NEIGHBORHOOD electric vehicles (NEVs) are propelled

Size: px
Start display at page:

Download "NEIGHBORHOOD electric vehicles (NEVs) are propelled"

Transcription

1 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 8, NO. 1, DECEMBER An LLC Resonant DC DC Converter for Wide Output Voltage Range Battery Charging Applications Fariborz Musavi, Senior Member, IEEE, Marian Craciun, Member, IEEE, Deepak S. Gautam, Student Member, IEEE, Wilson Eberle, Member, IEEE, and William G. Dunford, Senior Member, IEEE Abstract In this paper, resonant tank design procedure and practical design considerations are presented for a high performance LLC multiresonant dc dc converter in a two-stage smart battery charger for neighborhood electric vehicle applications. The multiresonant converter has been analyzed and its performance characteristics are presented. It eliminates both low- and highfrequency current ripple on the battery, thus maximizing battery life without penalizing the volume of the charger. Simulation and experimental results are presented for a prototype unit converting 390 V from the input dc link to an output voltage range of 48 7 V dc at 650 W. The prototype achieves a peak efficiency of 96%. Index Terms Batteries, dc dc power converters, electric vehicles, resonant converters. I. INTRODUCTION NEIGHBORHOOD electric vehicles (NEVs) are propelled by an electric motor that is supplied with power from a rechargeable battery [1], []. Presently, the performance characteristics required for many electric vehicle (EV) applications far exceed the storage capabilities of conventional battery systems. However, battery technology is improving and as this transition occurs, the charging of these batteries becomes very complicated due to the high voltages and currents involved in the system and the sophisticated charging algorithms [3]. Quick charging of high capacity battery packs causes increased disturbances in the ac utility power system, thereby increasing the need for efficient, low-distortion smart chargers. A smart charger is a battery charger that can respond to the condition of a battery, and modify its charging actions according to the battery algorithm. Conversely, a standard, or simple battery charger supplies a constant dc or pulsed dc power source to a battery being charged. A simple charger does not alter its out- Manuscript received October 11, 01; revised December 3, 01; accepted January 15, 013. Date of current version June 6, 013. This paper was presented at the IEEE Applied Power Electronics Conference and Exposition, Orlando, FL, 01. This work was supported by Delta-Q Technologies Corp. Recommended for publication by Associate Editor S. Crozier. F. Musavi, M. Craciun, and D. S. Gautam are with Delta-Q Technologies Corporation, Burnaby, BC V5G 3H3 Canada ( fmusavi@delta-q.com; mcraciun@delta-q.com; dgautam@delta-q.com). W. Eberle is with the School of Engineering, University of British Columbia, Okanagan, Kelowna, BC V1V 1V7 Canada ( Wilson.eberle@ubc.ca). W. G. Dunford is with the Department of Electrical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4 Canada ( wgd@ece.ubc.ca). Color versions of one or more of the figures in this paper are available online at Digital Object Identifier /TPEL Fig. 1. Typical battery charging power architecture. put based on time or the charge on the battery. Therefore, smart chargers are preferred for NEV battery charging applications. The proposed NEV battery charger power architecture includes an ac dc converter with power factor correction (PFC) [4], followed by an isolated dc dc converter, as shown in Fig. 1 [5]. This architecture virtually eliminates the low- and high-frequency current ripple charging the battery without using a bulky filter capacitor. Instead, it uses a high-frequency transformer. The architecture maximizes battery life without penalizing the charger volume. In the work that follows, the front-end ac dc PFC converter is a conventional continuous conduction mode (CCM) boost topology [6], [7]. The second-stage dc dc converter is a half-bridge multiresonant LLC converter [8]. The criteria for choosing these topologies include high reliability, high efficiency, and low component cost. The half-bridge resonant LLC converter is widely used in the telecom industry for its high efficiency at the resonant frequency and its ability to regulate the output voltage during the hold-up time, where the output voltage is constant and the input voltage might drop significantly [9] [1]. Resonant converters have been used in many applications, including induction heating [13], and fuel cells [14]. However, the wide output voltage range requirements for a battery charger are drastically different and challenging compared to telecom applications, which operate in a narrow output voltage range. Fig. illustrates a simplified battery charging profile. It has four distinct operating modes: bulk, absorption, equalization, and maintenance. In the bulk mode, the charger limits the maximum charging current to a preset I MAX value while monitoring the battery voltage. In the absorption mode, the charger elevates the voltage to V ABS while monitoring the current. This voltage is just below the battery gassing voltage. When it has reached this point, the battery is between 70% and 90% state of charge (SOC). When the current decreases to a preset value, I OCT, the charger enters the equalization mode. When it has reached this point, the battery is at 100% SOC. Equalizing is an overcharge performed on lead acid batteries after they have been fully charged. This function equalizes the cell voltages in a battery module. In the maintenance mode, the charging action /$ IEEE

2 5438 Fig.. IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 8, NO. 1, DECEMBER 013 Simplified adaptive 4-step lead acid battery charging profile. Fig. 4. Typical dc gain characteristics of an LLC converter using first harmonic approximation. limits, in addition to the maximum frequency of the LLC converter. Furthermore, in order to revive a fully depleted battery, the charger must operate out of this plane, from near zero voltage which is far below the maximum operating frequency boundary of the converter. Satisfying these requirements requires a new design strategy for an LLC resonant converter. The following sections provide detailed practical considerations for designing an LLC multiresonant converter in a battery charging application. II. DESIGN PROCEDURE Fig. 3. Desired lead acid battery V I plane on a 650-W charger for 48-V system. is finished and the charger only supplies limited current to offset the internal soft discharge. As indicated in Fig., the battery voltage, at the dc dc converter output, can vary from as low as 36 V to as high as 7 V. Therefore, the design requirements for selecting the resonant tank components are significantly different than those in telecom applications featuring a constant output voltage [15]. The authors in [16] [18] addressed wide output range applications; however, the design procedures are given for resonant tank components using the first harmonic approximation proposed in [19] and [0], which is only valid for frequencies close to the resonant frequencies. The resonant tank design guidelines utilize information from the lead acid battery V I plane, provided in Fig. 3. It illustrates the key design points and limitations on a 650-W charger for a 48-V system. This V I plane dictates the design criteria for the half-bridge multiresonant LLC converter, in particular the resonant tank components, Lr, Lm, and Cr. The outer range of the operating plane is constrained by the constant voltage (CV), constant power (CP), constant current (CC), and short circuit The life and capacity of EV batteries depend on several factors, such as cycle count, charge mode, maintenance, temperature, and age. Among these factors, the charge mode has a significant impact on battery life and capacity. EV batteries should be charged with current and voltage levels with low ripple. In addition, the basic requirements for battery chargers are small size and high efficiency, which can be achieved using soft switching techniques. reduce the switching losses that result from high-frequency operation, resonant power conversion can be used. There are several publications and application notes in industry focusing on resonant circuit design. There are two major issues with the existing work: 1) the output voltage is considered constant (e.g., typical for telecom applications), which is not a valid assumption in battery charging; and ) the ratio of the transformer magnetizing inductance and the resonant inductance (including the leakage inductance) is given by some suggested values without considering the effect of the short circuit condition on the resonant network. As a result, the sequence of designing the resonant network is different for battery charging applications. Fig. 4 illustrates a family of typical dc gain characteristics for an LLC converter as a function of normalized switching frequency for seven different load conditions varying from

