Spread spectrum techniques for seismic data acquisition

Size: px
Start display at page:

Download "Spread spectrum techniques for seismic data acquisition"

Transcription

1 Spread spectrum techniques Spread spectrum techniques for seismic data acquisition Joe Wong ABSTRACT Mechanical and piezoelectric vibrators are controllable seismic sources used in seismic surveys for data acquisition. In standard industry practice, these sources usually are controlled by frequency-sweep pilot signals. However, spread spectrum techniques, widely used in many fields of science and engineering for obtaining accurate estimates of impulse responses of linear systems, have received attention as pilots for vibrating sources. Spread spectrum techniques are most commonly based on special periodic functions known as pseudorandom binary sequences (PRBSs). In this report, we will examine the properties of two types of PRBS, maximal-length sequences and Gold codes, and see how they can be applied to seismic data acquisition. We will compare the relative merits of using the two alternatives, m-sequences and Gold codes, as pilots for driving vibrating seismic sources. INTRODUCTION Spread spectrum techniques have a long history of application in many fields of science and engineering. Notable examples are their crucial use in wireless communications and in satellite global navigation and positioning systems (GNSS, GPS). The most common spread spectrum techniques are based on the properties of pseudorandom binary sequences (PRBSs) such as maximal length sequences (m-sequence) and the closely related Gold codes. The special characteristics of m-sequences have prompted numerous researchers to use them for analyzing linear systems (Engelberger and Benjamin, 2005). They have been incorporated into long-range radar and sonar applications where signal-to-noise enhancement is crucial. For example, the earliest experiments in detecting radar echoes from Venus employed m-sequences (Price et al., 1959). Behringer et al. (1982) and Dushaw et al. (1999) studied fluctuations in seawater acoustic velocities across thousands of kilometers using PRBS-coded sonar signals. Sachs et al. (2003) have described how modern short-range radar systems have adopted m-sequence coding. Duncan et al. (1980) employed m-sequence signals in a controlled source audiofrequency magnetotelluric (CSAMT) experiment. Ziolkowski et al. (2011) applied m-sequence PRBSs in CSEM surveys over an offshore gas deposit. High-resolution seismic imaging of oil and gas reservoirs may require wavelengths on the order of several meters to several tens of meters. In typical reservoir rocks, the frequencies must be in the range 200 to 2000 Hz (Harris et al., 1995; Fogues et al., 2006). Such frequencies can be produced easily by using piezoelectric materials as transducers. However, the output mechanical power of piezoelectric sources is low, and techniques for signal-to-noise enhancement must be employed to obtain good seismograms across useful distances. To this end, Harris et al. (1995) and Fogues et al. (2006) used cross-correlation and frequency sweeps with their piezoelectric sources. Alternatively, Wong et al. (1983, CREWES Research Report Volume 24 (2012) 1

2 Wong 1987), Hurley (1983), Yamamoto et al. (1994), and Wong (2000) chose cross-correlation with m-sequences for their piezoelectric vibrators. Seismic surveys can be broadly considered as attempts to determine the elastic-wave impulse response of a geological environment. In this context, spread spectrum techniques based on m-sequences and Gold codes can be profitably exploited for seismic data acquisition when the source is a controlled vibrator. Pecholcs et al. (2010) and Sallas et al (2011; 2008) have described using modified Gold sequences as pilot signals to drive multiple vibrators simultaneously for land reflection surveys. This report examines the properties of m-sequences and Gold codes, and evaluates their advantages and disadvantages when they are used as pilot signals to control vibrating seismic sources. Algorithms for generating m-sequences and Gold sequences and information on their most important properties are presented in the Appendices. m-sequences AND GOLD CODES Maximal-length sequences (or m-sequences) are well-defined mathematical constructs intimately connected with so-called primitive or irreducible polynomials (Watson, 1962). In practice, m-sequences are easily produced by logic statements in software. They also can be generated electronically by simple circuits known as linear shift registers (Holmes, 2007; Golomb and Gong, 2005). A particular m-sequence is a periodic stream of 1 s and -1 s characterized by its degree m, its fundamental length L, and its base period t b. The sequence fundamental length L is given by L = 2 m 1, (1) where m is a positive integer. The base period is the shortest time in the sequence between transitions from one binary value to the other. The sequence is periodic, and repeats itself after a time T m = L t b. (2) For seismic applications, it is convenient to express T m in milliseconds. For digitized versions, we also specify the sample time t s, with t s = t b /r, (2) where r is an integer, typically equal to 1, 2, 4, or 16, that determines oversampling of the sequence. The over-sampled length is equal to rl points. The autocorrelation of a sampled m-sequence is also periodic, showing a series of triangular peaks with peak value equal to rl and off-peak values equal to r. If we remove the factor r, we obtain scaled peak and off-peak values of L and -1, respectively. These autocorrelation values are fundamental properties of any m-sequence. The widths of the triangles extend from rl samples to +rl samples symmetrically about the peaks. A set of Gold codes is constructed from an optimal or preferred pair of m-sequences using the theory presented by Gold (1967). The set is characterized by the degree and base period t b of the optimal pair of generating m-sequences. How the preferred pair is combined to produce individual Gold codes is explained in Appendix B. Each member 2 CREWES Research Report Volume 24 (2012)

3 Spread spectrum techniques of the set is also periodic with binary values of -1 and 1. All members of the set have autocorrelations that approximate the delta function. However, their cross-correlations are weakly coupled, i.e., they are not zero. The maximum and minimum values of the cross-correlations oscillate with lag time between predictable small values less than the autocorrelation peak values. From this perspective, the set of related Gold codes can be considered to be quasi-orthogonal. This property can be exploited for simultaneous multiple-vibrator operation in land seismic acquisition (Pecholcs et al., 2010; Sallas et al., 2011; Wong, 2012). A defining characteristic of a perfectly random signal or pure noise is that its autocorrelation is a delta function. The autocorrelation peaks of an m-sequence or a Gold code approximate the delta function, and the approximation become increasingly better as the degree m and the length L increase. For this reason, both these periodic sequences are referred to as pseudorandom binary sequences, or PRBS. Auto- and cross-correlations are fundamental to the useful properties of m-sequences and Gold codes. Because they are periodic, correlation between two sequences can be done in a circular fashion, i.e., using one period of each with wrap-around. When calculating the lagged sums using single cycles, if the first sequence runs off the end of the second sequence, its off-end values wraps around to the beginning of the second sequence to complete the correlation. In this report, all correlations and convolutions involving m- sequences and Gold codes will be done in circular fashion. FIG. 1: Left: Acquisition with a liner frequency sweep from 10Hz to 200Hz, sweep time = 10s, and listen time = 1s. Right: Acquisition with an m-sequence PRBS with m = 7, L = 127, t b = 1.0ms, t s = 1ms. (a) Plots of the sweep and PRBS pilot signals driving a vibrator source; (b) delayed sweep and shifted PRBS signals with wrap-around; (c) cross-correlation of original pilots in (a) with delayed/shifted pilots in b; (d) a source wavelet; (e) convolutions of the source wavelet with the delayed/shifted pilots b; (f) cross-correlation of convolutions in e with the original pilots in a, recovering the wavelet arriving at the times of the correlation peaks in c. CREWES Research Report Volume 24 (2012) 3

4 Wong SEISMIC ACQUISITION USING SPREAD SPECTUM TECHNIQUES Comparing frequency-sweep and PRBS pilots for vibrator-based acquisition Figure 1 summarizes the steps that occur when frequency sweeps and pseudorandom sequences are used with vibrating sources for seismic data acquisition. On the left side, we see the steps involved in standard industry practice of using a linear frequency sweep as the pilot signal controlling a vibrator source. On the right side, we see the exact same steps, only in this case a maximal-length sequence PRBS is the pilot. We deliberately have used an m-sequence with a short period (127ms) in the example to emphasize the periodic nature of an m-sequence. Figure 1(a) shows plots of the standard frequency sweep and the m-sequence pilots. The sweep has a steady, predictable increase in sinusoidal frequency as a function of time. The m-sequence, however, looks truly random in how it switches between its two states of -1 and +1. Figure 1(b) shows the same pilots with a time delay or a time shift. The delayed version of the frequency sweep has zero value at the beginning. For the periodic m-sequence, the shift in time has bought values associated with the end of the previous cycle into the beginning of the displayed portion of the sequence (i.e., for periodic functions, delaying in time is effectively shifting with wrap-around). The crosscorrelations between the delayed and undelayed pilots are plotted on Figure 1(c). Figure 1(d) is a wavelet representing the impulse response of a vibrator source resting on the ground surface. When the vibrator is driven by the pilots, the output signals are the convolutions of the source function with the pilots. The resulting vibrations detected at a receiver are the delayed and shifted convolutions plotted on Figure 1(e). The delay and time shift account for the time taken for the source-generated vibrations to travel the distance to a remote receiver. There are dramatic differences in appearance between the two convolutions. The convolution with the frequency sweep shows a packet of energy restricted to those times for which the frequency content of the wavelet best matches the frequencies in the frequency sweep. In other words, spectral energy assoc1ated with the wavelet is localized in time on the frequency-sweep convolution. The convolution with the m- sequence shows no such localization of energy. Spectral energy associated with the wavelet is spread through the entire time duration of the m-sequence convolution. This is the reason why the term spread spectrum is used when PRBS-based /convolution and correlation are applied for data acquisition. Cross-correlating the received convolutions with the original pilots produces the seismograms displayed on Figure 1(f). On comparing the quality of the arrivals on the output traces, we see that the wavelets on the trace acquired with m-sequence correlation have a very clean appearance, while there seems to be correlation noise associated with the wavelet recovered by correlation with the frequency sweep. This noise is likely due to the correlation process using the zero values at the beginning of the delayed convolution (see the discussion below on complete and incomplete correlation). 4 CREWES Research Report Volume 24 (2012)

