Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Size: px
Start display at page:

Download "Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)"

Transcription

1 January 2014 doc.: IEEE thz_240GHz Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: High Data Rate Wireless Communication using a 240 GHz Carrier Date Submitted: 19 January 2014 Source: Jochen Antes Company: Institute of Robust Power Semiconductor System, Stuttgart, Germany Address Pfaffenwaldring 47, D Stuttgart Voice: +49 (0) FAX: +49 (0) , jochen.antes@ilh.uni-stuttgart.de Re: n/a Abstract: The architecture, implementation and performance of an active MMIC-based 240 GHz frontend for multi-gigabit wireless communication is presented. Using this frontend, indoor transmission experiments show the feasibility of data rates up to 30 Gbit/s. In a long-range outdoor transmission, a distance of 1 km with data rates up to 24 Gbit/s is achieved. Purpose: Information of IEEE SG 100G Notice: This document has been prepared to assist the IEEE P It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P Submission Slide 1 Jochen Antes, University of Stuttgart

2 High Data Rate Wireless Communication using a 240 GHz carrier J. Antes 1, F. Boes 1, A. Tessmann 2, R. Henneberger 3, I. Kallfass 1 1 University of Stuttgart, Institute of Robust Power Semiconductor System, Stuttgart, Germany 2 Fraunhofer Institute for Applied Solid State Physics, Freiburg, Germany 3 Radiometer Physics GmbH, Meckenheim, Germany

3 Outline q Motivation q 240 GHz Frontend MMICs & Modules q Transmission Experiments q Receiver sensitivity q Lab experiments q Long range outdoor transmission q Comparison to State-of-the-Art 3

4 MOTIVATION 4

5 Motivation Millimeter Wave Communication q Available bandwidth q Compactness of components q High gain antennas combined with small aperture q Large atmospheric transmission windows Application Scenarios q Point-to-Point links q Backhaul / Last Mile access q Board-to-board q Intra-machine communication 5

6 Atmospheric attenuation in the mmw range q Large atmospheric transmission window between 183 and 325 GHz q Atmospheric attenuation: q Clear atmosphere: db/km q Foggy atmosphere: 9.5 db/km q Rain drops: db/km attenuation (db/km) O 2 O 2 1 bar, 20 C H 2 O H 2 O 43.4% RH heavy rain heavy fog frequency (GHz) I.T.U. Recommendation, Attenuation by atmospheric gases, ITU-R P.676-8, I.T.U. Recommendation, Attenuation due to clouds and fog, ITU-R P.840-4,

7 1.1 km, 240 GHz Wireless Link 7

8 Long Range Demonstrator 8

9 Long Range Demonstrator 9

10 Long Range Demonstrator 10

11 Long Range Demonstrator 11

12 Long Range Demonstrator 35nm mhemt LNA SH-IQ mixer 12

13 Long Range Demonstrator 35nm mhemt LNA SH-IQ mixer 13

14 240 GHZ FRONTEND MMICS & MODULES 14

15 Metamorphic High Electron Mobility Transistor 100 nm f T / f max = 220/300 GHz 50 nm 375/600 GHz 35 nm 515/900 GHz 20 nm 660/>1000 GHz mhemt Al 0.48 In 0.52 As (InP) Al 0.48 Ga 0.52 As (GaAs) Leuther et. al. IPRM inch GaAs wafer MIM MIM on via SiN RF PAD 20 µm Frontside Process Airbridge Backside Process 15

16 240 GHz Subharmonic quadrature transmitter q 35 nm mhemt technology q 2x subharmonic single balanced mixer cells q 240 GHz Lange coupler for I/Q functionality q 240 GHz LNA featuring > 35 db gain q RF transmit power up to -1 dbm 16

17 240 GHz Subharmonic quadrature receiver q Same stages as in Tx, but reversed LNA q Same packaging interfaces as in Tx q Conversion gain 10 db 17

18 240 GHz Subharmonic quadrature receiver q Same stages as in Tx, but reversed LNA q Same packaging interfaces as in Tx q Conversion gain 10 db 18

19 Splitblock Waveguide Packaging 0-40 GHz 120 GHz 240 GHz DC-bias 19

20 Splitblock Waveguide Packaging 0-40 GHz 120 GHz 240 GHz DC-bias 20

21 Splitblock Waveguide Packaging 0-40 GHz 120 GHz 240 GHz DC-bias V-Connector IF port WR-3 RF port 21

22 240 GHz Receiver 14 Noise Figure [db] IF-I IF-Frequency [GHz] Conversion gain q up to 3 db q I/Q imbalance below 2 db DSB noise figure q NF approx. 11 db over 20 GHz IF GHz LO 22

23 240 GHz Transmitter q P LO GHz q P out -3.6 dbm q IF-bandwidth approx. 35 GHz q 2xLO-to-RF isolation >12 dbc q I/Q imbalance below 1 db Lopez-Diaz et.al. EuMC

24 240 GHZ TRANSMISSION EXPERIMENTS 24

25 Receiver Sensitivity Measurement q Back-to-back configuration with calibrated attenuator between Tx and Rx q Measurement with BERT system q BPSK modulation up to 40 Gbit/s q Optimum Rx input power between -32 and -30 dbm Measured eye diagram at 35 Gbit/s BER < log(ber) Gbit/s 40 Gbit/s 35 Gbit/s Gbit/s Receiver Input Power [dbm] 25

26 Indoor experiments I q Back-to-back and wireless measurements q 10 GS/s AWG as signal source q 80 GS/s, real-time Scope for capturing received signal q Demodulation with VSA software q phase matched cables & IF amplification (22 db) in receiver path q Horn antennas + dielectric lenses (approx. 23dBi) q Up to 40 m distance (WR-3 attenuator for linear Rx operation AWG Scope I Q WR-3 Att I Q LO Tx x6 20 GHz 40 m RF out RF in back to back Rx LO x6 20 GHz 26

