performance Evaluation of Multi Carrier Based PWM Techniques for Single Phase Five Level H-Bridge Type FCMLI IOSR Journal of Engineering (IOSRJEN) ISSN: 2250-3021 Volume 2, Issue 7(July 2012), PP 82-90 Performance Evaluation of Multi Carrier Based PWM Techniques for Single Phase Five Level H-Bridge Type FCMLI

More information

Design and Evaluation of PUC (Packed U Cell) Topology at Different Levels & Loads in Terms of THD

Design and Evaluation of PUC (Packed U Cell) Topology at Different Levels & Loads in Terms of THD Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2016, 3(9): 33-43 Research Article ISSN: 2394-658X Design and Evaluation of PUC (Packed U Cell) Topology at Different

More information

A Fifteen Level Cascade H-Bridge Multilevel Inverter Fed Induction Motor Drive with Open End Stator Winding

A Fifteen Level Cascade H-Bridge Multilevel Inverter Fed Induction Motor Drive with Open End Stator Winding A Fifteen Level Cascade H-Bridge Multilevel Inverter Fed Induction Motor Drive with Open End Stator Winding E. Chidam Meenakchi Devi 1, S. Mohamed Yousuf 2, S. Sumesh Kumar 3 P.G Scholar, Sri Subramanya

More information

A New Single-Phase Multilevel Inverter with Reduced Number of Switches for Solar Applications

A New Single-Phase Multilevel Inverter with Reduced Number of Switches for Solar Applications I J C T A, 9(15), 2016, pp. 6983-6992 International Science Press A New Single-Phase Multilevel Inverter with Reduced Number of Switches for Solar Applications M. Arun Noyal Doss*, K. Harsha**, K. Mohanraj*

More information

CAPACITOR VOLTAGE BALANCING IN SINGLE PHASE SEVEN-LEVEL PWM INVERTER

CAPACITOR VOLTAGE BALANCING IN SINGLE PHASE SEVEN-LEVEL PWM INVERTER Journal of Research in Engineering and Applied Sciences CAPACITOR VOLTAGE BALANCING IN SINGLE PHASE SEVEN-LEVEL PWM INVERTER Midhun G, 2Aleena T Mathew Assistant Professor, Department of EEE, PG Student

More information

Timing Diagram to Generate Triggering Pulses for Cascade Multilevel Inverters

Timing Diagram to Generate Triggering Pulses for Cascade Multilevel Inverters Timing Diagram to Generate Triggering Pulses for Cascade Multilevel Inverters Nageswara Rao. Jalakanuru Lecturer, Department of Electrical and computer Engineering, Mizan-Tepi university, Ethiopia ABSTRACT:

More information

CASCADED H-BRIDGE MULTILEVEL INVERTER FOR INDUCTION MOTOR DRIVES

CASCADED H-BRIDGE MULTILEVEL INVERTER FOR INDUCTION MOTOR DRIVES CASCADED H-BRIDGE MULTILEVEL INVERTER FOR INDUCTION MOTOR DRIVES A.Venkadesan 1, Priyatosh Panda 2, Priti Agrawal 3, Varun Puli 4 1 Asst Professor, Electrical and Electronics Engineering, SRM University,

More information

COMPARATIVE STUDY OF DIFFERENT TOPOLOGIES OF FIVE LEVEL INVERTER FOR HARMONICS REDUCTION

COMPARATIVE STUDY OF DIFFERENT TOPOLOGIES OF FIVE LEVEL INVERTER FOR HARMONICS REDUCTION COMPARATIVE STUDY OF DIFFERENT TOPOLOGIES OF FIVE LEVEL INVERTER FOR HARMONICS REDUCTION Mahtab Alam 1, Mr. Jitendra Kumar Garg 2 1 Student, M.Tech, 2 Associate Prof., Department of Electrical & Electronics

More information

Reduction of Power Electronic Devices with a New Basic Unit for a Cascaded Multilevel Inverter fed Induction Motor

Reduction of Power Electronic Devices with a New Basic Unit for a Cascaded Multilevel Inverter fed Induction Motor International Journal for Modern Trends in Science and Technology Volume: 03, Issue No: 05, May 2017 ISSN: 2455-3778 http://www.ijmtst.com Reduction of Power Electronic Devices with a New Basic Unit for