5 Complete and incomplete correlation Spread spectrum techniques By driving the vibrator source with an m-sequence pilot, we create seismic vibrations in the earth which are the convolution of an impulse response or source wavelet with the sequence. The vibrations detected at a receiver are delayed because it takes time for the source energy to travel the distance between the vibrator and the receiver. The delay means that there will be zero values at the beginning of the received signals. If we just cross-correlate from the beginning of the received signal, the zero values at the beginning destroy the completeness of the m-sequence correlation required to maintain the theoretical characteristics of the auto- and cross-correlations. Incomplete correlation results in correlation noise, but the problem can be solved by activating the vibrator and recording received signals for two complete cycles of the m-sequence. If the period of the sequence is much longer than the latest arrival time, the received signal at times corresponding to the second cycle is guaranteed not to have zero values. Correlation noise is then avoided if circular correlation is used with the received data with times corresponding to the second transmitted cycle. Comparing m-sequence and Gold-code pilots for spread-spectrum acquisition FIG. 2: Left: m-sequences and their autocorrelations. Right: Gold codes and their autocorrelations. Off peak-values for the Gold code autocorrelations oscillate in the ranges (-9, - 1, 7), (-17,-1, 15), and (-33, -1, 31) for m = 5, 7, and 9, respectively. CREWES Research Report Volume 24 (2012) 5

6 Wong Examples of m-sequences and Gold codes and their autocorrelations for different sequence degrees m and fundamental lengths L are shown on Figure 2. As the degree m increases from 5 to 7 to 9, the magnitude of the autocorrelation peaks increases in comparison with the off-peak values. If the correlation values are scaled to account for the over-sampling factor, the peak of the autocorrelation for both m-sequences and Gold codes will equal L, the fundamental sequence length. For m-sequences, the scaled offpeak values are always equal to -1, and do not change with degree or lag time. For the Gold codes, the scaled off-peak values change with both degree and lag time; they seem to oscillate randomly about zero. These oscillations constitute correlation noise, and although they do decrease in magnitude relative to the autocorrelation peak with increasing degree, they remain significant even for very large degrees (see appendix C). FIG. 3: Two wavelets in the impulse response of a vibrator resting on the ground surface. The amplitude of the second wavelet is 10-4 times the amplitude of the first. Figure 3 shows two wavelets used to represent the impulse response of the earth to a seismic source. The second wavelet is very weak and can be seen only on the AGC plot. Figure 4 shows the autocorrelations of an m-sequence of degree 11, a Gold code of degree 11, and a Gold code of degree 15 (the sequences themselves are not shown because there are too many transitions between the binary values to be displayed usefully on a meaningful time scale). Figure 5 shows the delayed convolutions of the impulse response with two cycles of the m-sequence of degree 11 and the Gold code of degree 15. There is nothing particularly useful in looking at these convolutions, except to note the zero values for the first 100ms and to emphasize the need to avoid them for complete correlation. The 100ms delay is the time it takes for energy from a seismic source to arrive at a receiver. Crosscorrelating the second cycle of the convolution on Figure 5(a) with the m-sequence pilot signal reconstructs the seismogram displayed on Figure 6. On the normalized plot, only the strong arrival is visible. On the AGC plot of Figure 6(b), the weak arrival becomes visible but it rides on a DC level. The DC level is connected to the scaled off-peak values of -1 in the m-sequence autocorrelation. When the DC level is removed from the 6 CREWES Research Report Volume 24 (2012)

7 Spread spectrum techniques seismogram before AGC plotting, both strong and weak arrivals appear as clean-looking wavelets on Figure 6(c). FIG. 4: Normalized plots of autocorrelations for (a) m-sequence (m=11, L=2047, t b =4ms, t s =1ms). (b) Gold Code (m=11, L=2047, t b =4ms, t s =1ms); (c) Gold Code (m=15, L=32,767, t b =4ms, t s = 1ms). FIG. 5: Convolutions of the source function of Figure 2 with 2 cycles of (a) an m-sequence (m=11, L= 2047, t b =4ms, t s =1ms); (b) a Gold code (m=15, L= 32,767, t b =4ms, t s =1ms). Both are delayed by 100ms. Only the first 2200ms of the full convolutions are displayed. Figure 7 is a display of seismograms recovered from convolutions with Gold codes of degree 11 and 15. There is significant correlation noise for the code with m = 11, so there is no hope of seeing the weak arrival. For the code with m = 15, the correlation noise is less, but only by a factor of about 4. CREWES Research Report Volume 24 (2012) 7

8 Wong FIG. 6: Recovered seismogram from the m-sequence convolution of Figure 5(a) using complete correlation; (a) normalized plot, showing the strong wavelet of Figure 2; (b) AGC plot, on which the weak wavelet appears riding on a DC level; (c) AGC plot after the DC level is removed from the trace. FIG 7: Normalized plots of recovered wavelet by complete correlation for: (a) the first Gold code (m=11, L= 2047, t b =4ms, t s =1ms); (b) the second Gold code (m=15, L=32,767, t b =4ms, t s =1ms). 8 CREWES Research Report Volume 24 (2012)

9 Spread spectrum techniques On Figure 8, we directly compare the seismograms recovered from the m=11 m- sequence convolution and from the m=15 Gold code convolution. The weak arrival is clearly seen on the trace recovered from the m-sequence convolution after the DC level is removed. The weak arrival is still lost in correlation noise on the trace recovered from Gold code convolution, even though L is very long. It appears that, while Go1d code pilots are effective for recovering strong signals on seismograms, they are significantly less effective when weak events (e.g., deep reflections) must be detected. In order to have an effective dynamic range of 80 db, the equations in Appendix C indicate that very long Gold codes with degree greater than 26 and L longer than 2 26 must be used! The correlation noise arising from using m-sequences is a very small DC level that can be removed quite easily. On the evidence of Figure 8, we conclude that m-sequences are generally more effective as pilots for controlling vibrating sources. FIG 8: AGC plots of recovered wavelet by complete correlation for: (a) m-sequence (m=11, L=2047, t b =4ms, t s =1ms), DC level removed before plotting; (b) Gold Code (m=15, L=32,767, t b =4ms, t s =1ms). The weak arrival is still lost in Gold code correlation noise even for m = 15. Noise Rejection Capabilities The ability of PRBS cross-correlation to pull weak signals out of strong random noise is its most important and useful property. The examples presented on Figures 9 to 11 highlight this ability. Figure 9(a) is a noise-free wavelet representing impulse response of a seismic vibrator. Figure 9(b) plots noise in the form of a random component plus 60Hz interference. The amplitude of the noise is about 1/3 times time the amplitude of the wavelet. Figure 9(c) displays the wavelet and noise added together with signal to noise ratio (SNR) of about 3. Figure 9(d) is the delayed convolution of the wavelet with two cycles of an m-sequence. Figure 9(e) is the convolution with the noise added to give an SNR value of about 3. Figure 9(f) is the seismogram produced from the noisy convolution by cross-correlation with the m-sequence pilot. On the recovered seismogram, the noise has been reduced to a level where it is barely unnoticeable. CREWES Research Report Volume 24 (2012) 9

10 Wong FIG 9: (a) Signal with no noise; (b) random plus 60Hz noise; (c) Signal plus noise for SNR~2; (d) delayed convolution of the signal with an m-sequence (m=7, L=127, t b =1ms, t s =0.25ms), (e) The convolution plus noise; (f) recovered signal with delay and noise attenuation. FIG 10: (a) Signal with no noise; (b) random plus 60Hz noise; (c) Signal plus noise for SNR~0.5; (d) delayed convolution of the signal with an m-sequence (m=11, L=2047, t b =1ms, t s =0.25ms), (e) The convolution plus noise; (f) recovered signal with delay and noise attenuation. 10 CREWES Research Report Volume 24 (2012)