27 Indoor experiments II MMIC I/Q Rx & Tx horn-antenna LO x6 VSA-software power supply 80 GSa/s realtime scope attenuator IQ in/out amplifiers lens 27

28 Indoor experiments III q Constellation diagram for a QPSK modulated signal with 5 and 10 GBd 5 GBd 10 GBd back-to-back back-to-back q Demodulated Eyediagram for the 10 GBd signal EVM=7.10% 40 m EVM=11.04% 40 m EVM=9.23% EVM=10.26% 28

29 Indoor experiments IV q Constellation diagram for an 8-PSK modulated signal with 5 and 10 GBd 5 GBd 10 GBd back-to-back back-to-back q Slight decrease in signal quality between b2b and wireless transmission EVM=14.08% 40 m EVM=15.13% 40 m q Data rate limited by sampling rate of AWG EVM=12.30% EVM=15.16% 29

30 Indoor experiments V q Transmission of 16QAM not possible q LNA in transmitter operates in compression 30

31 1.1 km, 240 GHz Wireless Link 1.1 km 31

32 Beam Alignment Antenna Gain 55 dbi HPBW Spot 1 km 2.8 m 32

33 Transmit & Receive Housing with integrated Antenna Tx/Rx + x6 Scope Temperature regulation Cassegrain Antenna System 33

34 1.1 km PSK transmission at 12 GBd q EVM for q BPSK 24.9% q QPSK 22.7% q Both equals a BER better than 1x

35 1.1 km 8-PSK transmission q 6 GBd q EVM 18.5% q 12 GBd q Mapping of symbols not possible q Results in BER around 1x

36 State-of-the-Art Wireless Communication above 100 GHz Frequency Transmitter Receiver Bit rate Group Ref. 120 GHz MMIC 200 GHz Photonic MMIC (direct detection) direct detection 240 GHz MMIC MMIC GHz 300 GHz 300 GHz 625 GHz Photonic Frequency multiplexer 20 Gbps NTT [1] 1 Gbps IEMN [2] Up to 30 Gbps ILH, Fraunhofer IAF, KIT, RPG this work direct detection > 20 Gbps NTT [3] heterodyne detection ~100 Mbps TU Braunschweig [4] Resonanttunneling Diode Frequency multiplexer Resonanttunneling Diode Direct detection 1.5 Gbps Rohm [5] 2.5 Gbps Bell Labs [6] 36

37 Conclusion q 240 GHz Tx and Rx Frontend Modules q Quadrature up- and down-conversion q Subharmonic LO drive q RF pre- and post-amplification q Approx. 20 GHz IF bandwidth on module level q Receiver sensitivity characterized up to 40 Gbit/s q Reasonable BER of better than 6x10-8 for data rates up to 35 Gbit/s q Indoor transmission experiments up to 40 m and 30 Gbit/s q PSK modulation up to 8-PSK q No amplitude modulation possible due to LNA linearity in Tx q Outdoor transmission at 1.1 km and 24 Gbit/s QPSK 37

38 Future Work q Evaluation of the critical system components q Redesign on MMIC level with replacement of the LNA in the transmitter with a power amplifier q Improvements on module level to overcome losses and bandwidth limitations q Replacement of data source to overcome bandwidth limitations 38

39 Acknowledgements q The MILLILINK project partners Fraunhofer IAF, Kathrein, KIT Radiometer Physics, Siemens CT q This work was supported by the German Federal Ministry of Research and Education (BMBF) in the frame of the MILLILINK project under grant 01BP

40 Thank you for your attention Jochen Antes University of Stuttgart Institute of Robust Power Semiconductor Systems Pfaffenwaldring 47 D Stuttgart Tel.: +49 (0) Fax: +49 (0) jochen.antes@ilh.uni-stuttgart.de 40

41 References [1] A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, 10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal, IEEE Trans. Microwave Theory Tech., Vol. 57, No. 5, pp , [2] G. Ducournau et al., Optically power supplied Gbit/s wireless hotspot using 1.55 mm THz photomixer and heterodyne detection at 200 GHz, Electron. Lett., Vol. 46, No. 19, [3] T. Nagatsuma, H. -J. Song, Y. Fujimoto, A. Hirata, K. Miyake, K. Ajito, A. Wakatuski, T. Furuta, and N. Kukutsu, Giga-bit wireless link using GHz bands, IEEE International Topical Meeting on Microwave Photonics (MWP)2009, Th.2.3, Valencia, [4] C. Jastrow, S. Priebe, B. Spitschan, J. Hartmann, M. Jacob, T. Kürner, T. Schrader, T. Kleine- Ostmann, Wireless digital data transmission at 300 GHz, Electron. Lett., vol.46, no. 9, pp , [5] T. Mukai, M. Kawamura, T. Takada, and T. Nagatsuma, 1.5-Gbps wireless transmission using resonant tunneling diodes at 300 GHz, Tech. Dig. Optical Terahertz Science and Technology 2011 Meeting, MF42, Santa Barbara, 2011 [6] L. Moeller, J. F. Federici and K. Su, THz wireless communications: 2.5 Gb/s error-free transmission at 625 GHz using a narrow-bandwidth 1 mw THz source, Tech, Dig. URSI General Assembly and Scientific Symposium, Turkey, August

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: TERAPAN: Ultra-high Data Rate Transmission with steerable Antennas at 300 GHz Date Submitted: 10 March, 2015 Source:

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Feasibility test of THz channel for high-speed wireless link Date Submitted: 12 Nov 2013 Source: Jae-Young Kim, Ho-Jin

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: A first 300 GHz Phased Array Antenna Date Submitted: 11. July 2017 Source: Sebastian Rey, Technische Universität Braunschweig

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N July, 2008 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Submission Title: Millimeter-wave Photonics for High Data Rate Wireless Communication Systems Date Submitted:

More information

mhemt based MMICs, Modules, and Systems for mmwave Applications Axel Hülsmann Axel Tessmann Jutta Kühn Oliver Ambacher

mhemt based MMICs, Modules, and Systems for mmwave Applications Axel Hülsmann Axel Tessmann Jutta Kühn Oliver Ambacher mhemt based MMICs, Modules, and Systems for mmwave Applications Christaweg 54 79114 Freiburg, Germany +49 761 5951 4692 info@ondosense.com www.ondosense.com Axel Hülsmann Axel Tessmann Jutta Kühn Oliver

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Link Level Simulations of THz-Communications Date Submitted: 15 July, 2013 Source: Sebastian Rey, Technische Universität

More information

THz communications: general issues THz devices for coms (Tx and Rx) Some Reported com links Some conclusions

THz communications: general issues THz devices for coms (Tx and Rx) Some Reported com links Some conclusions THz communications for next generation HD rate wireless links TENXSYS Talk, 2015, June 17th G. Ducournau, M. Zaknoune, P. Szriftgiser, Jean-François Lampin (Tx and Rx) (Tx and Rx) 2 3 THz coms: general

More information

10-Gbit/s Phase-shift Keying Modulator and Demodulator MMICs for 120-GHz-band Wireless Link

10-Gbit/s Phase-shift Keying Modulator and Demodulator MMICs for 120-GHz-band Wireless Link 10-Gbit/s Phase-shift Keying Modulator and Demodulator MMICs for 120-GHz-band Wireless Link Hiroyuki Takahashi, Akihiko Hirata, Jun Takeuchi, Naoya Kukutsu, Toshihiko Kosugi, and Koichi Murata Abstract

More information

This project is co-funded by. Horizon 2020 HRCP. ThoR THz end-to-end wireless systems supporting ultra-high data Rate applications.

This project is co-funded by. Horizon 2020 HRCP. ThoR THz end-to-end wireless systems supporting ultra-high data Rate applications. This project is co-funded by Horizon 2020 HRCP ThoR THz end-to-end wireless systems supporting ultra-high data Rate applications Project overview Outline 1. Introduction to ThoR 2. ThoR approach 3. Hardware

More information

doc.: IEEE thz_Channel_Characteristics_Study_100GHz_300GHz

doc.: IEEE thz_Channel_Characteristics_Study_100GHz_300GHz Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: Channel Characteristics Study for Future Indoor Millimeter And Submillimeter Wireless Communications Date

More information

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Measuring the Channel Characteristics at 300 GHz - Preliminary Results Date Submitted: 13, Source: Thomas Kürner,

More information

Fully Integrated Radio Front-End Module for Wireless 100 Gbps Communications

Fully Integrated Radio Front-End Module for Wireless 100 Gbps Communications Fully Integrated Radio Front-End Module for Wireless 100 Gbps Communications Thomas Zwick Karlsruhe Institute of Technology, Germany thomas.zwick@kit.edu European Microwave Week 2017 EuMC EuRAD Motivation

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: 30-Gbps-class terahertz transmission using optical sub-harmonic IQ mixer for backhaul/fronthaul directly connected

More information

This document is intended to provide input to the development of a Technical Expectation Document by

This document is intended to provide input to the development of a Technical Expectation Document by Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Scenarios for the Application of THz Communications Date Submitted: 8 Source: Thomas Kürner Company: TU Braunschweig,

More information

Submission Title: Propagation Characteristics for Intra-Device Comunications

Submission Title: Propagation Characteristics for Intra-Device Comunications Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: Propagation Characteristics for Intra-Device Comunications Date Submitted: 19 March 2014 Source: Thomas

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Link Budget Analysis for Terahertz Fixed Wireless Links Date Submitted: 14 November, 2012 Source: Michael Grigat,

More information

Purpose: Tutorial on the activities and the status of the IEEE IG THz presented to the IEEE 802 Plenary

Purpose: Tutorial on the activities and the status of the IEEE IG THz presented to the IEEE 802 Plenary Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: What s next? Wireless Communication beyond 60 GHz (Tutorial IG THz) Date Submitted: 15 July 2012 Source:

More information

November 2010 doc.: IEEE thz

November 2010 doc.: IEEE thz Slide 1 Feasibility Test of Terahertz Wireless Communications at 300 GHz H.-J. Song 1, K. Ajito 1, T. Nagatsuma 2 and N. Kukutsu 1 1 NTT Microsystem Integration Laboratories. 2 Osaka University Slide 2

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [60GHz-band Gigabit Transceivers and Their Applications ] Date Submitted: [12 January 2004] Source: [Kenichi

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) March 2015 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Direct and Directed NLOS Channel Measurements for Intra-Device Communications Date Submitted: 09 July 2015

More information

November doc.: thz-multifrequency_measurements

November doc.: thz-multifrequency_measurements Project: IEEE P82.15 Working Group for Wireless Speciality Networks (WSNs WSNs) Title: Multi-Frequency Measurements at 9, 64 and 34 GHz using an Ultra-Wideband Channel Sounder Date Submitted: 6 November

More information

Microwave Photonic Devices and Their Applications to Communications and Measurements