3 MUSAVI et al.: ANLLC RESONANT DC DC CONVERTER FOR WIDE OUTPUT VOLTAGE RANGE BATTERY CHARGING APPLICATIONS 5439 no-load to short circuit. Resonance occurs at unity gain, where the resonant capacitors and series resonant inductor are tuned. By design, this is the point where the converter is required to deliver maximum power, and in Fig. 3 it is marked as Design Point f s. A second resonance occurs at the peak of the bellshaped curves, which is the boundary between ZVS (Region ) and ZCS (Region 3). The maximum gain is achieved at the second resonant frequency, where the resonant capacitors are tuned with series resonant inductor and parallel magnetizing inductance. In Fig. 3, this point of maximum gain is labeled Design Point L m. Achieving maximum efficiency requires operation close to frequencies where the resonant tank impedance is very low. Wide range for input and/or output operating voltages requires operation on the steep portion of the curve below resonance in Region. In addition, maintaining ZVS operation [1], while avoiding ZCS operation in Region 3, requires operation in Region. Fast overload and short circuit protection circuitry is required in order to avoid possible ZCS operation in the capacitive Region 3 [], [3]. The following step by step procedure is provided in order to meet these requirements. A. Initial Design Parameters The input voltage range, output voltage range, maximum output power, and resonant frequency are the initial design parameters to be defined. The input voltage to the dc dc stage is determined by the PFC bus output voltage at the dc link capacitors. Unlike telecom power supply applications, there is no hold-up time requirement and the variation seen by the LLC converter is only the low-frequency ripple on the PFC bus capacitors, which is 370 to 410 V with a nominal value of 390 V. The output voltage range of the dc dc stage is from 36 to 7 V with a nominal value of 48 V. The maximum power of 650 W is defined at the nominal output voltage, 48 V. The choice of switching frequency depends on the cost-loss tradeoff between the Litz wire gauge used in the transformer and resonant inductor magnetics, and the cost and power loss in the wire [4]. For the given 390 V input and 650 W application, the optimized Litz wire strand gauge was determined to be 44 AWG at a 00 khz switching frequency using [4]. B. Maximum Switching Frequency, Maximum Dead Time The maximum switching frequency is limited by the voltage controlled oscillator in the control IC and the reflected junction capacitance of the output rectifiers [5], [6]. The ac equivalent circuit of the LLC resonant converter including parasitic components is illustrated in Fig. 5. As it was demonstrated in [5], the normalized dc gain equation of the converter is modified by the inclusion of the rectifier diode junction capacitances and as a result increasing the switching frequency decreases the output voltage until, the circuit resonates with the diode junction capacitances at which point, further increasing the switching frequency tends to increase the output voltage. Limiting the maximum switching frequency is an approach to prohibit the converter from operating at frequencies where the junction capacitances of the rectifier Fig. 5. AC equivalent circuit of LLC resonant converter including parasitic components. diodes and other parasitic elements in the circuit resonate, causing an undesired increase in the output voltage. As a result, the maximum switching frequency should be limited to.5 times the resonant frequency. C. Selecting Transformer Turns Ratio, N n The transformer turns ratio should be selected at the resonant frequency where the gain is unity and can be calculated using (1), where V d represents the diode voltage drop of the output rectifier N n = D. Calculating Resonant Inductor, L r V in(nom) (V o(min) + V d ). (1) The minimum resonant inductor must be selected to limit the maximum output current in the short circuit condition and limit the converter to its maximum switching frequency. The minimum inductance is given by () L r(scc) = N n V in(nom) V o(nom) 8f s max P o. () E. Calculating Resonant Capacitor, C r Once the value of the resonant inductor is determined, the resonant capacitor value can be calculated using (3) C r(res) = 1 ( π f o ) L r(scc). (3) F. Characteristic Impedance and Quality Factor After determining the resonant inductor and capacitor values, the characteristic impedance of the resonant network is given by (4) L r(scc) Z o =. (4) C r(res) The minimum quality factor can then be calculated using (5) and (6) as proposed in [1] Q min = Z o R ac max (5) R ac max = 8N n Vo max π. (6) P o