11 Spread spectrum techniques Figure 10 shows the some data as those on Figure 9, but the noise has been increased so that the SNR is about 0.5. In this case, the random noise component on the final seismogram is still well attenuated, but the 60Hz interference, although much reduced, remains problematic. FIG 11: (a) Signal with no noise; (b) random plus 60Hz noise; (c) Signal plus noise for SNR~0.5; (d) delayed convolution of the signal with an m-sequence (m=11, L=2047, t b =0.9ms, t s =0.222ms), (e) The convolution plus noise; (f) recovered signal with delay and noise attenuation. On Figure 11, we have changed the parameters defining the m-sequence used as the pilot by decreasing the base period t b from 1ms to 0.9ms and the sample time t s from 0.25 ms to 0.222ms. The effect of this change is to greatly improve rejection of the 60Hz noise. Figure 12 displays the effect of increasing the sequence fundamental length L on random noise rejection. Figure 12(a) and 12(b) are the wavelet and random noise with SNR of about 0.2. These are used in the same way as was done on Figure 9, but with m- sequences that have increasing degree m and fundamental length L. In the final seismograms plotted on Figures 12(c) to 12(f), we see that, as the convolution/correlation method employs m-sequences with longer and longer fundamental lengths, the wavelet emerges more and more clearly above the noise. In theory, the m-sequence crosscorrelation technique enhances signal amplitudes over random noise amplitudes by a factor of L, where L is the sequence fundamental length. CREWES Research Report Volume 24 (2012) 11

12 Wong FIG 12: (a) Signal with no noise; (b) signal plus random noise for SNR~0.2; (c) to (f) seismograms recovered through correlation with m-sequences of different fundamental lengths L. CONCLUSIONS Both varieties of pseudorandom binary sequences, i.e., maximal-length sequences and Gold codes, have been used in the seismic exploration industry as pilot signals for controlling vibrating seismic sources. This report has presented the important relevant properties of m-sequences and Gold codes and evaluated their merits for seismic data acquisition. The following conclusions can be drawn: 1. Since Gold codes need to be derived from optimal pairs of m-sequences, m- sequences are mathematically simpler and more fundamental. 2. Scaled peak values in the autocorrelations of m-sequences Gold codes of degree m are equal to the sequence fundamental length L = 2 m Scaled off-peak values in the autocorrelation of an m-sequence are a constant equal to -1, independent of degree and correlation lag time. Scaled off-peak values in the autocorrelation of a Gold code are oscillating non-zero values that vary with both degree and lag time. These values are predictable, and are defined in Appendix C. 12 CREWES Research Report Volume 24 (2012)

13 Spread spectrum techniques 4. Because of points 2 and 3, the autocorrelations of m-sequences are better approximations to the delta function than the autocorrelations of Gold sequences. 5. The oscillating off-peak non-zero values in the autocorrelation of Gold codes constitute unavoidable correlation noise. This unavoidable noise tends to overwhelm weak signals in seismograms acquired with Gold code correlation. 6. Since the off-peak values in the autocorrelation of m-sequences are constant in lag time and do not change with degree, the correlation noise on seismograms acquired using m-sequence correlation is easily removed. When this DC level noise is removed, weak signals are revealed on AGC plots with minimal distortion. 7. Examples presented in the report show that m-sequence convolution/correlation for data acquisition is very effective for reducing random noise. In principle, random noise is attenuated by a factor equal to L, where L is the fundamental length of the sequence. 8. The base-period parameter of an m-sequence can be adjusted to optimize the rejection of 60Hz interference. 9. Because m-sequences are periodic, it is very easy to include vertical stacking of repeated uncorrelated cycles for further noise rejection (before cross-correlation is done). 10. For best results, vibrators should be driven by two complete cycles of m- sequences, recording of received data should also be done for two full cycles, and cross-correlation to reconstruct seismograms should be done using circular correlation with the second full cycle of the recorded data. ACKNOWLEDGEMENT The contents of this report have been contributed in part by JODEX Limited. CREWES is supported financially by NSERC and its industrial sponsors. REFERENCES Behringer, D., Birdsall, T., Brown, M., Cornuelle, B., Heinmiller, R., Knox, R., Metzger, K., Munk, W., Speisberger, J., Spindel, R., Webb, D., Worcester, P., Wunsch, C., 1982, A demonstration of ocean acoustic tomography: Nature, 299, Duncan, P.M., Hwang, A., Edwards, R.N., Bailey, R.C., and G.D. Garland, The development and applications of a wide band electromagnetic sounding system using a pseudo-noise source: Geophysics, 45, Dushaw, B.D., Howe, B.M., Mercer, J.A., and Spindel, R.C., 1999, Multi-megameter-range acoustic data obtained by bottom mounted hydrophone arrays for measurement of ocean temperature: IEEE J. of Ocean Engineering, 24, Engelberger, S., and Benjamin, H., 2005, Pseudo-random sequences and the measurement of the frequency response: IEEE Instrumentation and Measurement Magazine, 8, Fogues, E, Meunier, J., Gresillon, FX., Hubans, C, and Druesne, D., 2006, Continuous high-resolution seismic monitoring of SAGD: 76th Ann. Internat. Mtg., SEG, Expanded Abstracts, TL2.4, Golomb, S., 1967, Shift register sequences: Holden-Day, San Francisco. CREWES Research Report Volume 24 (2012) 13

14 Wong Golomb, S.W., and Gong, G., Signal design for good correlation: for wireless communication, cryptography, and radar: ISBN Harris, J.M., Nolen-Hoeksema, R.C., Langan, R.T., Van Schaak, M., Lazaratos, S.K., and Rector, J.W., 1995, High-resolution crosswell imaging of a west Texas carbonate reservoir: Part I-Project summary /interpretation: Geophysics, 60, Holmes, J.K., Spread spectrum systems for GNSS and Wireless Communications, Artech House, Norwood, ISBN Hurley, P., The development and evaluation of a crosshole seismic system for crystalline rock environments, M.Sc. thesis, University of Toronto. Price, R., Green, P.E., Goblick, P.J., Kingston, R.H., Kraft, L.G., Pettengill, G.H., Silver, R., and Smith, W.B., 1959, Radar echoes from Venus: Science, 129, Sachs, J., Zetick, R., Peyerl, P., and Raushenbach, P., 2003, M-sequence ultra-wideband radar, state of development and applications: Proc. RADAR, Sept. 2-3, 2003, Adelaide, Australia. Yamamoto, T., Nye, T., Kuru, M., 1994, Porosity, permeability, shear strength: crosswell tomography beneath an iron foundry: Geophysics, 59, Pecholcs, P., Lafon, S. K., Al-Ghamdi, T., Al-Shammery, H., Kelamis, P. G., Huo, S. X., Winter, O., Kerboul, J.B., and Klein, T., Over 40,000 vibrator points per day with real-time quality control: opportunities and challenge: SEG Exp. Abstracts, 29, Sallas, J., Gibson, J., Maxwell, P., and Lin, F., Pseudorandom sweeps for simultaneous sourcing acquisition and low-frequency generation: The Leading Edge, 30, Sallas, J. J., Gibson, J. B., Lin, F., Winter, O., Montgomery, R., and Nagarajappa, P., 2008: Broadband vibroseis using simultaneous pseudorandom sweeps: SEG Exp. Abstracts., 27, Watson, E.J., Primitive Polynomials (Mod 2): Math. Comp., 16, Wong, J., Simultaneous multi-source acquisition using m-sequences: CREWES Research Report 24, this volume. Wong, J., Crosshole seismic imaging for sulfide orebody delineation near Sudbury, Ontario, Canada: Geophysics, 65, Wong, J., Hurley, P., and West, G.F., 1983, Crosshole seismology in crystalline rocks: Geophys. Res. Lett., 10, Wong, J., Hurley, P., and West, G.F., 1983, Cross-hole seismic scanning and tomography: The Leading Edge, 6, Ziolkowski, A., Wright, D, and Mattson, J., Comparison of PRBS and square-wave transient EM over Peon Gas Discovery, Norway, SEG Exp. Abstracts, 30, APPENDIX A: PROPERTIES OF m-sequnces An m-sequence PRBS is defined by its base period t b, its degree m, its fundamental sequence length L, and the type of feedback used in its generating function (Golomb, 1967). For degree m, the fundamental length L of the sequence is, L = 2 m 1. (A1) The base period t b is the shortest time between adjacent transitions in the m-sequence. T m = Lt b is the cycle time or period of the sequence. For a digitized version we also specify the sample time t s, with t s = t b /r, (A2) where r is an integer, typically equal to 1, 2, 4, or 16. The sampled length L s is thus equal to rl. The sequence is periodic, repeating itself with period T m. The autocorrelation of the sampled sequence is also periodic, showing a series of triangular peaks with maximum value equal to rl and off-peak DC values equal to the constant r. The widths of the bases of the triangles are 2t b, and extend from r samples to +r 14 CREWES Research Report Volume 24 (2012)