Microwave Photonic Devices and Their Applications to Communications and Measurements PIRS NLIN, VL. 4, N. 3, 2008 376 Microwave Devices and Their Applications to Communications and Measurements Tadao Nagatsuma 1, 2 and Yuichi Kado 1 1 NTT Microsystem Integration Laboratories, NTT Corporation

More information

Overview of Millimeter and Terahertz Wave Application Research

Overview of Millimeter and Terahertz Wave Application Research : Applied Technology for Millimeter Overview of Millimeter and Terahertz Wave Application Research Naoya Kukutsu and Yuichi Kado Abstract Millimeter and terahertz wave technologies are fields that lie

More information

Updates on THz Amplifiers and Transceiver Architecture

Updates on THz Amplifiers and Transceiver Architecture Updates on THz Amplifiers and Transceiver Architecture Sanggeun Jeon, Young-Chai Ko, Moonil Kim, Jae-Sung Rieh, Jun Heo, Sangheon Pack, and Chulhee Kang School of Electrical Engineering Korea University

More information

A 10-Gbit/s Wireless Communication Link Using 16-QAM Modulation in 140-GHz Band

A 10-Gbit/s Wireless Communication Link Using 16-QAM Modulation in 140-GHz Band IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 61, NO. 7, JULY 2013 2737 A 10-Gbit/s Wireless Communication Link Using 16-QAM Modulation in 140-GHz Band Cheng Wang, Changxing Lin, Qi Chen,

More information

Radio Technologies for 5G Using Advanced Photonic Infrastructure for Dense User Environments

Radio Technologies for 5G Using Advanced Photonic Infrastructure for Dense User Environments 6th Japan-EU Symposium on ICT Research and Innovation Makuhari Messe, 6-7 October 2016. Radio Technologies for 5G Using Advanced Photonic Infrastructure for Dense User Environments Hiroshi Murata Osaka

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Effects of Phase Shift Errors on the Antenna Directivity of Phased Arrays in Indoor Terahertz Communications Date

More information

PHOTONIC GENERATION OF TERAHERTZ WAVES FOR COMMUNICATIONS AND SENSING

PHOTONIC GENERATION OF TERAHERTZ WAVES FOR COMMUNICATIONS AND SENSING PHOTONIC GENERATION OF TERAHERTZ WAVES FOR COMMUNICATIONS AND SENSING Tadao Nagatsuma Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyma, Toyonaka 560-8531, Japan nagatuma@ee.es.osaka-u.ac.jp

More information

Experimental comparison of terahertz and infrared data signal attenuation in dust clouds

Experimental comparison of terahertz and infrared data signal attenuation in dust clouds 36 J. Opt. Soc. Am. A / Vol. 9, No. / November Su et al. Experimental comparison of terahertz and infrared data signal attenuation in dust clouds Ke Su,, * Lothar Moeller, Robert B. Barat, 3 and John F.

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Introduction of vertically connected wireless system] Date Submitted: [ 14 JAN, 2004] Source: [Ami Kanazawa

More information

A 60GHz Transceiver RF Front-End

A 60GHz Transceiver RF Front-End TAMU ECEN625 FINAL PROJECT REPORT 1 A 60GHz Transceiver RF Front-End Xiangyong Zhou, UIN 421002457, Qiaochu Yang, UIN 221007758, Abstract This final report presents a 60GHz two-step conversion heterodyne

More information

May doc.: thz-Two-Step-AoA-Estimation

May doc.: thz-Two-Step-AoA-Estimation Project: IEEE P802.15 Working Group for Wireless Speciality Networks (WSNs WSNs) Title: Two-Step Angle-of-Arrival Estimation for Terahertz Communications Date Submitted: 7 May 2018 Source: Thomas Kürner

More information

Communications with THz Waves: Switching Data Between Two Waveguides

Communications with THz Waves: Switching Data Between Two Waveguides J Infrared Milli Terahz Waves (017) 38:1316 130 DOI 10.1007/s1076-017-048-4 Communications with THz Waves: Switching Data Between Two Waveguides J. Ma 1 & M. Weidenbach & R. Guo & M. Koch & D. M. Mittleman

More information

Terahertz wireless communications based on photonics technologies

Terahertz wireless communications based on photonics technologies Terahertz wireless communications based on photonics technologies Tadao Nagatsuma, 1,* Shogo Horiguchi, 1 Yusuke Minamikata, 1 Yasuyuki Yoshimizu, 1 Shintaro Hisatake, 1 Shigeru Kuwano, 2 Naoto Yoshimoto,

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [RF Devices for Millimeter-Wave Applications ] Date Submitted: [10 November 2003] Source: [Kenichi

More information

Beyond 100 Gbit/s wireless connectivity enabled by THz photonics

Beyond 100 Gbit/s wireless connectivity enabled by THz photonics Downloaded from orbit.dtu.dk on: Dec 11, 218 Beyond 1 Gbit/s wireless connectivity enabled by THz photonics Yu, Xianbin; Jia, Shi; Pang, Xiaodan; Morioka, Toshio; Oxenløwe, Leif Katsuo Published in: Proceedings

More information

mmw to THz ultra high data rate radio access technologies

mmw to THz ultra high data rate radio access technologies mmw to THz ultra high data rate radio access technologies Dr. Laurent HERAULT VP Europe, CEA LETI Pierre Vincent Head of RF IC design Lab, CEA LETI Outline mmw communication use cases and standards mmw

More information

Characteristics of InP HEMT Harmonic Optoelectronic Mixers and Their Application to 60GHz Radio-on-Fiber Systems