More information

A Novel Multilevel Inverter Employing Additive and Subtractive Topology

A Novel Multilevel Inverter Employing Additive and Subtractive Topology Circuits and Systems, 2016, 7, 2425-2436 Published Online July 2016 in SciRes. http://www.scirp.org/journal/cs http://dx.doi.org/10.4236/cs.2016.79209 A Novel Multilevel Inverter Employing Additive and

More information

Performance Evaluation of a Cascaded Multilevel Inverter with a Single DC Source using ISCPWM

Performance Evaluation of a Cascaded Multilevel Inverter with a Single DC Source using ISCPWM International Journal of Electrical Engineering. ISSN 0974-2158 Volume 5, Number 1 (2012), pp. 49-60 International Research Publication House http://www.irphouse.com Performance Evaluation of a Cascaded

More information

Analysis of IM Fed by Multi-Carrier SPWM and Low Switching Frequency Mixed CMLI

Analysis of IM Fed by Multi-Carrier SPWM and Low Switching Frequency Mixed CMLI Analysis of IM Fed by Multi-Carrier SPWM and Low Switching Frequency Mixed CMLI Srinivas Reddy Chalamalla 1, S. Tara Kalyani 2 M.Tech, Department of EEE, JNTU, Hyderabad, Andhra Pradesh, India 1 Professor,

More information

Performance Analysis of Switched Capacitor Three Phase Symmetrical Inverter Topology with Induction Drive

Performance Analysis of Switched Capacitor Three Phase Symmetrical Inverter Topology with Induction Drive Performance Analysis of Switched Capacitor Three Phase Symmetrical Inverter Topology with Induction Drive KATURI MAHESH M-tech Student Scholar Department of Electrical & Electronics Engineering, Malla

More information

Hybrid 5-level inverter fed induction motor drive

Hybrid 5-level inverter fed induction motor drive ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 10 (2014) No. 3, pp. 224-230 Hybrid 5-level inverter fed induction motor drive Dr. P.V.V. Rama Rao, P. Devi Kiran, A. Phani Kumar

More information

ANALYSIS AND DESIGN OF HYBRID ACTIVE MULTI-LEVEL INVERTER TOPOLOGY FED INDUCTION MOTOR DRIVE

ANALYSIS AND DESIGN OF HYBRID ACTIVE MULTI-LEVEL INVERTER TOPOLOGY FED INDUCTION MOTOR DRIVE ANALYSIS AND DESIGN OF HYBRID ACTIVE MULTI-LEVEL INVERTER TOPOLOGY FED INDUCTION MOTOR DRIVE Manga.R 1, Srinivas.V 2 1 Student, Electrical and Electronics Engineering, Nigama Engineering College, Telangana,

More information

11 LEVEL SWITCHED-CAPACITOR INVERTER TOPOLOGY USING SERIES/PARALLEL CONVERSION

11 LEVEL SWITCHED-CAPACITOR INVERTER TOPOLOGY USING SERIES/PARALLEL CONVERSION 11 LEVEL SWITCHED-CAPACITOR INVERTER TOPOLOGY USING SERIES/PARALLEL CONVERSION 1 P.Yaswanthanatha reddy 2 CH.Sreenivasulu reddy 1 MTECH (power electronics), PBR VITS (KAVALI), pratapreddy.venkat@gmail.com

More information

Vinay Potdar 1, Shankar Vanamane 2. P. G. Student, Walchand College of Engineering, Sangli, Maharashtra, India

Vinay Potdar 1, Shankar Vanamane 2. P. G. Student, Walchand College of Engineering, Sangli, Maharashtra, India 2018 IJSRST Volume 4 Issue 8 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology Design and Hardware Implementation of a Nine level Inverter with Less Switches Operating

More information

COMPARATIVE STUDY ON MCPWM STRATEGIES FOR 15 LEVEL ASYMMETRIC INVERTER

COMPARATIVE STUDY ON MCPWM STRATEGIES FOR 15 LEVEL ASYMMETRIC INVERTER COMPARATIVE STUDY ON MCPWM STRATEGIES FOR 15 LEVEL ASYMMETRIC INVERTER V.ARUN #1, B.SHANTHI #2, K.RAJA #3 #1 Department of EEE, Arunai Engineering College, Thiruvannamalai, Tamilnadu, India. #2 Centralised

More information

Abstract In this paper, a new three-phase, five-level inverter topology with a single-dc source is presented. The proposed topology is obtained by