4 5440 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 8, NO. 1, DECEMBER 013 G. Calculating Magnetizing Inductance, Lm The choice of magnetizing inductance has to fulfill two conditions. First, to achieve ZVS under no load conditions, a maximum magnetizing inductance, Lm (ZVS), is required as given by (7). In (7), the total capacitance of the half-bridge, CHB, is the sum of stray capacitance of the printed circuit board, the Q1 and Q MOSFET output capacitances, and the transformer and inductor inter-winding capacitances. In order to realize the required maximum gain at the minimum switching frequency as noted in [7], Lm (m ax) is given by (8) tdead.nn.vo(m in) 4 f s 1 m a x t d e a d Lm (ZVS) = (7) CHB Vin(m ax) Lm (m ax) = Lr (scc) fo π f s m i n M d c1 m a x (8) The final value for the magnetizing inductance is the minimum of the two values. However, if Lm (m ax) < Lm (ZVS), then a new dead time should be calculated using the value from Lm (m ax), and replaced in (7) to get a new dead time. Finally, the total inductance value must satisfy the energy balance in the total capacitance of the half-bridge, using (9) and (10) 1 (Lm (m in) + Lr (scc) )Im pk Im pk 1 CHB Vin(m ax) Nn Vo(m in) =. 4Lm > Fig. 6. MOSFET current and resonant capacitor voltage. Fig. 7. MOSFET RMS current for different input and output voltage. (9) (10) III. PRACTICAL DESIGN CONSIDERATIONS A detailed design procedure and resonant tank component selection were provided n in the previous section. Additional practical design considerations addressing MOSFET selection, resonant and output capacitor selection, output diode rectifier selection, controller IC selection, and the power and current limit restrictions are provided in the sub-sections that follow. A. MOSFET Selection For MOSFET selection, consideration must be given to practical dv/dt turn-on limits, body diode reverse recovery [8], and losses. Fig. 6 illustrates the voltage across the resonant capacitor and the current through the MOSFET as a function of time at turn-on, where the switching frequency is under the unity gain resonant frequency. With ZVS turn-on and low turn-off loss, MOSFET losses are dominated by conduction loss. In order to calculate the conduction losses, a precise model of the switch current is required. Equations (11) and (1) represent the current through the switch as shown in Fig. 6 π IPK sin t θ, t (11) IM OSFET (t) = N V T Ts n o o, t< 4Lm θ = Arcsin Nn V o T o 4Lm IPK. (1) Using (11), the switch RMS current can be calculated using (13) Ts IM OSFET rm s = (IM OSFET (t)) dt. (13) Ts 0 Fig. 7 shows the MOSFET RMS current as a function of output voltage at minimum, nominal, and maximum input voltages (i.e., the PFC bus voltage). It is noted that this model is only valid for switching frequencies below the unity gain resonant frequency. As shown in Fig. 1 in [9], modern low drain to source on resistance (RDSon ) vertical structure MOSFETs have large Coss capacitance at low VDS voltage. This helps reduce turn-off loss since the drain current at the turn-off instant is divided between

5 MUSAVI et al.: AN LLC RESONANT DC DC CONVERTER FOR WIDE OUTPUT VOLTAGE RANGE BATTERY CHARGING APPLICATIONS 5441 Fig. 8. Resonant inductor current, MOSFET voltage, and gating signal during switch turn-off. the drain to source (CDS ) and gate to source (CGS ) intrinsic capacitors. When the drain voltage reaches approximately 10 V, Crss starts to decrease suddenly up to 100 times at 40 V (two decades) and the drain current has to continue to flow through CDS and the MOSFET channel. If the MOSFET channel current is zero, this results in lossless turn-off. The CDS value itself has dropped to less than one tenth of its 0 V value so this sudden current redistribution increases the resonant transition dv/dt and triggers a high-frequency (i.e., >100 MHz) oscillation between the CDS and stray plus drain and source package inductances until the opposite MOSFET reduces transition dv/dt when its VDS voltage drops below 40 V. The result is that up to a critical turn-off current the transition is lossless, above this critical value the transition dv/dt and turn-off loss increase rapidly. Unfortunately, there is no easy way to measure this critical current since a drain current measurement cannot differentiate between the MOSFET channel and parasitic capacitance currents, but evidence of this behavior can be observed in the MOSFET VDS and ID waveforms, as shown in Fig. 8. For the ST Microelectronics STB3NM60ND MOSFET, the capacitance inflection point can be approximated at 40 V. Then, the total capacitance of the half-bridge switching node CHB can be modeled as a piecewise effective capacitance of 160 pf for 40 V < VHB < (Vin 40 V), and 5.4 nf for VHB < 40 V and (Vin 40 V) < VHB < Vin. For the half-bridge high-side MOSFET, at the end of the resonant transition, the CDG value increases by a factor of 100, injecting more current into the gate drive circuit in the presence of the undamped transitional high-frequency oscillation, so the gate drive has to be able to sink this current without raising the gate voltage and turning-on the MOSFET prematurely. However, the V I characteristic in Fig. 3 exhibits the charging rate reduction for battery voltages below 1 V/cell in order to limit the turn-off current below Icrit and maintain minimal turn-off loss. B. Resonant and Output Capacitor Selection The resonant capacitor voltage is closely associated with the resonant inductor current, which is partially the same as the Fig. 9. Resonant capacitor voltage for different input and output voltage. MOSFET current. By definition, the voltage across resonant capacitor is given by (14), enabling the capacitor peak-to-peak voltage to be expressed by (15) tal Charge Cr (res) Ts IM OSFET (t) dt = 0. Cr (res) VC p k p k = (14) VC p k p k (15) Assuming the voltage waveform is sinusoidal, the average dc and RMS ac values for the resonant capacitor are given by (16) and (17), respectively Vin VC p k p k. = VC d c = VC a c rm s (16) (17) Curves of the resonant capacitor voltage are provided in Fig. 9 as a function of output voltage at minimum, nominal, and maximum input voltages (i.e., the PFC bus voltage). This model is only valid for switching frequencies below the unity gain resonant frequency. There are two technologies available to satisfy the resonant capacitor value and voltage stress requirements: ML ceramic capacitors and film capacitors. The problems with ML ceramic capacitors include maximum size limitations due to failure under board flexing and a failure mode that results in a short circuit. Thus, they are undesired for resonant and output filter capacitors. Alternately, polypropylene film capacitors have several characteristics that make them a good candidate for the resonant capacitor. They are more stable with temperature, have higher temperature ratings, exhibit self-healing characteristics, and are relatively inexpensive. The capacitor selected for the resonant network was an EPCOS MKP series B360L. The permissible voltage across the capacitor given in Fig. 9 must match the voltage given by the data sheet [30]; page 15 at 700 V ac. The output capacitors have to handle very high ripple current as well as all the requirements given for resonant capacitors.