Characteristics of InP HEMT Harmonic Optoelectronic Mixers and Their Application to 60GHz Radio-on-Fiber Systems . TU6D-1 Characteristics of Harmonic Optoelectronic Mixers and Their Application to 6GHz Radio-on-Fiber Systems Chang-Soon Choi 1, Hyo-Soon Kang 1, Dae-Hyun Kim 2, Kwang-Seok Seo 2 and Woo-Young Choi 1

More information

What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley. WCA Futures SIG

What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley. WCA Futures SIG What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley WCA Futures SIG Outline THz Overview Potential THz Applications THz Transceivers in Silicon? Application

More information

Photonic Generation and Distribution of Coherent Multiband THz Wireless Signals

Photonic Generation and Distribution of Coherent Multiband THz Wireless Signals Photonic Generation and Distribution of Coherent Multiband THz Wireless Signals Martyn Fice, Haymen Shams, Zhen Yang, Luis Gonzalez-Guerrero, Michele Natrella, Cyril Renaud, and Alwyn Seeds University

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [MSK-based 60GHz PHY Proposal] Date Submitted: [7 May, 2007] Source: [Troy Beukema, Brian Floyd, Brian Gaucher,

More information

0.34-THz Wireless Link Based on High-Order Modulation for Future Wireless Local Area Network Applications

0.34-THz Wireless Link Based on High-Order Modulation for Future Wireless Local Area Network Applications IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. 4, NO. 1, JANUARY 2014 75 0.34-THz Wireless Link Based on High-Order Modulation for Future Wireless Local Area Network Applications Cheng Wang,

More information

Submission Title: Study on Statistical Characteristics of Human Blockage Effects in Future Indoor Millimeter Wave and THz Wireless Communications

Submission Title: Study on Statistical Characteristics of Human Blockage Effects in Future Indoor Millimeter Wave and THz Wireless Communications Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Study on Statistical Characteristics of Human Blockage Effects in Future Indoor Millimeter Wave and THz Wireless Communications

More information

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration 22 Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration Jun-Hyuk Seo, and Woo-Young Choi Department of Electrical and

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Application of RoF-Based Terahertz Fronthauling using Optical Sub-Harmonic IQ Mixer to Mobile/Wireless Access Systems

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N doc.: IEEE 802.15-03101r0 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Submission Title: [Channel ized, Optimum Pulse Shaped UWB PHY Proposal] Date Submitted:

More information

Fiber-fed wireless systems based on remote up-conversion techniques

Fiber-fed wireless systems based on remote up-conversion techniques 2008 Radio and Wireless Symposium incorporating WAMICON 22 24 January 2008, Orlando, FL. Fiber-fed wireless systems based on remote up-conversion techniques Jae-Young Kim and Woo-Young Choi Dept. of Electrical

More information

ALMA MEMO 399 Millimeter Wave Generation Using a Uni-Traveling-Carrier Photodiode

ALMA MEMO 399 Millimeter Wave Generation Using a Uni-Traveling-Carrier Photodiode ALMA MEMO 399 Millimeter Wave Generation Using a Uni-Traveling-Carrier Photodiode T. Noguchi, A. Ueda, H.Iwashita, S. Takano, Y. Sekimoto, M. Ishiguro, T. Ishibashi, H. Ito, and T. Nagatsuma Nobeyama Radio

More information

Channel Measurements for a Optical Fiber-Wireless Transmission System in the GHz Band

Channel Measurements for a Optical Fiber-Wireless Transmission System in the GHz Band Downloaded from orbit.dtu.dk on: Dec 19, 2017 Channel Measurements for a Optical Fiber-Wireless Transmission System in the 75-110 GHz Band Pang, Xiaodan; Yu, Xianbin; Zhao, Ying; Deng, Lei; Zibar, Darko;

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v01.05.00 HMC141/142 MIXER OPERATION

More information

An Inductor-Based 52-GHz 0.18 µm SiGe HBT Cascode LNA with 22 db Gain

An Inductor-Based 52-GHz 0.18 µm SiGe HBT Cascode LNA with 22 db Gain An Inductor-Based 52-GHz 0.18 µm SiGe HBT Cascode LNA with 22 db Gain Michael Gordon, Sorin P. Voinigescu University of Toronto Toronto, Ontario, Canada ESSCIRC 2004, Leuven, Belgium Outline Motivation

More information

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers 2017.07.03 Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers Akira Matsuzawa and Kenichi Okada Tokyo Institute of Technology Contents 1 Demand for high speed data transfer Developed high

More information

Channel Models, Regulation and

Channel Models, Regulation and Technische Universität Carolo-Wilhelmina zu Braunschweig tubs.city Jahrestagung g 2009 Towards Wireless Multi-Gigabit Systems Channel Models, Regulation and Standardisation Thomas Kürner 02.07.2009 Towards

More information

E-band and mmwave Components & Sub-Assemblies testing Challenges New Technology. VNA Roadshow Budapest 17/05/2016

E-band and mmwave Components & Sub-Assemblies testing Challenges New Technology. VNA Roadshow Budapest 17/05/2016 E-band and mmwave Components & Sub-Assemblies testing Challenges New Technology VNA Roadshow Budapest 17/05/2016 Agenda Applications drive the need Challenges faced by device characterization engineers

More information

From 1 Tbs per Carrier to 1 THz

From 1 Tbs per Carrier to 1 THz From 1 Tbs per Carrier to 1 THz Sorin P. Voinigescu ECE Department, University of Toronto European Microwave Conference 1 Outline Introduction Examples of Tbs Wireless and Photonics Systems Segmented Power

More information

Continuous-wave Terahertz Spectroscopy System Based on Photodiodes

Continuous-wave Terahertz Spectroscopy System Based on Photodiodes PIERS ONLINE, VOL. 6, NO. 4, 2010 390 Continuous-wave Terahertz Spectroscopy System Based on Photodiodes Tadao Nagatsuma 1, 2, Akira Kaino 1, Shintaro Hisatake 1, Katsuhiro Ajito 2, Ho-Jin Song 2, Atsushi

More information

Present and Future of Terahertz Communications

Present and Future of Terahertz Communications TeraHertz: New opportunities for industry TeraHertz: New opportunities for industry February 11, 2013 Present and Future of Terahertz Communications Tadao Nagatsuma Osaka University 1 My First THz J. Appl.