Abstract In this paper, a new three-phase, five-level inverter topology with a single-dc source is presented. The proposed topology is obtained by , Student Member, IEEE, Student Member, IEEE, Fellow, IEEE, Member, IEEE, Fellow, IEEE Abstract In this paper, a new three-phase, five-level inverter topology with a single-dc source is presented. The

More information

Low Order Harmonic Reduction of Three Phase Multilevel Inverter

Low Order Harmonic Reduction of Three Phase Multilevel Inverter Journal of Scientific & Industrial Research Vol. 73, March 014, pp. 168-17 Low Order Harmonic Reduction of Three Phase Multilevel Inverter A. Maheswari 1 and I. Gnanambal 1 Department of EEE, K.S.R College

More information

Keywords Cascaded Multilevel Inverter, Insulated Gate Bipolar Transistor, Pulse Width Modulation, Total Harmonic Distortion.

Keywords Cascaded Multilevel Inverter, Insulated Gate Bipolar Transistor, Pulse Width Modulation, Total Harmonic Distortion. A Simplified Topology for Seven Level Modified Multilevel Inverter with Reduced Switch Count Technique G.Arunkumar*, A.Prakash**, R.Subramanian*** *Department of Electrical and Electronics Engineering,

More information

Analysis and Simulation of Multilevel DC-link Inverter Topology using Series-Parallel Switches

Analysis and Simulation of Multilevel DC-link Inverter Topology using Series-Parallel Switches Analysis and Simulation of Multilevel DC-link Inverter Topology using Series-Parallel Switches Raj Kiran Pandey 1, Ashok Verma 2, S. S. Thakur 3 1 PG Student, Electrical Engineering Department, S.A.T.I.,

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BY AENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2016 March 10(3): pages 152-160 Open Access Journal Development of

More information

SPECIFIC HARMONIC ELIMINATION SCHEME FOR NINELEVEL CASCADED H- BRIDGE INVERTER FED THREE PHASE INDUCTION MOTOR DRIVE

SPECIFIC HARMONIC ELIMINATION SCHEME FOR NINELEVEL CASCADED H- BRIDGE INVERTER FED THREE PHASE INDUCTION MOTOR DRIVE SPECIFIC HARMONIC ELIMINATION SCHEME FOR NINELEVEL CASCADED H- BRIDGE INVERTER FED THREE PHASE INDUCTION MOTOR DRIVE A. Maheswari, Dr. I. Gnanambal Department of EEE, K.S.R College of Engineering, Tiruchengode,

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 04, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 04, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 04, 2016 ISSN (online): 2321-0613 Total Harmonic Distortion Analysis of Diode Clamped Multilevel Inverter with Resistive

More information

MODELING AND ANALYSIS OF THREE PHASE MULTIPLE OUTPUT INVERTER

MODELING AND ANALYSIS OF THREE PHASE MULTIPLE OUTPUT INVERTER Volume 115 No. 8 2017, 281-286 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu MODELING AND ANALYSIS OF THREE PHASE MULTIPLE OUTPUT INVERTER ijpam.eu R.Senthil

More information

ADVANCED PWM SCHEMES FOR 3-PHASE CASCADED H-BRIDGE 5- LEVEL INVERTERS

ADVANCED PWM SCHEMES FOR 3-PHASE CASCADED H-BRIDGE 5- LEVEL INVERTERS Volume 120 No. 6 2018, 7795-7807 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ http://www.acadpubl.eu/hub/ ADVANCED PWM SCHEMES FOR 3-PHASE CASCADED H-BRIDGE 5- LEVEL INVERTERS Devineni

More information

THE demand for high-voltage high-power inverters is

THE demand for high-voltage high-power inverters is 922 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 62, NO. 2, FEBRUARY 2015 A Single-Phase Cascaded Multilevel Inverter Based on a New Basic Unit With Reduced Number of Power Switches Ebrahim Babaei,

More information

CASCADED SWITCHED-DIODE TOPOLOGY USING TWENTY FIVE LEVEL SINGLE PHASE INVERTER WITH MINIMUM NUMBER OF POWER ELECTRONIC COMPONENTS

CASCADED SWITCHED-DIODE TOPOLOGY USING TWENTY FIVE LEVEL SINGLE PHASE INVERTER WITH MINIMUM NUMBER OF POWER ELECTRONIC COMPONENTS CASCADED SWITCHED-DIODE TOPOLOGY USING TWENTY FIVE LEVEL SINGLE PHASE INVERTER WITH MINIMUM NUMBER OF POWER ELECTRONIC COMPONENTS K.Tamilarasan 1,M.Balamurugan 2, P.Soubulakshmi 3, 1 PG Scholar, Power