6 544 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 8, NO. 1, DECEMBER 013 Fig. 11. Photo of the prototype LLC dc dc converter. D. Power Limit and Current Limit Restrictions Fig. 10. voltage. Output capacitor ac ripple current for different input and output In order to express the output capacitor ac ripple current, the secondary side instantaneous current is required and is given by (18), enabling the output capacitor ac ripple current to be calculated using (19) (1) sec (t) = Nn IM OSFET (t) + sec ac = sec rm s = sec ave = 1 sec rm s 1 sec Nn Vo 4Lm 1 (18) 4 sec ave (19) (t) dt (0) 0 sec (t) dt. (1) 0 Fig. 10 illustrates the output capacitor ac ripple current as a function of output voltage for different input voltages. As can be noted, the ac ripple current is at its peak, when both the input voltage and output voltage are at their minimum values. For this application, metalized polyester film capacitors are best suited. Accordingly, an EPCOS MKT series B356 output capacitor was selected. C. Output Diode Rectifier Selection The output diode rectifiers exhibit ZCS for both turn-on (zero di/dt) and turn-off. Hence, the parameters to consider in the selection of the diodes are forward drop, VFW D and junction capacitance, Cj. The available technologies include Schottky and ultrafast diodes. Schottky diodes demonstrate lower forward drop, but have relatively higher junction capacitance compared to ultrafast diodes. Higher junction capacitance limits the maximum switching frequency of the converter and no load regulation of output voltage. This is usually dealt with using a dummy load. If there is no dummy load at the output, then ultrafast diodes should be chosen. The V I plane provided in Fig. 3 illustrates the limitations on the output voltage, output power, and output current. The output current and output voltage are controlled by the feedback control circuit as per the voltage and current references provided by the battery charging algorithm requirements. However, the output power limitation has two distinct curves. The actual power limit is implemented by software, as a hyperbolic function given by () = Po (Const.). Vo () In addition, there is a faster power limit implemented by hardware, which is a straight line connecting the constant current limits to the constant voltage limits. The deviation of the hardware limit from the actual power limit is 5 W at.5 V/Cell. E. Control IC Selection There are several commercial off-the-shelf control ICs available for LLC resonant converters, each having distinct characteristics and limitations. The key requirements for selecting a controller are switching frequency range, operating temperature range, ability to control the secondary side, programmable deadtime, programmable soft start, protection and brownout detection. Given the requirements for the battery charging application investigated, the NCP1395B control IC from On Semiconductor was selected. IV. EXPERIMENTAL RESULTS A prototype of the half-bridge LLC multiresonant converter was built to provide a proof-of-concept and verify the analytical work presented in this paper. Fig. 11 shows a picture of the LLC dc dc multiresonant converter prototype. Table I provides the design criteria for the prototype LLC converter. In Table II, the key components used in the prototype converter are given. Curves of the efficiency of the converter as a function of load are given in Fig. 1 for output voltages of 48, 60, and 7 V. These measurements were taken with the output relay, common mode EMI inductor, and output fuse included. Experimental waveforms of the resonant tank current, resonant capacitor voltage, and voltage across bottom MOSFET, Q are provided in Figs. 13 and 14 at Vin = 390 V, and Po = 650 W.

7 MUSAVI et al.: AN LLC RESONANT DC DC CONVERTER FOR WIDE OUTPUT VOLTAGE RANGE BATTERY CHARGING APPLICATIONS 5443 TABLE I DESIGN SPECIFICATIONS Fig. 13. Resonant tank current (IL r ), resonant capacitor voltage (V C r ), and voltage across Q (V Q ) at V o = 48 V, P o = 650 W, and fs = 11 khz (Y -axis: Ch1 = V Q 100 V/div. Ch = V C r 100 V/div. Ch4 = IL r A/div. X -axis: 1 μs/div). TABLE II COMPONENTS USED IN THE PROTOTYPE CONVERTER Fig. 14. Resonant tank current (IL r ), resonant capacitor voltage (V C r ), and voltage across Q (V Q ) at V o = 7 V, P o = 650 W, and fs = 11 khz (Y -axis: Ch1 = V Q 100 V/div. Ch = V C r 100 V/div. Ch4 = IL r A/div. X -axis: 1 μs/div). Fig. 1. Measured efficiency versus output power at V o = 48 V and fsw = 11 khz, V o = 60 V and fsw = 170 khz, V o = 7 V and fsw = 15 khz. The waveforms in Fig. 13 are given close to the unity gain resonant frequency, fs = 11 khz, and output voltage, Vo = 48 V. The waveforms in Fig. 14 are given at fs = 15 khz, and an output voltage of Vo = 7 V. In both figures, the potential for ZVS turn-on is noted, since the resonant current lags the voltage across MOSFET Q. Fig. 15. Output current ripple ( R ip p le ) and output voltage ripple (V o R ip p le ) at V o = 48 V, = 13.5 A and battery simulator load (Y -axis: Ch1 = V o R ip p le 500 mv/div. Ch4 = R ip p le 100 ma/div. X -axis: 5 ms/div). Fig. 15 provides waveforms of the output voltage and current low-frequency ripple at full load. The low-frequency current ripple is limited to 537 ma at a dc load current of 13.5 A. The low-frequency voltage ripple is 140 mv at an output voltage of 48 V.