More information

High Speed E-Band Backhaul: Applications and Challenges

High Speed E-Band Backhaul: Applications and Challenges High Speed E-Band Backhaul: Applications and Challenges Xiaojing Huang Principal Research Scientist and Communications Team Leader CSIRO, Australia ICC2014 Sydney Australia Page 2 Backhaul Challenge High

More information

Fiber-wireless links supporting high-capacity W-band channels

Fiber-wireless links supporting high-capacity W-band channels Downloaded from orbit.dtu.dk on: Apr 05, 2019 Fiber-wireless links supporting high-capacity W-band channels Vegas Olmos, Juan José; Tafur Monroy, Idelfonso Published in: Proceedings of PIERS 2013 Publication

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Submission Title: [VLC with white-light LEDs: strategies to increase data rate] Date Submitted: [10 May 2008] Source:

More information

HIGHLY INTEGRATED MINIATURE-SIZED SINGLE SIDEBAND SUBHARMONIC KA-BAND UP-CONVERTER

HIGHLY INTEGRATED MINIATURE-SIZED SINGLE SIDEBAND SUBHARMONIC KA-BAND UP-CONVERTER Progress In Electromagnetics Research Letters, Vol. 18, 145 154, 2010 HIGHLY INTEGRATED MINIATURE-SIZED SINGLE SIDEBAND SUBHARMONIC KA-BAND UP-CONVERTER P.-K. Singh, S. Basu, W.-C. Chien, and Y.-H. Wang

More information

Direct intensity modulation of resonant-tunneling-diode terahertz oscillator up to ~30 GHz

Direct intensity modulation of resonant-tunneling-diode terahertz oscillator up to ~30 GHz This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Electronics Express, Vol.* No.*,*-* Direct intensity modulation of resonant-tunneling-diode

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks N (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs) Submission Title: [Wideband Measurement for Body Effect of BAN Channel] Date Submitted: [July 18, 2007] Source: [Tetsushi

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Phase Noise Aspects Date Submitted: 08 November, 2013 Source: Michael Grigat, Company: Deutsche Telekom AG Address:

More information

Project: IEEE P Study Group for Wireless Personal Area Networks (WPANs(

Project: IEEE P Study Group for Wireless Personal Area Networks (WPANs( Project: IEEE P802.15 Study Group for Wireless Personal Area Networks (WPANs( WPANs) Title: Alternatives for Lower Frequency Band Extension Date Submitted: July 12, 2004 Source: Andreas Wolf, Dr. Wolf

More information

Wireless Communication Systems Laboratory Lab #3: Introduction to wireless front-end

Wireless Communication Systems Laboratory Lab #3: Introduction to wireless front-end Objective Wireless Communication Systems Laboratory Lab #3: Introduction to wireless front-end The objective of this experiment is to study hardware components which are commonly used in most of the wireless

More information

PLC-based integrated devices for advanced modulation formats

PLC-based integrated devices for advanced modulation formats ECOC 2009 workshop 7-5 Sep. 20, 2009 PLC-based integrated devices for advanced modulation formats Y. Inoue NTT Photonics Labs. NTT Corporation NTT Photonics Laboratories Hybrid integration of photonics

More information

Above 200 GHz On-Chip CMOS Frequency Generation, Transmission and Receiving

Above 200 GHz On-Chip CMOS Frequency Generation, Transmission and Receiving Above 200 GHz On-Chip CMOS Frequency Generation, Transmission and Receiving Bassam Khamaisi and Eran Socher Department of Physical Electronics Faculty of Engineering Tel-Aviv University Outline Background

More information

WIRELESS communication systems have shown tremendous

WIRELESS communication systems have shown tremendous 2734 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 55, NO. 12, DECEMBER 2007 Integrated Heterojunction Bipolar Transistor Optically Injection-Locked Self-Oscillating Opto-Electronic Mixers

More information

King Abdullah University of Science & Technology

King Abdullah University of Science & Technology King Abdullah University of Science & Technology Department of Electrical Engineering EE 242: Digital Communication & Coding A QPSK Modulator Using Microwave Couplers and Switches for Satellite Transmitter

More information

January doc.: thz_THz_Wireless_Communications_Challenges_and_Opportunities

January doc.: thz_THz_Wireless_Communications_Challenges_and_Opportunities January 2017 doc.: 15-17-0007-00-0thz_THz_Wireless_Communications_Challenges_and_Opportunities Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: THz Wireless

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Submission Title: [VLC with white-light LEDs: strategies to increase data rate] Date Submitted: [10 May 2008] Source:

More information

High Gain Antenna for Millimetre-Wave Communications. Aitor Martinez (Anteral, Spain) EuMW th October, London.

High Gain Antenna for Millimetre-Wave Communications. Aitor Martinez (Anteral, Spain) EuMW th October, London. High Gain Antenna for Millimetre-Wave Communications Aitor Martinez (Anteral, Spain) EuMW 2016. 4th October, London. Outline 1. Motivation 2. Anteral s contribution to mmw and THz systems 3. mmw and THz

More information

Wireless Communication Systems Lab-Manual-3 Introduction to Wireless Front End. Objective

Wireless Communication Systems Lab-Manual-3 Introduction to Wireless Front End. Objective Wireless Communication Systems Lab-Manual-3 Introduction to Wireless Front End Objective The objective of this experiment is to study hardware components which are commonly used in most of the wireless

More information

Even as fourth-generation (4G) cellular. Wideband Millimeter Wave Test Bed for 60 GHz Power Amplifier Digital Predistortion.