15 Spread spectrum techniques samples symmetrically about the peaks. Autocorrelation is done in a circular fashion, i.e., using one period with wrap-around. Because an m-sequence is periodic, its power spectrum is discrete; with values at the discrete frequencies: f n = n f, n = 0, 1, 2, 3 (A3) f = 1/T m = 1/(L t b ), (A4) Since the autocorrelation is a series of triangular peaks, the envelope of the normalized power spectrum is approximated by a sinc-squared function: S 2 = { 2 sin f n f 0 /( f n f 0 ) } 2, f 0 = 2/t b. The power spectrum can be adjusted by changing the parameters m and t b. (A5) (A6) FIG A1: Blue = normalized Power spectrum of m-sequence (m=11, t b =4ms, t s =1ms), calculated using FFT. Red = normalized sinc-squared function. At 0 Hz, the normalized power spectrum of the m-sequence has a small value equal to (1/L). On Figure A1, the normalized power spectrum up to the Nyquist frequency (calculated by the fast Fourier transform) of an m-sequence is plotted in blue. The sinc-squared function of Equation A3 is plotted in red. The two plots agree very well for frequencies up to the first null of the two quantities. For higher frequencies, the two diverge because the power spectrum of the periodic m-sequence is calculated using a digital FFT CREWES Research Report Volume 24 (2012) 15

16 Wong algorithm, while the sinc-squared function is the Fourier integral of a single symmetric triangle of finite time duration defined on an infinitely long time axis. APPENDIX B: MATLAB FUNCTION FOR CREATING m-sequences A Google search will return many articles with practical information on the generation of m-sequences by hardware or software. The following MATLAB code simulates the production of an m-sequence using the simplest feedback connections on a linear shift register (Golomb, 1967). % function [mseq, tau] = genmseq(mdeg, baseperiod, samptime) ; % function [mseq, tau] = genmseq(mdeg, baseperiod, samptime) ; % Maximal-length sequence (m-sequence) PRBS generator % % Inputs : % mdeg = the degree of the m-sequence (5 <= mdeg <= 16 % baseperiod = base period for the m-sequence, in milliseconds % samptime = samptime for the m-sequence, in milliseconds % Typically baseperiod is 1, 2, 4, 8, or 16 times the value of samptime % a =round(baseperiod/samptime) leads to an oversampled mseq % Output: % mseq = the m-sequence, with length a*l where % L = (2^(mDeg) - 1) is the fundamental sequence length % tau = (0: a*l-1)*samptime is the time vector associated with mseq % % --- Updated by J. Wong, Nov mdeg = round(mdeg) ; if mdeg<5 mdeg>16 disp('mdeg must be an integer between 5 and 16.') disp('mdeg will be set to 7 so calculation can proceed') mdeg = 7 ; end if samptime>baseperiod disp('samptime must be <= baseperiod') disp('samptime will be set equal to baseperiod so calculation can proceed') mdeg = 7 ; end tic switch mdeg case 5 ; F1=2 ; F2 = 5; case 6 ; F1=1 ; F2 = 6; case 7 ; F1=3 ; F2 = 7; 16 CREWES Research Report Volume 24 (2012)

17 Spread spectrum techniques case 8 ; F1=2 ; F2 = 3; F3 = 4 ; F4 = 8 ; case 9 ; F1=4 ; F2 = 9; case 10 ; F1=3 ; F2 = 10; case 11 ; F1=2 ; F2 = 11; case 12 ; F1=1 ; F2 = 4; F3 = 6 ; F4 = 12 ; case 13 ; F1=1 ; F2 = 3; F3 = 4 ; F4 = 13 ; case 14 ; F1=1 ; F2 = 6; F3 = 10 ; F4 = 14 ; case 15 ; F1=1 ; F2 = 15; case 16 ; F1=1 ; F2 = 3; F3 = 12 ; F4 = 16 ; end mlen = 2^mDeg-1 ; a = round(baseperiod/samptime) ; tracelen = mlen*a; mseq = (1:traceLen)*0 ; tau =[0:traceLen-1]*sampTime ; Q(1:mDeg)= 1.0 ; % for i = 1 : mlen if (mdeg < 12 && mdeg ~= 8) mdeg == 15 PRBS_out = int16(mod(q(f1)+q(f2),2)) ; else PRBS_out = int16(mod(q(f1)+q(f2)+q(f3)+q(f4),2)) ; end for j = mdeg : -1 : 2 Q(j)=Q(j-1); end ; Q(1)=PRBS_out ; for j = 0 : a-1 i1 = a*(i-1)+1+j ; mseq(i1)= 2*PRBS_out - 1 ; end % j end %i return % end of function % APPENDIX C: DERIVING GOLD CODES FROM m-sequences Gold codes are constructed from m-sequences following an algorithm based on theory published by Gold (1967). Gold s theory can be reduced to a step-by-step procedure for constructing a set of related weakly-correlated Gold sequences. CREWES Research Report Volume 24 (2012) 17

18 Wong 1. Choose an integer m such that (m mod 2) = 1 or (m mod 4) = Construct an m-sequence d 1 of fundamental length L = 2 m Choose an integer k on the basis of gcd (greatest common divisor): (a) For (m mod 2) = 1, choose k so that gcd(m, k) = 1. (b) For (m mod 4) = 2, choose k so that gcd(m, k) = Set a decimation factor q = 2 k + 1 for odd m, or q = 2 2k - 2k+ 1 for (m mod 4) = If d 1 is the original m-sequence, and d 2 is a q-decimated version of d 1, then d 1 and d 2 are optimal pairs of sequences. 6. The set of sequences (d 1, d 2, d 1 +Td 2, d 1 + T 2 d 2, d 1 +T 3 d 2,, d 1 +T L-1 d 2 are a set of Gold codes. T stands for a cyclical shift of 1, T 2 stands for a cyclical shift of 2, etc. The addition is modulo For any pair of Gold codes, the cross-correlation at any lag will have only three values: -t(m), -1, and (t(m)-2), where (a) t(m) = 2 (m+1)/2 + 1 if (m mod 2) =1, or (b) t(m) = 2 (m+2)/2 + 1 if (m mod 4) = For each member of the set of Gold codes, the peak value of the autocorrelation is L, and the off peak values vary between -t (m), -1, and (t(m)-2). Refer to the following online articles on preferred (or optimal) pairs of m-sequences used for generating Gold codes. APPENDIX D: SIMULTANEOUS MULTIPLE SOURCE ACQUISITION USING M-SEQUENCES AND GOLD CODES Sallas et al. and Pecholcs et al. (2010) have reported on using weakly-correlated Gold codes as pilots for driving multiple vibrators operating simultaneously for land-based seismic surveys. Figures D1 to D4 compares this application of Gold codes with a similar application using shifted m-sequence pilots instead (see Wong, 2012, for a more complete discussion of this topic). 18 CREWES Research Report Volume 24 (2012)

19 Spread spectrum techniques The information presented on Figures D1 to D4 is more evidence that, due to the correlation noise which is inherent and unavoidable for Gold codes, they are less suitable for use as pilots for vibrating seismic sources than are m-sequences. FIG. D1: Two quasi-orthogonal sets of PRBSs with m=11, L=2047, t b =4ms, t s =1ms. Full cycle periods = 8188ms; only the first 2040 ms are displayed. (a) Four shifted m-sequences; (b) four Gold codes. On Figure D1, we show two sets of pseudorandom binary sequences, both of which are quasi-orthogonal under correlation. By quasi-orthogonal set we mean, that within each set, the autocorrelation of an individual member approximates the delta function, while the cross-correlation between two different members is nearly zero (within a restricted window of lag times). FIG. D2: (a) Auto/cross correlations of the four shifted m-sequences on Figure D1. (b) Convolutions of wavelet with four shifted m-sequences, delayed by arrival time between four CREWES Research Report Volume 24 (2012) 19

20 Wong sources and one receiver (R 1 to R 4 ); R T (in red) is the sum of R 1 to R 4 detected at the receiver. (c) Seismic traces obtained by cross-correlation of R T with each of the shifted m-sequences; (d) AGC plot of traces in (c) after removal of DC level. FIG.: D3: (a) Auto/cross correlations of the four Gold codes on Figure D1. (b) Convolutions of wavelet with four Gold codes, delayed by arrival time between four sources and one receiver (R 1 to R 4 ); R T (in red) is the sum of R 1 to R 4 detected at the receiver. (c) Seismic traces obtained by cross-correlation of R T with each of the shifted m-sequences; (d) AGC plot of traces in (c). The quasi-orthogonal nature of the set of shifted m-sequences is shown on Figure D2(a), on which the four autocorrelations of the members resemble delta functions, while the cross-correlations are very small constant values. Figure D2(b) shows the convolutions of the source function on Figure 3 with each of m-sequences on Figure D1(a). The convolutions R 1 to R 4 represent the received signal at a single receiver for four vibrators each driven by two cycles of a different m-sequence pilot. They have been displayed with delays and zero values that account for the travel time between a receiver and source. Since the vibrators are operating simultaneously, the total received signal R T is the sum of R 1 to R 4. Figure D2(c) and D2(d) shows the seismic traces reconstructed from the summed received signal R T by complete cross-correlation with each of the m- sequence pilots. The technique of driving four vibrators simultaneously with members of the quasi-orthogonal set has been successful in reconstructing the traces as if the sources were driven at non-overlapping times. The same procedure can be applied using the set of Gold codes as pilot signals. Figure D3 (a) shows that the autocorrelations also resemble delta functions, but the crosscorrelations have oscillating small non-zero values. The reconstructed seismic traces are plotted on Figure D3(d). The very weak wavelet on the original source functions is completely obscured by correlation noise. This is in sharp contrast with the traces on Figure D2(d), on which the weak wavelet appears very clearly. 20 CREWES Research Report Volume 24 (2012)