More information

Switching of Three Phase Cascade Multilevel Inverter Fed Induction Motor Drive

Switching of Three Phase Cascade Multilevel Inverter Fed Induction Motor Drive pp 36 40 Krishi Sanskriti Publications http://www.krishisanskriti.org/areee.html Switching of Three Phase Cascade Multilevel Inverter Fed Induction Motor Drive Ms. Preeti 1, Prof. Ravi Gupta 2 1 Electrical

More information

A New Multilevel Inverter Topology with Reduced Number of Power Switches

A New Multilevel Inverter Topology with Reduced Number of Power Switches A New Multilevel Inverter Topology with Reduced Number of Power Switches L. M. A.Beigi 1, N. A. Azli 2, F. Khosravi 3, E. Najafi 4, and A. Kaykhosravi 5 Faculty of Electrical Engineering, Universiti Teknologi

More information

CARRIER BASED PWM TECHNIQUE FOR HARMONIC REDUCTION IN CASCADED MULTILEVEL INVERTERS

CARRIER BASED PWM TECHNIQUE FOR HARMONIC REDUCTION IN CASCADED MULTILEVEL INVERTERS CARRIER BASED PWM TECHNIQUE FOR HARMONIC REDUCTION IN CASCADED MULTILEVEL INVERTERS 1 S.LEELA, 2 S.S.DASH 1 Assistant Professor, Dept.of Electrical & Electronics Engg., Sastra University, Tamilnadu, India

More information

A Modified Apod Pulse Width Modulation Technique of Multilevel Cascaded Inverter Design

A Modified Apod Pulse Width Modulation Technique of Multilevel Cascaded Inverter Design A Modified Apod Pulse Width Modulation Technique of Multilevel Cascaded Inverter Design K.Sangeetha M.E student, Master of Engineering, Power Electronics and Drives, Dept. of Electrical and Electronics

More information

CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER

CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER 42 CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER 3.1 INTRODUCTION The concept of multilevel inverter control has opened a new avenue that induction motors can be controlled to achieve dynamic performance

More information

DC Link Capacitor Voltage Balance and Neutral Point Stabilization in Diode Clamped Multi Level Inverter

DC Link Capacitor Voltage Balance and Neutral Point Stabilization in Diode Clamped Multi Level Inverter IJCTA, 9(9), 016, pp. 361-367 International Science Press Closed Loop Control of Soft Switched Forward Converter Using Intelligent Controller 361 DC Link Capacitor Voltage Balance and Neutral Point Stabilization

More information

A Comparative Study of SPWM on A 5-Level H-NPC Inverter

A Comparative Study of SPWM on A 5-Level H-NPC Inverter Research Journal of Applied Sciences, Engineering and Technology 6(12): 2277-2282, 2013 ISSN: 2040-7459; e-issn: 2040-7467 Maxwell Scientific Organization, 2013 Submitted: December 17, 2012 Accepted: January

More information

IMPLEMENTATION OF MULTILEVEL INVERTER WITH MINIMUM NUMBER OF SWITCHES FOR DIFFERENT PWM TECHNIQUES

IMPLEMENTATION OF MULTILEVEL INVERTER WITH MINIMUM NUMBER OF SWITCHES FOR DIFFERENT PWM TECHNIQUES IMPLEMENTATION OF MULTILEVEL INVERTER WITH MINIMUM NUMBER OF SWITCHES FOR DIFFERENT PWM TECHNIQUES 1 P.Rajan * R.Vijayakumar, **Dr.Alamelu Nachiappan, **Professor of Electrical and Electronics Engineering

More information

Multilevel Cascade H-bridge Inverter DC Voltage Estimation Through Output Voltage Sensing

Multilevel Cascade H-bridge Inverter DC Voltage Estimation Through Output Voltage Sensing Multilevel Cascade H-bridge Inverter DC oltage Estimation Through Output oltage Sensing Faete Filho, Leon Tolbert Electrical Engineering and Computer Science Department The University of Tennessee Knoxville,USA

More information

Analysis And Comparison Of Flying Capacitor And Modular Multilevel Converters Using SPWM

Analysis And Comparison Of Flying Capacitor And Modular Multilevel Converters Using SPWM Analysis And Comparison Of Flying Capacitor And Modular Multilevel Converters Using SPWM Akhila A M.Tech Student, Dept. Electrical and Electronics Engineering, Mar Baselios College of Engineering and Technology,