Even as fourth-generation (4G) cellular. Wideband Millimeter Wave Test Bed for 60 GHz Power Amplifier Digital Predistortion. Wideband Millimeter Wave Test Bed for 60 GHz Power Amplifier Digital Predistortion Stephen J. Kovacic, Foad Arfarei Maleksadeh, Hassan Sarbishaei Skyworks Solutions, Woburn, Mass. Mike Millhaem, Michel

More information

Performance Analysis of OFDM FSO System using ODSB, OSSB and OVSB modulation scheme by employing Spatial Diversity

Performance Analysis of OFDM FSO System using ODSB, OSSB and OVSB modulation scheme by employing Spatial Diversity 1 IJEDR Volume 3, Issue 2 ISSN: 2321-9939 Performance Analysis of OFDM FSO System using, and modulation scheme by employing Spatial Diversity 1 Harjot Kaur Gill, 2 Balwinder Singh Dhaliwal, 3 Kuldeepak

More information

CobaltFx Series EXTEND YOUR REACH. Frequency Extender System from. Frequency bands from: GHz, GHz, GHz

CobaltFx Series EXTEND YOUR REACH. Frequency Extender System from. Frequency bands from: GHz, GHz, GHz CobaltFx Series TM Frequency Extender System from TM Frequency bands from: 50-75 GHz, 60-90 GHz, 75-110 GHz EXTEND YOUR REACH USA: +1.17..5400 61 E. New York St Indianapolis, IN 460 www.coppermountaintech.com

More information

Terahertz (THz) Wireless Systems for Space Applications

Terahertz (THz) Wireless Systems for Space Applications Terahertz (THz) Wireless Systems for Space Applications Shian U. Hwu 1, Kanishka B. desilva 2 1 Barrios Technology, 2 Jacobs Technology Houston, Texas, USA Shian.u.hwu@nasa.gov Cindy T. Jih NASA/JSC/EV6

More information

60 GHz Receiver (Rx) Waveguide Module

60 GHz Receiver (Rx) Waveguide Module The PEM is a highly integrated millimeter wave receiver that covers the GHz global unlicensed spectrum allocations packaged in a standard waveguide module. Receiver architecture is a double conversion,

More information

Multi-Gigabit Wireless Link Development

Multi-Gigabit Wireless Link Development Multi-Gigabit Wireless Link Development Oya Sevimli, Val Dyadyuk, David Abbott, John Bunton, Rod Kendall, Leigh Stokes, Mei Shen, Stephanie Smith CSIRO, ICT Centre oya.sevimli@csiro.au Abstract - CSIRO

More information

Towards 100 Gbps: Ultra-high Spectral Efficiency using massive MIMO with 3D Antenna Configurations

Towards 100 Gbps: Ultra-high Spectral Efficiency using massive MIMO with 3D Antenna Configurations Towards 100 Gbps: Ultra-high Spectral Efficiency using massive with 3D Antenna Configurations ICC 2013, P10 12.06.2013 Budapest, Hungaria Eckhard Grass, grass@ihp-microelectronics.com grass@informatik.hu-berlin.de

More information

Spectrally Compact Optical Subcarrier Multiplexing with 42.6 Gbit/s AM-PSK Payload and 2.5Gbit/s NRZ Labels

Spectrally Compact Optical Subcarrier Multiplexing with 42.6 Gbit/s AM-PSK Payload and 2.5Gbit/s NRZ Labels Spectrally Compact Optical Subcarrier Multiplexing with 42.6 Gbit/s AM-PSK Payload and 2.5Gbit/s NRZ Labels A.K. Mishra (1), A.D. Ellis (1), D. Cotter (1),F. Smyth (2), E. Connolly (2), L.P. Barry (2)

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs) Title: [The Scalability of UWB PHY Proposals] Date Submitted: [July 13, 2004] Source: [Matthew Welborn] Company [Freescale

More information

W-band Point to Multipoint Backhaul of 4G -5G mobile in dense cities & fix residential

W-band Point to Multipoint Backhaul of 4G -5G mobile in dense cities & fix residential W-band Point to Multipoint Backhaul of G -G mobile in dense cities & fix residential François Magne WHEN-AB, France W µwave & RF Wireless mm-wave for LTE-A & towards G, March 07 AGENDA W-band wireless

More information

Amplifier Characterization in the millimeter wave range. Tera Hertz : New opportunities for industry 3-5 February 2015

Amplifier Characterization in the millimeter wave range. Tera Hertz : New opportunities for industry 3-5 February 2015 Amplifier Characterization in the millimeter wave range Tera Hertz : New opportunities for industry 3-5 February 2015 Millimeter Wave Converter Family ZVA-Z500 ZVA-Z325 Y Band (WR02) ZVA-Z220 J Band (WR03)

More information

E-BAND WIRELESS TECHNOLOGY OVERVIEW

E-BAND WIRELESS TECHNOLOGY OVERVIEW OVERVIEW EXECUTIVE SUMMARY The 71-76 and 81-86 GHz bands (widely known as e-band ) are permitted worldwide for ultra-high capacity point-to-point communications. E-band wireless systems are available that

More information

5G System Concept Seminar. RF towards 5G. Researchers: Tommi Tuovinen, Nuutti Tervo & Aarno Pärssinen