Simultaneous multi-source acquisition using m-sequences

Simultaneous multi-source acquisition using m-sequences Simultaneous source acquisition using m-sequences Simultaneous multi-source acquisition using m-sequences Joe Wong ABSTRACT Maximal length sequences, or m-sequences, are periodic mathematical periodic

More information

Summary. Time only. Distance only. Simultaneous Methods. Distance and Time. Slip-Sweeps Dynamic Slip-Sweeps Unconstrained simultaneous sources

Summary. Time only. Distance only. Simultaneous Methods. Distance and Time. Slip-Sweeps Dynamic Slip-Sweeps Unconstrained simultaneous sources Over 40,000 VPs per day with real-time quality control: Opportunities and Challenges Peter I. Pecholcs, Stephen K. Lafon, Hafiz Al-Shammery and Panos G. Kelamis (Saudi Aramco) Olivier Winter, Jean-Baptiste

More information

This tutorial describes the principles of 24-bit recording systems and clarifies some common mis-conceptions regarding these systems.

This tutorial describes the principles of 24-bit recording systems and clarifies some common mis-conceptions regarding these systems. This tutorial describes the principles of 24-bit recording systems and clarifies some common mis-conceptions regarding these systems. This is a general treatment of the subject and applies to I/O System

More information

TIMA Lab. Research Reports

TIMA Lab. Research Reports ISSN 292-862 TIMA Lab. Research Reports TIMA Laboratory, 46 avenue Félix Viallet, 38 Grenoble France ON-CHIP TESTING OF LINEAR TIME INVARIANT SYSTEMS USING MAXIMUM-LENGTH SEQUENCES Libor Rufer, Emmanuel

More information

REVISITING THE VIBROSEIS WAVELET

REVISITING THE VIBROSEIS WAVELET REVISITING THE VIBROSEIS WAVELET Shaun Strong 1 *, Steve Hearn 2 Velseis Pty Ltd and University of Queensland sstrong@velseis.com 1, steveh@velseis.com 2 Key Words: Vibroseis, wavelet, linear sweep, Vari

More information

Tu SRS3 07 Ultra-low Frequency Phase Assessment for Broadband Data

Tu SRS3 07 Ultra-low Frequency Phase Assessment for Broadband Data Tu SRS3 07 Ultra-low Frequency Phase Assessment for Broadband Data F. Yang* (CGG), R. Sablon (CGG) & R. Soubaras (CGG) SUMMARY Reliable low frequency content and phase alignment are critical for broadband

More information

Chapter 3. Source signals. 3.1 Full-range cross-correlation of time-domain signals

Chapter 3. Source signals. 3.1 Full-range cross-correlation of time-domain signals Chapter 3 Source signals This chapter describes the time-domain cross-correlation used by the relative localisation system as well as the motivation behind the choice of maximum length sequences (MLS)

More information

Vibroseis Correlation An Example of Digital Signal Processing (L. Braile, Purdue University, SAGE; April, 2001; revised August, 2004, May, 2007)

Vibroseis Correlation An Example of Digital Signal Processing (L. Braile, Purdue University, SAGE; April, 2001; revised August, 2004, May, 2007) Vibroseis Correlation An Example of Digital Signal Processing (L. Braile, Purdue University, SAGE; April, 2001; revised August, 2004, May, 2007) Introduction: In the vibroseis method of seismic exploration,

More information

Design of an Optimal High Pass Filter in Frequency Wave Number (F-K) Space for Suppressing Dispersive Ground Roll Noise from Onshore Seismic Data

Design of an Optimal High Pass Filter in Frequency Wave Number (F-K) Space for Suppressing Dispersive Ground Roll Noise from Onshore Seismic Data Universal Journal of Physics and Application 11(5): 144-149, 2017 DOI: 10.13189/ujpa.2017.110502 http://www.hrpub.org Design of an Optimal High Pass Filter in Frequency Wave Number (F-K) Space for Suppressing

More information

=, (1) Summary. Theory. Introduction

=, (1) Summary. Theory. Introduction Noise suppression for detection and location of microseismic events using a matched filter Leo Eisner*, David Abbott, William B. Barker, James Lakings and Michael P. Thornton, Microseismic Inc. Summary

More information

The case for longer sweeps in vibrator acquisition Malcolm Lansley, Sercel, John Gibson, Forest Lin, Alexandre Egreteau and Julien Meunier, CGGVeritas

The case for longer sweeps in vibrator acquisition Malcolm Lansley, Sercel, John Gibson, Forest Lin, Alexandre Egreteau and Julien Meunier, CGGVeritas The case for longer sweeps in vibrator acquisition Malcolm Lansley, Sercel, John Gibson, Forest Lin, Alexandre Egreteau and Julien Meunier, CGGVeritas There is growing interest in the oil and gas industry

More information

CDMA Technology : Pr. S. Flament Pr. Dr. W. Skupin On line Course on CDMA Technology

CDMA Technology : Pr. S. Flament  Pr. Dr. W. Skupin  On line Course on CDMA Technology CDMA Technology : Pr. Dr. W. Skupin www.htwg-konstanz.de Pr. S. Flament www.greyc.fr/user/99 On line Course on CDMA Technology CDMA Technology : Introduction to Spread Spectrum Technology CDMA / DS : Principle

More information

Seismic Reflection Method

Seismic Reflection Method 1 of 25 4/16/2009 11:41 AM Seismic Reflection Method Top: Monument unveiled in 1971 at Belle Isle (Oklahoma City) on 50th anniversary of first seismic reflection survey by J. C. Karcher. Middle: Two early

More information

Low wavenumber reflectors

Low wavenumber reflectors Low wavenumber reflectors Low wavenumber reflectors John C. Bancroft ABSTRACT A numerical modelling environment was created to accurately evaluate reflections from a D interface that has a smooth transition

More information

Matched filter. Contents. Derivation of the matched filter

Matched filter. Contents. Derivation of the matched filter Matched filter From Wikipedia, the free encyclopedia In telecommunications, a matched filter (originally known as a North filter [1] ) is obtained by correlating a known signal, or template, with an unknown

More information

Module 1: Introduction to Experimental Techniques Lecture 2: Sources of error. The Lecture Contains: Sources of Error in Measurement

Module 1: Introduction to Experimental Techniques Lecture 2: Sources of error. The Lecture Contains: Sources of Error in Measurement The Lecture Contains: Sources of Error in Measurement Signal-To-Noise Ratio Analog-to-Digital Conversion of Measurement Data A/D Conversion Digitalization Errors due to A/D Conversion file:///g /optical_measurement/lecture2/2_1.htm[5/7/2012

More information

Geophysical Applications Seismic Reflection Surveying

Geophysical Applications Seismic Reflection Surveying Seismic sources and receivers Basic requirements for a seismic source Typical sources on land and on water Basic impact assessment environmental and social concerns EPS435-Potential-08-01 Basic requirements

More information

P34 Determination of 1-D Shear-Wave Velocity Profileusing the Refraction Microtremor Method

P34 Determination of 1-D Shear-Wave Velocity Profileusing the Refraction Microtremor Method P34 Determination of 1-D Shear-Wave Velocity Profileusing the Refraction Microtremor Method E. Baniasadi* (University of Tehran), M. A. Riahi (University of Tehran) & S. Chaychizadeh (University of Tehran)

More information

There is growing interest in the oil and gas industry to

There is growing interest in the oil and gas industry to Coordinated by JEFF DEERE JOHN GIBSON, FOREST LIN, ALEXANDRE EGRETEAU, and JULIEN MEUNIER, CGGVeritas MALCOLM LANSLEY, Sercel There is growing interest in the oil and gas industry to improve the quality

More information

Spreading Codes and Characteristics. Error Correction Codes

Spreading Codes and Characteristics. Error Correction Codes Spreading Codes and Characteristics and Error Correction Codes Global Navigational Satellite Systems (GNSS-6) Short course, NERTU Prasad Krishnan International Institute of Information Technology, Hyderabad

More information

Interpretational applications of spectral decomposition in reservoir characterization

Interpretational applications of spectral decomposition in reservoir characterization Interpretational applications of spectral decomposition in reservoir characterization GREG PARTYKA, JAMES GRIDLEY, and JOHN LOPEZ, Amoco E&P Technology Group, Tulsa, Oklahoma, U.S. Figure 1. Thin-bed spectral

More information

Digital Imaging and Deconvolution: The ABCs of Seismic Exploration and Processing

Digital Imaging and Deconvolution: The ABCs of Seismic Exploration and Processing Digital Imaging and Deconvolution: The ABCs of Seismic Exploration and Processing Enders A. Robinson and Sven Treitcl Geophysical References Series No. 15 David V. Fitterman, managing editor Laurence R.