8 5444 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 8, NO. 1, DECEMBER 013 V. CONCLUSION A resonant tank design procedure and practical design considerations were presented for a high performance LLC multiresonant dc dc converter in a two stage wide output voltage range smart battery charger for NEV applications. The multiresonant converter has been analyzed and its performance characteristics presented. It eliminates both low- and high-frequency current ripple on the battery, thus maximizing battery life without penalizing the volume of the charger. Experimental results were presented for a prototype unit converting 390 V from the input dc link to an output voltage range of 48 7 V dc at 650 W. The prototype achieves a peak efficiency of 96%. REFERENCES [1] D.W. Gao, C. Mi, and A. Emadi, Modeling and simulation of electric and hybrid vehicles, Proc. IEEE, vol. 95, no. 4, pp , Apr [] A. Emadi, S. Williamson, and A. Khaligh, Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems, IEEE Trans. Power Electron., vol. 1, no. 3, pp , May 006. [3] A. M. Rahimi, A lithium-ion battery charger for charging up to eight cells, in Proc. IEEE Conf. Vehicle Power Propulsion,005,pp [4] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, A review of single-phase improved power quality AC- DC converters, IEEE Trans. Ind. Electron., vol. 50, no. 5, pp , Oct [5] L. Petersen and M. Andersen, Two-stage power factor corrected power supplies: The low component-stress approach, in Proc. IEEE Appl. Power Electron. Conf. Expo., 00, vol., pp [6] B. Lu, W. Dong, S. Wang, and F. C. Lee, High frequency investigation of single-switch CCM power factor correction converter, in Proc. IEEE Appl. Power Electron. Conf. Expo., 004, vol. 3, pp [7] L. Yang, B. Lu, W. Dong, Z. Lu, M. Xu, F. C. Lee, and W. G. Odendaal, Modeling and characterization of a 1KW CCM PFC converter for conducted EMI prediction, in Proc. IEEE Appl. Power Electron. Conf. Expo., 004, vol., pp [8] A. K. S. Bhat, Analysis and design of LCL-type series resonant converter, IEEE Trans. Ind. Electron., vol. 41, no. 1, pp , Feb [9] B. Yang, F. C. Lee, A. J. Zhang, and G. Huang, LLC resonant converter for front end DC/DC conversion, in Proc. IEEE Appl. Power Electron. Conf. Expo., 00, vol., pp [10] T. Liu, Z. Zhou, A. Xiong, J. Zeng, and J. Ying, A novel precise design method for LLC series resonant converter, in Proc. IEEE Telecommun. Energy Conf., INTELEC, 006, pp [11] Jee-hoon Jung and Joong-gi Kwon, Theoretical analysis and optimal design of LLC resonant converter, in Proc. Eur. Conf. Power Electron. Appl., 007, pp [1] J. Biela, U. Badstubner, and J. W. Kolar, Design of a 5 kw, 1U, 10 kw/ltr resonant DC-DC converter for telecom applications, Proc. Int. Telecommun. Energy Conf., INTELEC, pp , 007. [13] S. Chudjuarjeen, A. Sangswang, and C. Koompai, An improved LLC resonant inverter for induction-heating applications with asymmetrical control, IEEE Trans. Ind. Electron., vol. 58, no. 7, pp , Jul [14] J.-Y. Lee, Yu-Seok Jeong, and B.-M. Han, An isolated DC/DC converter using high-frequency unregulated LLC resonant converter for fuel cell applications, IEEE Trans. Ind. Electron., vol. 58, no. 7, pp , Jul [15] Y. C. Chuang, Y. L. Ke, H. S. Chuang, and Y. M. Chen, Analysis and implementation of half-bridge series parallel resonant converter for battery chargers, IEEE Trans. Ind. Appl.,vol.47,no.1,pp.58 70,Feb.011. [16] R. Beiranvand, B. Rashidian, M. R. Zolghadri, and S. M. H. Alavi, Using LLC resonant converter for designing wide-range voltage source, IEEE Trans. Ind. Electron., vol. 58, no. 5, pp , May 011. [17] R. Beiranvand, B. Rashidian, M. R. Zolghadri, and S. M. H. Alavi, Optimizing the normalized dead-time and maximum switching frequency of a wide-adjustable-range LLC resonant converter, IEEE Trans. Power Electron., vol. 6, no., pp , Feb [18] R. Beiranvand, B. Rashidian, M. R. Zolghadri, and S. M. H. Alavi, A design procedure for optimizing the LLC resonant converter as a wide output range voltage source, IEEE Trans. Power Electron., vol. 7, no. 8, pp , Aug. 01. [19] G. Ivensky, S. Bronshtein, and A. Abramovitz, Approximate analysis of resonant LLC DC-DC converter, IEEE Trans. Power Electron., vol. 6, no. 11, pp , Nov [0] X. Fang, H. Hu, Z. J. Shen, and I. Batarseh, Operation mode analysis and peak gain approximation of the LLC resonant converter, IEEE Trans. Power Electron., vol. 7, no. 4, pp , Apr. 01. [1] R. L. Steigerwald, A comparison of half-bridge resonant converter topologies, IEEE Trans. Power Electron., vol. 3, no., pp , Apr [] H. Figge, T. Grote, N. Froehleke, J. Boecker, and P. Ide, Paralleling of LLC resonant converters using frequency controlled current balancing, IEEE Power Electron. Spec. Conf., pp , 008. [3] Bo Yang, pology investigation for front end DC/DC power conversion for distributed power system, Ph.D. dissertation, Elect. Comput. Eng. Dept., Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 003, p [4] C. R. Sullivan, T. Abdallah, and T. Fujiwara, Optimization of a flyback transformer winding considering two-dimensional field effects, cost and loss, in IEEE Appl. Power Electron. Conf. Expo., 001, vol. 1, pp [5] B.-H. Lee, M.-Y. Kim, C.-E. Kim, K.-B. Park, and G.-W. Moon, Analysis of LLC resonant converter considering effects of parasitic components, in Proc. 31st Int. Telecommun. Energy Conf., 009, INTELEC, 009, pp [6] M. Borage, K.V. Nagesh, M.S. Bhatia, and S. Tiwari, Design of LCL-T resonant converter including the effect of transformer winding capacitance, IEEE Trans. Ind. Electron., vol. 56, no. 5, pp , May 009. [7] Y. Gu, Z. Lu, L. Hang, Z. Qian, and G. Huang, Three-level LLC series resonant DC/DC converter, IEEE Trans. Power Electron., vol. 0, no. 4, pp , 005. [8] Won-suk Choi, Sung-mo Young, and Dong-wook Kim, Analysis of MOS- FET failure modes in LLC resonant converter, in Proc. Int. Telecommun. Energy Conf., INTELEC, 009, pp [9] STB3NM60ND, N-channel 600 V, Ω typ., 19.5 A, FDmesh TM II Power MOSFET, STMicroelectronics, 01. [30] Film Capacitors: Metallized Polypropylene Film Capacitors (MKP), Series/Type: B3601 L B360 L, EPCOS AG, 009. Fariborz Musavi (S 10 M 11 SM 1) received the B.Sc. degree from Iran University of Science and Technology, Tehran, Iran, in 1994, the M.Sc. degree from Concordia University, Montreal, QC, Canada, in 001, and the Ph.D. degree in electrical engineering with emphasis in power electronics from the University of British Columbia, Vancouver, BC, Canada. Since 001, he has been with several high tech companies including EMS Technologies Inc., Montreal; DRS Pivotal Power, Bedford, NS, Canada; and Alpha Technologies, Bellingham, WA. He is currently with Delta-Q Technologies Corporation, Burnaby, BC, Canada, where he is the Manager of Research, Engineering and is engaged in research on the simulation, analysis, and design of battery chargers for industrial and automotive applications. His current research interests include high-power high-efficiency converter topologies, high-power-factor rectifiers, electric vehicles, and sustainable and renewable energy sources. Dr. Musavi is a Registered Professional Engineer in the Province of British Columbia, Canada. He was the recipient of the First Prize Paper Award from the IEEE Industry Applications Society Industrial Power Converter Committee in 011. He was also a recipient of an award from the Power Sources Manufacturers Association to present papers at conferences.