5G System Concept Seminar. RF towards 5G. Researchers: Tommi Tuovinen, Nuutti Tervo & Aarno Pärssinen 04.02.2016 @ 5G System Concept Seminar RF towards 5G Researchers: Tommi Tuovinen, Nuutti Tervo & Aarno Pärssinen 5.2.2016 2 Outline 5G challenges for RF Key RF system assumptions Channel SNR and related

More information

V-BAND QUADRATURE PHASE SHIFT KEYING DE- MODULATOR USING WR-12 SIX-PORT

V-BAND QUADRATURE PHASE SHIFT KEYING DE- MODULATOR USING WR-12 SIX-PORT Progress In Electromagnetics Research Letters, Vol. 6, 193 199, 2009 V-BAND QUADRATURE PHASE SHIFT KEYING DE- MODULATOR USING WR-12 SIX-PORT N. Khaddaj Mallat, E. Moldovan, and S. O. Tatu Université de

More information

Down-Converter Gilbert-Cell Mixer for WiMax Applications using 0.15µm GaAs HEMT Technology

Down-Converter Gilbert-Cell Mixer for WiMax Applications using 0.15µm GaAs HEMT Technology Down-Converter Gilbert-Cell Mixer for WiMax Applications using 0.15µm GaAs HEMT Technology Abdullah Mohammed H. Almohaimeed A thesis presented to Ottawa-Carleton Institute for Electrical and Computer Engineering

More information

This is a paper submitted to and accepted for publication in:

This is a paper submitted to and accepted for publication in: This is a paper submitted to and accepted for publication in: Mu-Chieh Lo, Robinson Guzmán, Carlos Gordón and Guillermo Carpintero. Mode-locked photonic integrated circuits for millimeter and terahertz

More information

Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen. THz communication from today s Demonstrators to future Nano Communications

Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen. THz communication from today s Demonstrators to future Nano Communications Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen THz communication from today s Demonstrators to future Nano Communications Thomas Kürner, Sebastian Rey, Alexander Fricke, Bile Peng,

More information

Wideband 760GHz Planar Integrated Schottky Receiver

Wideband 760GHz Planar Integrated Schottky Receiver Page 516 Fourth International Symposium on Space Terahertz Technology This is a review paper. The material presented below has been submitted for publication in IEEE Microwave and Guided Wave Letters.

More information

8.5 GHz to 13.5 GHz, GaAs, MMIC, I/Q Mixer HMC521ALC4

8.5 GHz to 13.5 GHz, GaAs, MMIC, I/Q Mixer HMC521ALC4 11 7 8 9 FEATURES Downconverter, 8. GHz to 13. GHz Conversion loss: 9 db typical Image rejection: 27. dbc typical LO to RF isolation: 39 db typical Input IP3: 16 dbm typical Wide IF bandwidth: dc to 3.

More information

Korea (Republic of) TECHNICAL FEASIBILITY OF IMT IN THE BANDS ABOVE 6 GHz

Korea (Republic of) TECHNICAL FEASIBILITY OF IMT IN THE BANDS ABOVE 6 GHz Radiocommunication Study Groups Received: 23 January 2013 Document 23 January 2013 English only SPECTRUM ASPECTS TECHNOLOGY ASPECTS GENERAL ASPECTS Korea (Republic of) TECHNICAL FEASIBILITY OF IMT IN THE

More information

IEEE P Wireless Personal Area Networks. IEEE P Task Group Visible-Light Communication (TG-VLC)

IEEE P Wireless Personal Area Networks. IEEE P Task Group Visible-Light Communication (TG-VLC) IEEE P802.15 Wireless Personal Area Networks Project Title IEEE P802.15.7 Task Group Visible-Light Communication (TG-VLC) High-power high-bandwidth linear driving circuit for VLC applications Date Submitted

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P82.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [UWB Channel Measurement Results in Indoor Residential Environment High-Rise Apartments] Date Submitted: [19

More information

60 GHz RX. Waveguide Receiver Module. Features. Applications. Data Sheet V60RXWG3. VubIQ, Inc

60 GHz RX. Waveguide Receiver Module. Features. Applications. Data Sheet V60RXWG3. VubIQ, Inc GHz RX VRXWG Features Complete millimeter wave receiver WR-, UG-8/U flange Operates in the to GHz unlicensed band db noise figure Up to.8 GHz modulation bandwidth I/Q analog baseband interface Integrated

More information

Adoption of this document as basis for broadband wireless access PHY

Adoption of this document as basis for broadband wireless access PHY Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Proposal on modulation methods for PHY of FWA 1999-10-29 Source Jay Bao and Partha De Mitsubishi Electric ITA 571 Central

More information

International Journal of Engineering & Computer Science IJECS-IJENS Vol:13 No:03 1

International Journal of Engineering & Computer Science IJECS-IJENS Vol:13 No:03 1 International Journal of Engineering & Computer Science IJECS-IJENS Vol:13 No:03 1 Characterization of Millimetre waveband at 40 GHz wireless channel Syed Haider Abbas, Ali Bin Tahir, Muhammad Faheem Siddique

More information

Millimeter wave MIMO. E. Torkildson, B. Ananthasubramaniam, U. Madhow, M. Rodwell Dept. of Electrical and Computer Engineering

Millimeter wave MIMO. E. Torkildson, B. Ananthasubramaniam, U. Madhow, M. Rodwell Dept. of Electrical and Computer Engineering Millimeter wave MIMO Wireless Links at Optical Speeds E. Torkildson, B. Ananthasubramaniam, U. Madhow, M. Rodwell Dept. of Electrical and Computer Engineering University of California, Santa Barbara The

More information