More information

System Identification and CDMA Communication

System Identification and CDMA Communication System Identification and CDMA Communication A (partial) sample report by Nathan A. Goodman Abstract This (sample) report describes theory and simulations associated with a class project on system identification

More information

Overview ta3520 Introduction to seismics

Overview ta3520 Introduction to seismics Overview ta3520 Introduction to seismics Fourier Analysis Basic principles of the Seismic Method Interpretation of Raw Seismic Records Seismic Instrumentation Processing of Seismic Reflection Data Vertical

More information

Multiple attenuation via predictive deconvolution in the radial domain

Multiple attenuation via predictive deconvolution in the radial domain Predictive deconvolution in the radial domain Multiple attenuation via predictive deconvolution in the radial domain Marco A. Perez and David C. Henley ABSTRACT Predictive deconvolution has been predominantly

More information

Tomostatic Waveform Tomography on Near-surface Refraction Data

Tomostatic Waveform Tomography on Near-surface Refraction Data Tomostatic Waveform Tomography on Near-surface Refraction Data Jianming Sheng, Alan Leeds, and Konstantin Osypov ChevronTexas WesternGeco February 18, 23 ABSTRACT The velocity variations and static shifts

More information

LOW POWER GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS) SIGNAL DETECTION AND PROCESSING

LOW POWER GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS) SIGNAL DETECTION AND PROCESSING LOW POWER GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS) SIGNAL DETECTION AND PROCESSING Dennis M. Akos, Per-Ludvig Normark, Jeong-Taek Lee, Konstantin G. Gromov Stanford University James B. Y. Tsui, John Schamus

More information

Digital Signal Processing. VO Embedded Systems Engineering Armin Wasicek WS 2009/10

Digital Signal Processing. VO Embedded Systems Engineering Armin Wasicek WS 2009/10 Digital Signal Processing VO Embedded Systems Engineering Armin Wasicek WS 2009/10 Overview Signals and Systems Processing of Signals Display of Signals Digital Signal Processors Common Signal Processing

More information

Downloaded 09/04/18 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/04/18 to Redistribution subject to SEG license or copyright; see Terms of Use at Processing of data with continuous source and receiver side wavefields - Real data examples Tilman Klüver* (PGS), Stian Hegna (PGS), and Jostein Lima (PGS) Summary In this paper, we describe the processing

More information

Physical Layer: Modulation, FEC. Wireless Networks: Guevara Noubir. S2001, COM3525 Wireless Networks Lecture 3, 1

Physical Layer: Modulation, FEC. Wireless Networks: Guevara Noubir. S2001, COM3525 Wireless Networks Lecture 3, 1 Wireless Networks: Physical Layer: Modulation, FEC Guevara Noubir Noubir@ccsneuedu S, COM355 Wireless Networks Lecture 3, Lecture focus Modulation techniques Bit Error Rate Reducing the BER Forward Error

More information

speech signal S(n). This involves a transformation of S(n) into another signal or a set of signals

speech signal S(n). This involves a transformation of S(n) into another signal or a set of signals 16 3. SPEECH ANALYSIS 3.1 INTRODUCTION TO SPEECH ANALYSIS Many speech processing [22] applications exploits speech production and perception to accomplish speech analysis. By speech analysis we extract

More information

CORRELATION BASED SNR ESTIMATION IN OFDM SYSTEM

CORRELATION BASED SNR ESTIMATION IN OFDM SYSTEM CORRELATION BASED SNR ESTIMATION IN OFDM SYSTEM Suneetha Kokkirigadda 1 & Asst.Prof.K.Vasu Babu 2 1.ECE, Vasireddy Venkatadri Institute of Technology,Namburu,A.P,India 2.ECE, Vasireddy Venkatadri Institute

More information

phase switching in radio interferometry Eric Keto Smithsonian Astrophysical Observatory, 60 Garden Street,Cambridge, MA 02138

phase switching in radio interferometry Eric Keto Smithsonian Astrophysical Observatory, 60 Garden Street,Cambridge, MA 02138 Shifted m-sequences as an alternative to Walsh functions for phase switching in radio interferometry Eric Keto Smithsonian Astrophysical Observatory, 60 Garden Street,Cambridge, MA 02138 Submillimeter

More information

Survey results obtained in a complex geological environment with Midwater Stationary Cable Luc Haumonté*, Kietta; Weizhong Wang, Geotomo

Survey results obtained in a complex geological environment with Midwater Stationary Cable Luc Haumonté*, Kietta; Weizhong Wang, Geotomo Survey results obtained in a complex geological environment with Midwater Stationary Cable Luc Haumonté*, Kietta; Weizhong Wang, Geotomo Summary A survey with a novel acquisition technique was acquired

More information

Chapter 4 SPEECH ENHANCEMENT

Chapter 4 SPEECH ENHANCEMENT 44 Chapter 4 SPEECH ENHANCEMENT 4.1 INTRODUCTION: Enhancement is defined as improvement in the value or Quality of something. Speech enhancement is defined as the improvement in intelligibility and/or

More information

Joint Time/Frequency Analysis, Q Quality factor and Dispersion computation using Gabor-Morlet wavelets or Gabor-Morlet transform

Joint Time/Frequency Analysis, Q Quality factor and Dispersion computation using Gabor-Morlet wavelets or Gabor-Morlet transform Joint Time/Frequency, Computation of Q, Dr. M. Turhan (Tury Taner, Rock Solid Images Page: 1 Joint Time/Frequency Analysis, Q Quality factor and Dispersion computation using Gabor-Morlet wavelets or Gabor-Morlet

More information

ME scope Application Note 01 The FFT, Leakage, and Windowing

ME scope Application Note 01 The FFT, Leakage, and Windowing INTRODUCTION ME scope Application Note 01 The FFT, Leakage, and Windowing NOTE: The steps in this Application Note can be duplicated using any Package that includes the VES-3600 Advanced Signal Processing

More information

Time Matters How Power Meters Measure Fast Signals

Time Matters How Power Meters Measure Fast Signals Time Matters How Power Meters Measure Fast Signals By Wolfgang Damm, Product Management Director, Wireless Telecom Group Power Measurements Modern wireless and cable transmission technologies, as well

More information

Comparison of Q-estimation methods: an update

Comparison of Q-estimation methods: an update Q-estimation Comparison of Q-estimation methods: an update Peng Cheng and Gary F. Margrave ABSTRACT In this article, three methods of Q estimation are compared: a complex spectral ratio method, the centroid

More information

SIGMA-DELTA CONVERTER

SIGMA-DELTA CONVERTER SIGMA-DELTA CONVERTER (1995: Pacífico R. Concetti Western A. Geophysical-Argentina) The Sigma-Delta A/D Converter is not new in electronic engineering since it has been previously used as part of many

More information

TE 302 DISCRETE SIGNALS AND SYSTEMS. Chapter 1: INTRODUCTION

TE 302 DISCRETE SIGNALS AND SYSTEMS. Chapter 1: INTRODUCTION TE 302 DISCRETE SIGNALS AND SYSTEMS Study on the behavior and processing of information bearing functions as they are currently used in human communication and the systems involved. Chapter 1: INTRODUCTION

More information

Method for the Generation of Broadband Acoustic Signals

Method for the Generation of Broadband Acoustic Signals Proceedings of Acoustics - Fremantle -3 November, Fremantle, Australia Method for the Generation of Broadband Acoustic Signals Paul Swincer (), Binh Nguyen () and Shane Wood () () School of Electrical

More information

New Features of IEEE Std Digitizing Waveform Recorders

New Features of IEEE Std Digitizing Waveform Recorders New Features of IEEE Std 1057-2007 Digitizing Waveform Recorders William B. Boyer 1, Thomas E. Linnenbrink 2, Jerome Blair 3, 1 Chair, Subcommittee on Digital Waveform Recorders Sandia National Laboratories

More information

CDP noise attenuation using local linear models

CDP noise attenuation using local linear models CDP noise attenuation CDP noise attenuation using local linear models Todor I. Todorov and Gary F. Margrave ABSTRACT Seismic noise attenuation plays an important part in a seismic processing flow. Spatial

More information

GNSS Technologies. GNSS Acquisition Dr. Zahidul Bhuiyan Finnish Geospatial Research Institute, National Land Survey

GNSS Technologies. GNSS Acquisition Dr. Zahidul Bhuiyan Finnish Geospatial Research Institute, National Land Survey GNSS Acquisition 25.1.2016 Dr. Zahidul Bhuiyan Finnish Geospatial Research Institute, National Land Survey Content GNSS signal background Binary phase shift keying (BPSK) modulation Binary offset carrier

More information

When and How to Use FFT

When and How to Use FFT B Appendix B: FFT When and How to Use FFT The DDA s Spectral Analysis capability with FFT (Fast Fourier Transform) reveals signal characteristics not visible in the time domain. FFT converts a time domain

More information

Investigating power variation in first breaks, reflections, and ground roll from different charge sizes

Investigating power variation in first breaks, reflections, and ground roll from different charge sizes Investigating power variation in first breaks, reflections, and ground roll from different charge sizes Christopher C. Petten*, University of Calgary, Calgary, Alberta ccpetten@ucalgary.ca and Gary F.