More information

A Five-Level Single-Phase Grid-Connected Converter for Renewable Distributed Systems

A Five-Level Single-Phase Grid-Connected Converter for Renewable Distributed Systems A Five-Level Single-Phase Grid-Connected Converter for Renewable Distributed Systems V. Balakrishna Reddy Professor, Department of EEE, Vijay Rural Engg College, Nizamabad, Telangana State, India Abstract

More information

An Efficient Cascade H-Bridge Multilevel Inverter for Power Applications

An Efficient Cascade H-Bridge Multilevel Inverter for Power Applications IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 2 (Feb. 2013), V2 PP 14-19 An Efficient Cascade H-Bridge Multilevel Inverter for Power Applications Geethu Varghese

More information

Analysis of Asymmetrical Cascaded 7 Level and 9 Level Multilevel Inverter Design for Asynchronous Motor

Analysis of Asymmetrical Cascaded 7 Level and 9 Level Multilevel Inverter Design for Asynchronous Motor Analysis of Asymmetrical Cascaded 7 Level and 9 Level Multilevel Inverter Design for Asynchronous Motor Nayna Bhargava Dept. of Electrical Engineering SATI, Vidisha Madhya Pradesh, India Sanjeev Gupta

More information

Modified Multilevel Inverter Topology for Driving a Single Phase Induction Motor

Modified Multilevel Inverter Topology for Driving a Single Phase Induction Motor Modified Multilevel Inverter Topology for Driving a Single Phase Induction Motor Divya Subramanian 1, Rebiya Rasheed 2 M.Tech Student, Federal Institute of Science And Technology, Ernakulam, Kerala, India

More information

Speed Control of Induction Motor using Multilevel Inverter

Speed Control of Induction Motor using Multilevel Inverter Speed Control of Induction Motor using Multilevel Inverter 1 Arya Shibu, 2 Haritha S, 3 Renu Rajan 1, 2, 3 Amrita School of Engineering, EEE Department, Amritapuri, Kollam, India Abstract: Multilevel converters

More information

Performance Evaluation of Single Phase H-Bridge Type Diode Clamped Five Level Inverter

Performance Evaluation of Single Phase H-Bridge Type Diode Clamped Five Level Inverter Vol., Issue.4, July-Aug pp-98-93 ISSN: 49-6645 Performance Evaluation of Single Phase H-Bridge Type Diode Clamped Five Level Inverter E.Sambath, S.P. Natarajan, C.R.Balamurugan 3, Department of EIE, Annamalai

More information

29 Level H- Bridge VSC for HVDC Application

29 Level H- Bridge VSC for HVDC Application 29 Level H- Bridge VSC for HVDC Application Syamdev.C.S 1, Asha Anu Kurian 2 PG Scholar, SAINTGITS College of Engineering, Kottayam, Kerala, India 1 Assistant Professor, SAINTGITS College of Engineering,

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 May 11(7): pages 264-271 Open Access Journal Modified Seven Level

More information

Single-phase multilevel inverter topologies with self-voltage balancing capabilities

Single-phase multilevel inverter topologies with self-voltage balancing capabilities IET Power Electronics Research Article Single-phase multilevel inverter topologies with self-voltage balancing capabilities ISSN 1755-4535 Received on 25th June 2017 Revised 29th November 2017 Accepted

More information

A New Self-Balancing Cascaded Multilevel Inverter for Level Doubling Application

A New Self-Balancing Cascaded Multilevel Inverter for Level Doubling Application A New Self-Balancing Cascaded Multilevel Inverter for Level Doubling Application C. Sukanya 1, L.Priyanga 2, K.Janarthanan 3, T.Suresh Padmanabhan 4 PG Student [EEE], Dept. of EEE, Bharathiyar College

More information

ANALYSIS AND IMPLEMENTATION OF FPGA CONTROL OF ASYMMETRIC MULTILEVEL INVERTER FOR FUEL CELL APPLICATIONS

ANALYSIS AND IMPLEMENTATION OF FPGA CONTROL OF ASYMMETRIC MULTILEVEL INVERTER FOR FUEL CELL APPLICATIONS ANALYSIS AND IMPLEMENTATION OF FPGA CONTROL OF ASYMMETRIC MULTILEVEL INVERTER FOR FUEL CELL APPLICATIONS Abstract S Dharani * & Dr.R.Seyezhai ** Department of EEE, SSN College of Engineering, Chennai,