9 MUSAVI et al.: ANLLC RESONANT DC DC CONVERTER FOR WIDE OUTPUT VOLTAGE RANGE BATTERY CHARGING APPLICATIONS 5445 Marian Craciun (M 00) received the B.Sc. degree in electronics engineering at The Polytechnic Institute of Bucharest, Bucharest, Romania. He has over 0 years of experience in developing telecom and industrial power electronics products and sustaining engineering. His industrial experience includes positions at Energorepairs RENEL and Asea Brown Boveri Ltd, Bucharest, Romania; Argus Technologies Ltd and Alpha Technologies Ltd, Burnaby, BC, Canada. He is currently a Power Electronics R&D Engineer at Delta-Q Technologies Corp in Vancouver. His current research interests include high-power high-efficiency converter topologies, high-power-factor rectifiers, resonant converters, electric vehicles, and sustainable and renewable energy sources. Deepak S. Gautam (M 09 S 11) received the B.E. degree in electronics engineering from Mumbai University, Maharashtra, India, in 000, and the M.A.Sc. degree in electrical engineering from the University of Victoria, BC, Canada, in 006. He is currently pursuing the Ph.D. degree in electrical engineering in the field of power electronics from the University of British Columbia, Vancouver, BC Canada. From 000 to 003, he worked as a Research and Development Engineer for the Power Conversion and Control division of Aplab Limited, Mumbai, India where he was involved in development of linear, switch-mode and programmable power supplies for industrial and telecom industries. Since 007, he has been working for Delta-Q Technologies Corp., Burnaby, BC, Canada as a Power Electronics Engineer where his main responsibility is to develop highfrequency switch-mode battery chargers for automotive and industrial application. His research interests are dc dc converters, ac dc power factor correction converters, resonant converters, and feedback control circuits. Prof. Gautam is the recipient of the University of Victoria fellowship, Andy Farquharson award for excellence in graduate student teaching, and best poster presentation award at the APEC 01 conference in Orlando, FL, USA. He also has won travel grants from the Power Source Manufacturer s Association and IEEE Industry Application Society and Power Electronics Society to present papers at conferences. Wilson Eberle (S 98 M 07) received the B.Sc., M.Sc., and Ph.D. degrees from the Department of Electrical and Computer Engineering, Queen s University, Kingston, ON, Canada, in 000, 003, and 008, respectively. He is currently an Assistant Professor with the School of Engineering, The University of British Columbia, Kelowna, BC, Canada. His industrial experience includes positions with Ford Motor Company, Windsor, ON, Canada, and with Astec Advanced Power Systems, Nepean, ON, Canada. He is the holder of one U.S. patent. His current research interests include highefficiency high-power-density dc dc converters and ac dc power factor correction circuits. He is the author or coauthor of more than 40 technical papers published in various IEEE international conference proceedings and IEEE journals. Dr. Eberle was the recipient of the Ontario Graduate Scholarship and has been the recipient of awards from the Power Sources Manufacturers Association and the Ontario Centres of Excellence. He currently holds research grants from the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, the University of British Columbia, and the Kaiser Foundation for Higher Education. William G. Dunford (S 78 M 81 SM 9) received the B.S. degree from Imperial College London, London, U.K., and the Ph.D. degree from the University of ronto, ronto, ON, Canada. He has been a Faculty Member with Imperial College London and the University of ronto and is currently a Faculty and Senate Member with the University of British Columbia, Vancouver, Canada. Industrial experience includes positions with the Royal Aircraft Establishment (now Qinetiq), Schlumberger, and Alcatel. He has had a long-term interest in photovoltaic powered systems and is also involved in projects in the automotive and distributed systems areas. Dr. Dunford has served in various positions on the Advisory Committee of the IEEE Power Electronics Society and chaired IEEE PESC in 1986 and 001.

10 本文献由 学霸图书馆 - 文献云下载 收集自网络, 仅供学习交流使用 学霸图书馆 ( 是一个 整合众多图书馆数据库资源, 提供一站式文献检索和下载服务 的 4 小时在线不限 IP 图书馆 图书馆致力于便利 促进学习与科研, 提供最强文献下载服务 图书馆导航 : 图书馆首页文献云下载图书馆入口外文数据库大全疑难文献辅助工具

DC DC CONVERTER FOR WIDE OUTPUT VOLTAGE RANGE BATTERY CHARGING APPLICATIONS USING LLC RESONANT

DC DC CONVERTER FOR WIDE OUTPUT VOLTAGE RANGE BATTERY CHARGING APPLICATIONS USING LLC RESONANT Volume 114 No. 7 2017, 517-530 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu DC DC CONVERTER FOR WIDE OUTPUT VOLTAGE RANGE BATTERY CHARGING APPLICATIONS

More information

ISSCC 2006 / SESSION 19 / ANALOG TECHNIQUES / 19.1

ISSCC 2006 / SESSION 19 / ANALOG TECHNIQUES / 19.1 9. A 240W Monolithic Class-D Audio Amplifier Output Stage F. Nyboe,2, C. Kaya 3, L. Risbo, P. Andreani 2 Texas Instruments, Lyngby, Denmark 2 Ørsted*DTU, Technical University of Denmark, Lyngby, Denmark

More information

THE magnetic field has been widely used for the transfer of

THE magnetic field has been widely used for the transfer of 148 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 51, NO. 1, FEBRUARY 2004 Power Transfer Capability and Bifurcation Phenomena of Loosely Coupled Inductive Power Transfer Systems Chwei-Sen Wang, Grant

More information

Llc Resonant Converter for Battery Charging Applications

Llc Resonant Converter for Battery Charging Applications The International Journal Of Engineering And Science (IJES) Volume 3 Issue 3 Pages 37-44 2014 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Llc Resonant Converter for Battery Charging Applications 1 A.Sakul

More information

LLC Resonant Converter for Battery Charging Application

LLC Resonant Converter for Battery Charging Application International Journal of Electrical Engineering. ISSN 0974-2158 Volume 8, Number 4 (2015), pp. 379-388 International Research Publication House http://www.irphouse.com LLC Resonant Converter for Battery

More information

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 33, NO. 6, JUNE

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 33, NO. 6, JUNE IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 33, NO. 6, JUNE 2018 5005 Maximum Efficiency Tracking for Wireless Power Transfer Systems With Dynamic Coupling Coefficient Estimation Xin Dai, Member, IEEE,