More information

Chapter 5 Window Functions. periodic with a period of N (number of samples). This is observed in table (3.1).

Chapter 5 Window Functions. periodic with a period of N (number of samples). This is observed in table (3.1). Chapter 5 Window Functions 5.1 Introduction As discussed in section (3.7.5), the DTFS assumes that the input waveform is periodic with a period of N (number of samples). This is observed in table (3.1).

More information

Biomedical Signals. Signals and Images in Medicine Dr Nabeel Anwar

Biomedical Signals. Signals and Images in Medicine Dr Nabeel Anwar Biomedical Signals Signals and Images in Medicine Dr Nabeel Anwar Noise Removal: Time Domain Techniques 1. Synchronized Averaging (covered in lecture 1) 2. Moving Average Filters (today s topic) 3. Derivative

More information

Analysis and design of filters for differentiation

Analysis and design of filters for differentiation Differential filters Analysis and design of filters for differentiation John C. Bancroft and Hugh D. Geiger SUMMARY Differential equations are an integral part of seismic processing. In the discrete computer

More information

25823 Mind the Gap Broadband Seismic Helps To Fill the Low Frequency Deficiency

25823 Mind the Gap Broadband Seismic Helps To Fill the Low Frequency Deficiency 25823 Mind the Gap Broadband Seismic Helps To Fill the Low Frequency Deficiency E. Zabihi Naeini* (Ikon Science), N. Huntbatch (Ikon Science), A. Kielius (Dolphin Geophysical), B. Hannam (Dolphin Geophysical)

More information

Chapter 2 Direct-Sequence Systems

Chapter 2 Direct-Sequence Systems Chapter 2 Direct-Sequence Systems A spread-spectrum signal is one with an extra modulation that expands the signal bandwidth greatly beyond what is required by the underlying coded-data modulation. Spread-spectrum

More information

P and S wave separation at a liquid-solid interface

P and S wave separation at a liquid-solid interface and wave separation at a liquid-solid interface and wave separation at a liquid-solid interface Maria. Donati and Robert R. tewart ABTRACT and seismic waves impinging on a liquid-solid interface give rise

More information

Pseudo Noise Sequence Generation using Elliptic Curve for CDMA and Security Application

Pseudo Noise Sequence Generation using Elliptic Curve for CDMA and Security Application IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 11 April 2015 ISSN (online): 2349-6010 Pseudo Noise Sequence Generation using Elliptic Curve for CDMA and Security

More information

Noise Effective Code Analysis on the Basis of Correlation in CDMA Technology

Noise Effective Code Analysis on the Basis of Correlation in CDMA Technology Manarat International University Studies, 2 (1): 183-191, December 2011 ISSN 1815-6754 @ Manarat International University, 2011 Noise Effective Code Analysis on the Basis of Correlation in CDMA Technology

More information

Spectral analysis of seismic signals using Burg algorithm V. Ravi Teja 1, U. Rakesh 2, S. Koteswara Rao 3, V. Lakshmi Bharathi 4

Spectral analysis of seismic signals using Burg algorithm V. Ravi Teja 1, U. Rakesh 2, S. Koteswara Rao 3, V. Lakshmi Bharathi 4 Volume 114 No. 1 217, 163-171 ISSN: 1311-88 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Spectral analysis of seismic signals using Burg algorithm V. avi Teja

More information

(i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods

(i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods Tools and Applications Chapter Intended Learning Outcomes: (i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods

More information

Theory of Telecommunications Networks

Theory of Telecommunications Networks Theory of Telecommunications Networks Anton Čižmár Ján Papaj Department of electronics and multimedia telecommunications CONTENTS Preface... 5 1 Introduction... 6 1.1 Mathematical models for communication

More information

The Discrete Fourier Transform. Claudia Feregrino-Uribe, Alicia Morales-Reyes Original material: Dr. René Cumplido

The Discrete Fourier Transform. Claudia Feregrino-Uribe, Alicia Morales-Reyes Original material: Dr. René Cumplido The Discrete Fourier Transform Claudia Feregrino-Uribe, Alicia Morales-Reyes Original material: Dr. René Cumplido CCC-INAOE Autumn 2015 The Discrete Fourier Transform Fourier analysis is a family of mathematical

More information

System analysis and signal processing

System analysis and signal processing System analysis and signal processing with emphasis on the use of MATLAB PHILIP DENBIGH University of Sussex ADDISON-WESLEY Harlow, England Reading, Massachusetts Menlow Park, California New York Don Mills,

More information

Analysis of Processing Parameters of GPS Signal Acquisition Scheme

Analysis of Processing Parameters of GPS Signal Acquisition Scheme Analysis of Processing Parameters of GPS Signal Acquisition Scheme Prof. Vrushali Bhatt, Nithin Krishnan Department of Electronics and Telecommunication Thakur College of Engineering and Technology Mumbai-400101,

More information

EXPERIMENT 4 SIGNAL RECOVERY

EXPERIMENT 4 SIGNAL RECOVERY EXPERIMENT 4 SIGNAL RECOVERY References: A. de Sa, Principles of electronic instrumentation P. Horowitz and W. Hill, The art of electronics R. Bracewell, The Fourier transform and its applications E. Brigham,

More information

Bicorrelation and random noise attenuation

Bicorrelation and random noise attenuation Bicorrelation and random noise attenuation Arnim B. Haase ABSTRACT Assuming that noise free auto-correlations or auto-bicorrelations are available to guide optimization, signal can be recovered from a

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2004 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2005 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

EE 422G - Signals and Systems Laboratory

EE 422G - Signals and Systems Laboratory EE 422G - Signals and Systems Laboratory Lab 5 Filter Applications Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 February 18, 2014 Objectives:

More information

Ambient Passive Seismic Imaging with Noise Analysis Aleksandar Jeremic, Michael Thornton, Peter Duncan, MicroSeismic Inc.

Ambient Passive Seismic Imaging with Noise Analysis Aleksandar Jeremic, Michael Thornton, Peter Duncan, MicroSeismic Inc. Aleksandar Jeremic, Michael Thornton, Peter Duncan, MicroSeismic Inc. SUMMARY The ambient passive seismic imaging technique is capable of imaging repetitive passive seismic events. Here we investigate

More information

COMPARATIVE ANALYSIS OF PEAK CORRELATION CHARACTERISTICS OF NON-ORTHOGONAL SPREADING CODES FOR WIRELESS SYSTEMS

COMPARATIVE ANALYSIS OF PEAK CORRELATION CHARACTERISTICS OF NON-ORTHOGONAL SPREADING CODES FOR WIRELESS SYSTEMS International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.3, May 212 COMPARATIVE ANALYSIS OF PEAK CORRELATION CHARACTERISTICS OF NON-ORTHOGONAL SPREADING CODES FOR WIRELESS SYSTEMS Dr.

More information

Study of Low-frequency Seismic Events Sources in the Mines of the Verkhnekamskoye Potash Deposit

Study of Low-frequency Seismic Events Sources in the Mines of the Verkhnekamskoye Potash Deposit Study of Low-frequency Seismic Events Sources in the Mines of the Verkhnekamskoye Potash Deposit D.A. Malovichko Mining Institute, Ural Branch, Russian Academy of Sciences ABSTRACT Seismic networks operated

More information

Underwater communication implementation with OFDM

Underwater communication implementation with OFDM Indian Journal of Geo-Marine Sciences Vol. 44(2), February 2015, pp. 259-266 Underwater communication implementation with OFDM K. Chithra*, N. Sireesha, C. Thangavel, V. Gowthaman, S. Sathya Narayanan,

More information

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels Abstract A Orthogonal Frequency Division Multiplexing (OFDM) scheme offers high spectral efficiency and better resistance to

More information

Analysis on Extraction of Modulated Signal Using Adaptive Filtering Algorithms against Ambient Noises in Underwater Communication

Analysis on Extraction of Modulated Signal Using Adaptive Filtering Algorithms against Ambient Noises in Underwater Communication International Journal of Signal Processing Systems Vol., No., June 5 Analysis on Extraction of Modulated Signal Using Adaptive Filtering Algorithms against Ambient Noises in Underwater Communication S.