More information

ANALYSIS AND SIMULATION OF CASCADED FIVE AND SEVEN LEVEL INVERTER FED INDUCTION MOTOR

ANALYSIS AND SIMULATION OF CASCADED FIVE AND SEVEN LEVEL INVERTER FED INDUCTION MOTOR ANALYSIS AND SIMULATION OF CASCADED FIVE AND SEVEN LEVEL INVERTER FED INDUCTION MOTOR MANOJ KUMAR.N 1, KALIAPPAN.E 2, CHELLAMUTHU.C 3 1 Assistant Professor, Department of EEE, R.M.K Engineering College,

More information

SIMULATION AND COMPARISION OF SYMMETRICAL AND ASYMMETRICAL 3- PHASE H-BRIDGE MULTI LEVEL INVERTER FOR DTC INDUCTION MOTOR DRIVES

SIMULATION AND COMPARISION OF SYMMETRICAL AND ASYMMETRICAL 3- PHASE H-BRIDGE MULTI LEVEL INVERTER FOR DTC INDUCTION MOTOR DRIVES SIMULATION AND COMPARISION OF SYMMETRICAL AND ASYMMETRICAL 3- PHASE H-BRIDGE MULTI LEVEL INVERTER FOR DTC INDUCTION MOTOR DRIVES G.Pradeep Sagar 1, K.Roopa 2, M.Rajasheker Reddy 3 PG Student [PE&ED], Dept.

More information

ISSN Vol.05,Issue.05, May-2017, Pages:

ISSN Vol.05,Issue.05, May-2017, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.05,Issue.05, May-2017, Pages:0777-0781 Implementation of A Multi-Level Inverter with Reduced Number of Switches Using Different PWM Techniques T. RANGA 1, P. JANARDHAN

More information

A Single-Phase Carrier Phase-shifted PWM Multilevel Inverter for 9-level with Reduced Switching Devices

A Single-Phase Carrier Phase-shifted PWM Multilevel Inverter for 9-level with Reduced Switching Devices International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 5, May 4 A SinglePhase Carrier Phaseshifted PWM Multilevel Inverter for 9level with Reduced Switching Devices

More information

Three Phase 11-Level Single Switch Cascaded Multilevel Inverter

Three Phase 11-Level Single Switch Cascaded Multilevel Inverter The International Journal Of Engineering And Science (IJES) Volume 3 Issue 3 Pages 19-25 2014 ISSN(e): 2319 1813 ISSN(p): 2319 1805 Three Phase 11-Level Single Switch Cascaded Multilevel Inverter Rajmadhan.D

More information

A NOVEL SWITCHING PATTERN OF CASCADED MULTILEVEL INVERTERS FED BLDC DRIVE USING DIFFERENT MODULATION SCHEMES

A NOVEL SWITCHING PATTERN OF CASCADED MULTILEVEL INVERTERS FED BLDC DRIVE USING DIFFERENT MODULATION SCHEMES International Journal of Electrical and Electronics Engineering Research (IJEEER) ISSN(P): 2250-155X; ISSN(E): 2278-943X Vol. 3, Issue 5, Dec 2013, 243-252 TJPRC Pvt. Ltd. A NOVEL SWITCHING PATTERN OF

More information

Enhanced Performance of Multilevel Inverter Fed Induction Motor Drive

Enhanced Performance of Multilevel Inverter Fed Induction Motor Drive Enhanced Performance of Multilevel Inverter Fed Induction Motor Drive Venkata Anil Babu Polisetty 1, B.R.Narendra 2 PG Student [PE], Dept. of EEE, DVR. & Dr.H.S.MIC College of Technology, AP, India 1 Associate

More information

An n-level flying capacitor based active neutralpoint-clamped

An n-level flying capacitor based active neutralpoint-clamped University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences An n-level flying capacitor based active neutralpoint-clamped

More information

Multilevel Inverter with Coupled Inductors with Sine PWM Techniques

Multilevel Inverter with Coupled Inductors with Sine PWM Techniques Multilevel Inverter with Coupled Inductors with Sine PWM Techniques S.Subalakshmi 1, A.Mangaiyarkarasi 2, T.Jothi 3, S.Rajeshwari 4 Assistant Professor-I, Dept. of EEE, Prathyusha Institute of Technology

More information

Multilevel Inverter for Single Phase System with Reduced Number of Switches

Multilevel Inverter for Single Phase System with Reduced Number of Switches IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676 Volume 4, Issue 3 (Jan. - Feb. 2013), PP 49-57 Multilevel Inverter for Single Phase System with Reduced Number of Switches

More information

COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N.

COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N. COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N.Booma 2 Electrical and Electronics engineering, M.E., Power and

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor(SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 2,Issue 5, May -2015 e-issn(o): 2348-4470 p-issn(p): 2348-6406 Simulation and

More information

A comparative study of Total Harmonic Distortion in Multi level inverter topologies

A comparative study of Total Harmonic Distortion in Multi level inverter topologies A comparative study of Total Harmonic Distortion in Multi level inverter topologies T.Prathiba *, P.Renuga Electrical Engineering Department, Thiagarajar College of Engineering, Madurai 625 015, India.

More information

THREE PHASE SEVENTEEN LEVEL SINGLE SWITCH CASCADED MULTILEVEL INVERTER FED INDUCTION MOTOR

THREE PHASE SEVENTEEN LEVEL SINGLE SWITCH CASCADED MULTILEVEL INVERTER FED INDUCTION MOTOR International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 4, July-August 2016, pp. 72 78, Article ID: IJARET_07_04_010 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=4

More information

Elimination of Harmonics using Modified Space Vector Pulse Width Modulation Algorithm in an Eleven-level Cascaded H- bridge Inverter

Elimination of Harmonics using Modified Space Vector Pulse Width Modulation Algorithm in an Eleven-level Cascaded H- bridge Inverter Elimination of Harmonics ug Modified Space Vector Pulse Width Modulation Algorithm in an Eleven-level Cascaded H- Jhalak Gupta Electrical Engineering Department NITTTR Chandigarh, India E-mail: jhalak9126@gmail.com

More information

A New Three Phase Multilevel Inverter With Reduced Number Of Switching Power Devices With Common Mode Voltage Elimination

A New Three Phase Multilevel Inverter With Reduced Number Of Switching Power Devices With Common Mode Voltage Elimination A New Three Phase Multilevel Inverter With Reduced Number Of Switching Power Devices With Common Mode Voltage Elimination Arpan Hota, Sachin Jain Department of Electrical Engineering National Institute

More information

NEW VARIABLE AMPLITUDE CARRIER OVERLAPPING PWM METHODS FOR THREE PHASE FIVE LEVEL CASCADED INVERTER

NEW VARIABLE AMPLITUDE CARRIER OVERLAPPING PWM METHODS FOR THREE PHASE FIVE LEVEL CASCADED INVERTER NEW VARIABLE AMPLITUDE CARRIER OVERLAPPING PWM METHODS FOR THREE PHASE FIVE LEVEL CASCADED INVERTER 1 C.R.BALAMURUGAN, 2 S.P.NATARAJAN. 3 M.ARUMUGAM 1 Arunai Engineering College, Department of EEE, Tiruvannamalai,

More information

Common Mode Voltage Reduction in a Three Level Neutral Point Clamped Inverter Using Modified SVPWM

Common Mode Voltage Reduction in a Three Level Neutral Point Clamped Inverter Using Modified SVPWM Common Mode Voltage Reduction in a Three Level Neutral Point Clamped Inverter Using Modified SVPWM Asna Shanavas Shamsudeen 1, Sandhya. P 2 P.G. Student, Department of Electrical and Electronics Engineering,

More information

Simulation of Single Phase Multilevel Inverters with Simple Control Strategy Using MATLAB

Simulation of Single Phase Multilevel Inverters with Simple Control Strategy Using MATLAB Simulation of Single Phase Multi Inverters with Simple Control Strategy Using MATLAB Rajesh Kr Ahuja 1, Lalit Aggarwal 2, Pankaj Kumar 3 Department of Electrical Engineering, YMCA University of Science

More information

Modeling and Simulation of Five Phase Induction Motor Fed with Five Phase Inverter Topologies

Modeling and Simulation of Five Phase Induction Motor Fed with Five Phase Inverter Topologies Indian Journal of Science and Technology, Vol 8(19), DOI: 1.17485/ijst/215/v8i19/7129, August 215 ISSN (Print) : 974-6846 ISSN (Online) : 974-5645 Modeling and Simulation of Five Phase Induction Motor