More information

IN THE high power isolated dc/dc applications, full bridge

IN THE high power isolated dc/dc applications, full bridge 354 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 21, NO. 2, MARCH 2006 A Novel Zero-Current-Transition Full Bridge DC/DC Converter Junming Zhang, Xiaogao Xie, Xinke Wu, Guoliang Wu, and Zhaoming Qian,

More information

10 Input Filter Design

10 Input Filter Design 10 Input Filter Design 10.1 INTRODUCTION 10.1.1 Conducted EMI It is nearly always required that a filter be added at the power input of a switching converter. By attenuating the switching harmonics that

More information

Precise Analytical Solution for the Peak Gain of LLC Resonant Converters

Precise Analytical Solution for the Peak Gain of LLC Resonant Converters 680 Journal of Power Electronics, Vol. 0, No. 6, November 200 JPE 0-6-4 Precise Analytical Solution for the Peak Gain of LLC Resonant Converters Sung-Soo Hong, Sang-Ho Cho, Chung-Wook Roh, and Sang-Kyoo

More information

Fariborz Musavi. Wilson Eberle. William G. Dunford Senior Member IEEE

Fariborz Musavi. Wilson Eberle. William G. Dunford Senior Member IEEE A High-Performance Single-Phase AC-DC Power Factor Corrected Boost Converter for plug in Hybrid Electric Vehicle Battery Chargers Fariborz Musavi Student Member IEEE Wilson Eberle Member IEEE 2 William

More information

Design Considerations for a Level-2 On-Board PEV Charger Based on Interleaved Boost PFC and LLC Resonant Converters

Design Considerations for a Level-2 On-Board PEV Charger Based on Interleaved Boost PFC and LLC Resonant Converters Design Considerations for a Level-2 On-Board PEV Charger Based on Interleaved Boost PFC and LLC Resonant Converters Haoyu Wang, Student Member, IEEE, Serkan Dusmez, Student Member, IEEE, and Alireza Khaligh,

More information

The Effect of Ripple Steering on Control Loop Stability for a CCM PFC Boost Converter

The Effect of Ripple Steering on Control Loop Stability for a CCM PFC Boost Converter The Effect of Ripple Steering on Control Loop Stability for a CCM PFC Boost Converter Fariborz Musavi, Murray Edington Department of Research, Engineering Delta-Q Technologies Corp. Burnaby, BC, Canada

More information

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor 770 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 48, NO. 4, AUGUST 2001 A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor Chang-Shiarn Lin, Member, IEEE, and Chern-Lin

More information

TYPICALLY, a two-stage microinverter includes (a) the

TYPICALLY, a two-stage microinverter includes (a) the 3688 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 33, NO. 5, MAY 2018 Letters Reconfigurable LLC Topology With Squeezed Frequency Span for High-Voltage Bus-Based Photovoltaic Systems Ming Shang, Haoyu

More information

MODERN switching power converters require many features

MODERN switching power converters require many features IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 1, JANUARY 2004 87 A Parallel-Connected Single Phase Power Factor Correction Approach With Improved Efficiency Sangsun Kim, Member, IEEE, and Prasad

More information

E tions usually derives its bursts of energy by rapidly

E tions usually derives its bursts of energy by rapidly 438 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 38, NO. 6, DECEMBER 1991 A Capacitor-Charging Power Supply Using a Series-Resonant Topology, Constant On-Time/Variable Frequency Control, and Zero-Current

More information

Two Stage on-board Battery Charger for Plug in Electric Vehicle Applications

Two Stage on-board Battery Charger for Plug in Electric Vehicle Applications I J C T A, 9(13) 2016, pp. 6175-6182 International Science Press Two Stage on-board Battery Charger for Plug in Electric Vehicle Applications P Balakrishnan, T B Isha and N Praveenkumar ABSTRACT On board

More information

A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation

A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 6, NOVEMBER 2001 745 A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation René Torrico-Bascopé, Member, IEEE, and

More information

Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss

Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 49, NO. 1, FEBRUARY 2002 165 Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss Hang-Seok Choi, Student Member, IEEE,

More information

Fuzzy Fusion Based High Dynamic Range Imaging using Adaptive Histogram Separation

Fuzzy Fusion Based High Dynamic Range Imaging using Adaptive Histogram Separation A. Taşyapı et al.: Fuzzy Fusion Based High Dynamic Range Imaging using Adaptive Histogram Separation 119 Fuzzy Fusion Based High Dynamic Range Imaging using Adaptive Histogram Separation Aysun Taşyapı

More information

MODELING AND SIMULATION OF LLC RESONANT CONVERTER FOR PHOTOVOLTAIC SYSTEMS

MODELING AND SIMULATION OF LLC RESONANT CONVERTER FOR PHOTOVOLTAIC SYSTEMS MODELING AND SIMULATION OF LLC RESONANT CONVERTER FOR PHOTOVOLTAIC SYSTEMS Shivaraja L M.Tech (Energy Systems Engineering) NMAM Institute of Technology Nitte, Udupi-574110 Shivaraj.mvjce@gmail.com ABSTRACT

More information

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER 1 Aravind Murali, 2 Mr.Benny.K.K, 3 Mrs.Priya.S.P 1 PG Scholar, 2 Associate Professor, 3 Assistant Professor Abstract - This paper proposes a highly efficient

More information

178 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 48, NO. 1, FEBRUARY Mohit Kumar and Vivek Agarwal, Senior Member, IEEE EMI.

178 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 48, NO. 1, FEBRUARY Mohit Kumar and Vivek Agarwal, Senior Member, IEEE EMI. 178 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 48, NO. 1, FEBRUARY 2006 Power Line Filter Design for Conducted Electromagnetic Interference Using Time-Domain Measurements Mohit Kumar and

More information

ZVS IMPLEMENTATION IN INTERLEAVED BOOST RECTIFIER

ZVS IMPLEMENTATION IN INTERLEAVED BOOST RECTIFIER ZVS IMPLEMENTATION IN INTERLEAVED BOOST RECTIFIER Kanimozhi G. and Sreedevi V. T. School of Electrical Engineering, VIT University, Chennai, India E-Mail: kanimozhi.g@vit.ac.in ABSTRACT This paper presents

More information

A Bidirectional Resonant DC-DC Converter for Electrical Vehicle Charging/Discharging Systems

A Bidirectional Resonant DC-DC Converter for Electrical Vehicle Charging/Discharging Systems A Bidirectional Resonant DC-DC Converter for Electrical Vehicle Charging/Discharging Systems Fahad Khan College of Automation Engineering Nanjing University of Aeronautics and Astronautics, Nanjing 10016,

More information

Cost effective resonant DC-DC converter for hi-power and wide load range operation.