More information

Department of Electronics and Communication Engineering 1

Department of Electronics and Communication Engineering 1 UNIT I SAMPLING AND QUANTIZATION Pulse Modulation 1. Explain in detail the generation of PWM and PPM signals (16) (M/J 2011) 2. Explain in detail the concept of PWM and PAM (16) (N/D 2012) 3. What is the

More information

Variable-depth streamer acquisition: broadband data for imaging and inversion

Variable-depth streamer acquisition: broadband data for imaging and inversion P-246 Variable-depth streamer acquisition: broadband data for imaging and inversion Robert Soubaras, Yves Lafet and Carl Notfors*, CGGVeritas Summary This paper revisits the problem of receiver deghosting,

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2003 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Linear Systems. Claudia Feregrino-Uribe & Alicia Morales-Reyes Original material: Rene Cumplido. Autumn 2015, CCC-INAOE

Linear Systems. Claudia Feregrino-Uribe & Alicia Morales-Reyes Original material: Rene Cumplido. Autumn 2015, CCC-INAOE Linear Systems Claudia Feregrino-Uribe & Alicia Morales-Reyes Original material: Rene Cumplido Autumn 2015, CCC-INAOE Contents What is a system? Linear Systems Examples of Systems Superposition Special

More information

Seismic reflection method

Seismic reflection method Seismic reflection method Seismic reflection method is based on the reflections of seismic waves occurring at the contacts of subsurface structures. We apply some seismic source at different points of

More information

TRANSFORMS / WAVELETS

TRANSFORMS / WAVELETS RANSFORMS / WAVELES ransform Analysis Signal processing using a transform analysis for calculations is a technique used to simplify or accelerate problem solution. For example, instead of dividing two

More information

Chapter 2 Channel Equalization

Chapter 2 Channel Equalization Chapter 2 Channel Equalization 2.1 Introduction In wireless communication systems signal experiences distortion due to fading [17]. As signal propagates, it follows multiple paths between transmitter and

More information

OFDM Systems For Different Modulation Technique

OFDM Systems For Different Modulation Technique Computing For Nation Development, February 08 09, 2008 Bharati Vidyapeeth s Institute of Computer Applications and Management, New Delhi OFDM Systems For Different Modulation Technique Mrs. Pranita N.

More information

Adaptive Beamforming for Multi-path Mitigation in GPS

Adaptive Beamforming for Multi-path Mitigation in GPS EE608: Adaptive Signal Processing Course Instructor: Prof. U.B.Desai Course Project Report Adaptive Beamforming for Multi-path Mitigation in GPS By Ravindra.S.Kashyap (06307923) Rahul Bhide (0630795) Vijay

More information

Spectrum Analysis: The FFT Display

Spectrum Analysis: The FFT Display Spectrum Analysis: The FFT Display Equipment: Capstone, voltage sensor 1 Introduction It is often useful to represent a function by a series expansion, such as a Taylor series. There are other series representations

More information

Mel Spectrum Analysis of Speech Recognition using Single Microphone

Mel Spectrum Analysis of Speech Recognition using Single Microphone International Journal of Engineering Research in Electronics and Communication Mel Spectrum Analysis of Speech Recognition using Single Microphone [1] Lakshmi S.A, [2] Cholavendan M [1] PG Scholar, Sree

More information

Designing Information Devices and Systems I Spring 2019 Homework 12

Designing Information Devices and Systems I Spring 2019 Homework 12 Last Updated: 9-4-9 :34 EECS 6A Designing Information Devices and Systems I Spring 9 Homework This homework is due April 6, 9, at 3:59. Self-grades are due April 3, 9, at 3:59. Submission Format Your homework

More information

Attenuation estimation with continuous wavelet transforms. Shenghong Tai*, De-hua Han, John P. Castagna, Rock Physics Lab, Univ. of Houston.

Attenuation estimation with continuous wavelet transforms. Shenghong Tai*, De-hua Han, John P. Castagna, Rock Physics Lab, Univ. of Houston. . Shenghong Tai*, De-hua Han, John P. Castagna, Rock Physics Lab, Univ. of Houston. SUMMARY Seismic attenuation measurements from surface seismic data using spectral ratios are particularly sensitive to

More information

Instruction Manual for Concept Simulators. Signals and Systems. M. J. Roberts

Instruction Manual for Concept Simulators. Signals and Systems. M. J. Roberts Instruction Manual for Concept Simulators that accompany the book Signals and Systems by M. J. Roberts March 2004 - All Rights Reserved Table of Contents I. Loading and Running the Simulators II. Continuous-Time

More information

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P.

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. The Radio Channel COS 463: Wireless Networks Lecture 14 Kyle Jamieson [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. Steenkiste] Motivation The radio channel is what limits most radio

More information

Northing (km)

Northing (km) Imaging lateral heterogeneity at Coronation Field with surface waves Matthew M. Haney, Boise State University, and Huub Douma, ION Geophysical/GXT Imaging Solutions SUMMARY A longstanding problem in land

More information

CG401 Advanced Signal Processing. Dr Stuart Lawson Room A330 Tel: January 2003

CG401 Advanced Signal Processing. Dr Stuart Lawson Room A330 Tel: January 2003 CG40 Advanced Dr Stuart Lawson Room A330 Tel: 23780 e-mail: ssl@eng.warwick.ac.uk 03 January 2003 Lecture : Overview INTRODUCTION What is a signal? An information-bearing quantity. Examples of -D and 2-D

More information

Evaluation of a broadband marine source

Evaluation of a broadband marine source Evaluation of a broadband marine source Rob Telling 1*, Stuart Denny 1, Sergio Grion 1 and R. Gareth Williams 1 evaluate far-field signatures and compare processing results for a 2D test-line acquired

More information

Investigating the low frequency content of seismic data with impedance Inversion

Investigating the low frequency content of seismic data with impedance Inversion Investigating the low frequency content of seismic data with impedance Inversion Heather J.E. Lloyd*, CREWES / University of Calgary, Calgary, Alberta hjelloyd@ucalgary.ca and Gary F. Margrave, CREWES

More information

Lecture 20: Mitigation Techniques for Multipath Fading Effects

Lecture 20: Mitigation Techniques for Multipath Fading Effects EE 499: Wireless & Mobile Communications (8) Lecture : Mitigation Techniques for Multipath Fading Effects Multipath Fading Mitigation Techniques We should consider multipath fading as a fact that we have

More information

SIGNAL PROCESSING ALGORITHMS FOR HIGH-PRECISION NAVIGATION AND GUIDANCE FOR UNDERWATER AUTONOMOUS SENSING SYSTEMS

SIGNAL PROCESSING ALGORITHMS FOR HIGH-PRECISION NAVIGATION AND GUIDANCE FOR UNDERWATER AUTONOMOUS SENSING SYSTEMS SIGNAL PROCESSING ALGORITHMS FOR HIGH-PRECISION NAVIGATION AND GUIDANCE FOR UNDERWATER AUTONOMOUS SENSING SYSTEMS Daniel Doonan, Chris Utley, and Hua Lee Imaging Systems Laboratory Department of Electrical

More information

Fourier Signal Analysis

Fourier Signal Analysis Part 1B Experimental Engineering Integrated Coursework Location: Baker Building South Wing Mechanics Lab Experiment A4 Signal Processing Fourier Signal Analysis Please bring the lab sheet from 1A experiment

More information

Carrier Frequency Offset Estimation in WCDMA Systems Using a Modified FFT-Based Algorithm

Carrier Frequency Offset Estimation in WCDMA Systems Using a Modified FFT-Based Algorithm Carrier Frequency Offset Estimation in WCDMA Systems Using a Modified FFT-Based Algorithm Seare H. Rezenom and Anthony D. Broadhurst, Member, IEEE Abstract-- Wideband Code Division Multiple Access (WCDMA)

More information

Using long sweep in land vibroseis acquisition

Using long sweep in land vibroseis acquisition Using long sweep in land vibroseis acquisition Authors: Alexandre Egreteau, John Gibson, Forest Lin and Julien Meunier (CGGVeritas) Main objectives: Promote the use of long sweeps to compensate for the

More information

MAKING TRANSIENT ANTENNA MEASUREMENTS

MAKING TRANSIENT ANTENNA MEASUREMENTS MAKING TRANSIENT ANTENNA MEASUREMENTS Roger Dygert, Steven R. Nichols MI Technologies, 1125 Satellite Boulevard, Suite 100 Suwanee, GA 30024-4629 ABSTRACT In addition to steady state performance, antennas

More information

Laboratory Assignment 5 Amplitude Modulation

Laboratory Assignment 5 Amplitude Modulation Laboratory Assignment 5 Amplitude Modulation PURPOSE In this assignment, you will explore the use of digital computers for the analysis, design, synthesis, and simulation of an amplitude modulation (AM)

More information

Spread Spectrum Techniques

Spread Spectrum Techniques 0 Spread Spectrum Techniques Contents 1 1. Overview 2. Pseudonoise Sequences 3. Direct Sequence Spread Spectrum Systems 4. Frequency Hopping Systems 5. Synchronization 6. Applications 2 1. Overview Basic

More information

Summary. Seismic vibrators are the preferred sources for land seismic ( ) (1) Unfortunately, due to the mechanical and

Summary. Seismic vibrators are the preferred sources for land seismic ( ) (1) Unfortunately, due to the mechanical and Timothy Dean*, John Quigley, Scott MacDonald, and Colin Readman, WesternGeco. Summary Seismic vibrators are the preferred sources for land seismic surveys. Unfortunately, due to the mechanical and hydraulic

More information