More information

A COMPARITIVE STUDY OF THREE LEVEL INVERTER USING VARIOUS TOPOLOGIES

A COMPARITIVE STUDY OF THREE LEVEL INVERTER USING VARIOUS TOPOLOGIES A COMPARITIVE STUDY OF THREE LEVEL INVERTER USING VARIOUS TOPOLOGIES Swathy C S 1, Jincy Mariam James 2 and Sherin Rachel chacko 3 1 Assistant Professor, Dept. of EEE, Sree Buddha College of Engineering

More information

Performance Metric of Z Source CHB Multilevel Inverter FED IM for Selective Harmonic Elimination and THD Reduction

Performance Metric of Z Source CHB Multilevel Inverter FED IM for Selective Harmonic Elimination and THD Reduction Circuits and Systems, 2016, 7, 3794-3806 http://www.scirp.org/journal/cs ISSN Online: 2153-1293 ISSN Print: 2153-1285 Performance Metric of Z Source CHB Multilevel Inverter FED IM for Selective Harmonic

More information

PERFORMANCE ANALYSIS OF SEVEN LEVEL INVERTER WITH SOFT SWITCHING CONVERTER FOR PHOTOVOLTAIC SYSTEM

PERFORMANCE ANALYSIS OF SEVEN LEVEL INVERTER WITH SOFT SWITCHING CONVERTER FOR PHOTOVOLTAIC SYSTEM 50 PERFORMANCE ANALYSIS OF SEVEN LEVEL INVERTER WITH SOFT SWITCHING CONVERTER FOR PHOTOVOLTAIC SYSTEM M.Vidhya 1, Dr.P.Radika 2, Dr.J.Baskaran 3 1 PG Scholar, Dept.of EEE, Adhiparasakthi Engineering College,

More information

SINGLE PHASE THIRTY ONE LEVEL INVERTER USING EIGHT SWITCHES TOWARDS THD REDUCTION

SINGLE PHASE THIRTY ONE LEVEL INVERTER USING EIGHT SWITCHES TOWARDS THD REDUCTION SINGLE PHASE THIRTY ONE LEVEL INVERTER USING EIGHT SWITCHES TOWARDS THD REDUCTION T.Ramachandran 1, P. Ebby Darney 2 and T. Sreedhar 3 1 Assistant Professor, Dept of EEE, U.P, Subharti Institute of Technology

More information

Power Quality Enhancement of Diode Clamped Multilevel Inverter Using Different Modulation Schemes

Power Quality Enhancement of Diode Clamped Multilevel Inverter Using Different Modulation Schemes International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-869, Volume-3, Issue-4, April 21 Power Quality Enhancement of Diode Clamped Multilevel Inverter Using Different Modulation

More information

Phase Shift Modulation of a Single Dc Source Cascaded H-Bridge Multilevel Inverter for Capacitor Voltage Regulation with Equal Power Distribution

Phase Shift Modulation of a Single Dc Source Cascaded H-Bridge Multilevel Inverter for Capacitor Voltage Regulation with Equal Power Distribution Phase Shift Modulation of a Single Dc Source Cascaded H-Bridge Multilevel Inverter for Capacitor Voltage Regulation with Equal Power Distribution K.Srilatha 1, Prof. V.Bugga Rao 2 M.Tech Student, Department

More information

Three Phase Parallel Multilevel Inverter Fed Induction Motor Using POD Modulation Scheme

Three Phase Parallel Multilevel Inverter Fed Induction Motor Using POD Modulation Scheme International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 7 No. 3 Aug. 2014, pp. 1209-1214 2014 Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/ Three

More information

A Comparative Analysis of Modified Cascaded Multilevel Inverter Having Reduced Number of Switches and DC Sources

A Comparative Analysis of Modified Cascaded Multilevel Inverter Having Reduced Number of Switches and DC Sources A Comparative Analysis of Modified Cascaded Multilevel Inverter Having Reduced Number of Switches and DC Sources Lipika Nanda 1, Prof. A. Dasgupta 2 and Dr. U.K. Rout 3 1 School of Electrical Engineering,

More information

Design and Analysis of a Novel Multilevel Inverter Topology Suitable for Renewable Energy Sources Interfacing to AC Grid for High Power Applications

Design and Analysis of a Novel Multilevel Inverter Topology Suitable for Renewable Energy Sources Interfacing to AC Grid for High Power Applications International Journal of Scientific and Research Publications, Volume 3, Issue 5, May 2013 1 Design and Analysis of a Novel Multilevel Inverter Topology Suitable for Renewable Energy Sources Interfacing

More information