Cost effective resonant DC-DC converter for hi-power and wide load range operation. Cost effective resonant DC-DC converter for hi-power and wide load range operation. Alexander Isurin(sashai@vanner.com) and Alexander Cook(alecc@vanner.com) Vanner Inc, Hilliard, Ohio Abstract- This paper

More information

Interleaved Current-Fed Resonant Converter with High Current Side Filter for EV and HEV Applications

Interleaved Current-Fed Resonant Converter with High Current Side Filter for EV and HEV Applications IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 10 April 2016 ISSN (online): 2349-784X Interleaved Current-Fed Resonant Converter with High Current Side Filter for EV and

More information

LLC Series Resonant Converter with PID Controller for Battery Charging Application

LLC Series Resonant Converter with PID Controller for Battery Charging Application LLC Series Resonant Converter with PID Controller for Battery Charging Application M. Imran Shahzad, Shahid Iqbal, and Soib Taib School of Electrical & Electronic Engineering, Engineering Campus, Universiti

More information

THE converter usually employed for single-phase power

THE converter usually employed for single-phase power 82 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 1, FEBRUARY 1999 A New ZVS Semiresonant High Power Factor Rectifier with Reduced Conduction Losses Alexandre Ferrari de Souza, Member, IEEE,

More information

A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter

A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter Woo-Young Choi 1, Wen-Song Yu, and Jih-Sheng (Jason) Lai Virginia Polytechnic Institute and State University Future Energy Electronics Center

More information

ISSN Vol.05,Issue.08, August-2017, Pages:

ISSN Vol.05,Issue.08, August-2017, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.05,Issue.08, August-2017, Pages:1489-1494 High Voltage Application using Flying Capacitor Based Hybrid LLC Converters S. MALATHI 1, C. HIMA BINDU 2, T. RANGA 3 1 PG Scholar,

More information

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS CHAPTER 3. SINGLE-STAGE PFC TOPOLOG GENERALIATION AND VARIATIONS 3.1. INTRODUCTION The original DCM S 2 PFC topology offers a simple integration of the DCM boost rectifier and the PWM DC/DC converter.

More information

Development of LLC Resonant Converter for an Electrostatic Painting Robot System using a High Voltage Module

Development of LLC Resonant Converter for an Electrostatic Painting Robot System using a High Voltage Module Development of LLC Resonant Converter for an Electrostatic Painting Robot System using a High Voltage Module Byong Jo Hyon, Joon Sung Park, Hyuk Choi, Jin-Hong Kim, Intelligent Mechatronics Research Center

More information

A Reduced Component Count Single-stage Electrolytic Capacitor-less Battery Charger with Sinusoidal Charging

A Reduced Component Count Single-stage Electrolytic Capacitor-less Battery Charger with Sinusoidal Charging A Reduced Component Count Single-stage Electrolytic Capacitor-less Battery Charger with Sinusoidal Charging Byeongwoo Kim, Minjae Kim and Sewan Choi Department of Electrical and Information Engineering

More information

Paralleling of LLC Resonant Converters using Frequency Controlled Current Balancing

Paralleling of LLC Resonant Converters using Frequency Controlled Current Balancing PESC8, Rhodes, Greece Paralleling of LLC Resonant Converters using Frequency Controlled Current Balancing H. Figge *, T. Grote *, N. Froehleke *, J. Boecker * and P. Ide ** * University of Paderborn, Power

More information

Franke Three-Dimensional Molded Interconnect Devices (3D-MID)

Franke Three-Dimensional Molded Interconnect Devices (3D-MID) Franke Three-Dimensional Molded Interconnect Devices (3D-MID) Jörg Franke Three-Dimensional Molded Interconnect Devices (3D-MID) Materials, Manufacturing, Assembly, and Applications for Injection Molded

More information

Comprehensive Topological Analyses of Isolated Resonant Converters in PEV Battery Charging Applications

Comprehensive Topological Analyses of Isolated Resonant Converters in PEV Battery Charging Applications Comprehensive Topological Analyses of Isolated Resonant Converters in PEV Battery Charging Applications Haoyu Wang, Student Member, IEEE, and Alireza Khaligh, Senior Member, IEEE Power Electronics, Energy

More information

Hybrid Full-Bridge Half-Bridge Converter with Stability Network and Dual Outputs in Series

Hybrid Full-Bridge Half-Bridge Converter with Stability Network and Dual Outputs in Series Hybrid Full-Bridge Half-Bridge Converter with Stability Network and Dual Outputs in Series 1 Sowmya S, 2 Vanmathi K 1. PG Scholar, Department of EEE, Hindusthan College of Engineering and Technology, Coimbatore,

More information

INDUCTIVE power transfer (IPT) systems have found application

INDUCTIVE power transfer (IPT) systems have found application 3370 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 54, NO. 6, DECEMBER 2007 A Three-Phase Inductive Power Transfer System for Roadway-Powered Vehicles GrantA.Covic,Senior Member, IEEE, John T. Boys,

More information

1150 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 6, JUNE 2010

1150 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 6, JUNE 2010 1150 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 6, JUNE 2010 An On-Chip CMOS Relaxation Oscillator With Voltage Averaging Feedback Yusuke Tokunaga, Member, IEEE, Shiro Sakiyama, Akinori Matsumoto,

More information

ADVANCED HYBRID TRANSFORMER HIGH BOOST DC DC CONVERTER FOR PHOTOVOLTAIC MODULE APPLICATIONS

ADVANCED HYBRID TRANSFORMER HIGH BOOST DC DC CONVERTER FOR PHOTOVOLTAIC MODULE APPLICATIONS ADVANCED HYBRID TRANSFORMER HIGH BOOST DC DC CONVERTER FOR PHOTOVOLTAIC MODULE APPLICATIONS SHAIK ALLIMBHASHA M.Tech(PS) NALANDA INSTITUTE OF ENGINEERING AND TECHNOLOGY G V V NAGA RAJU Assistant professor

More information

The Hemispherical Resonator Gyro for precision pointing applications A. Matthews and D. A. Bauer

The Hemispherical Resonator Gyro for precision pointing applications A. Matthews and D. A. Bauer The Hemispherical Resonator Gyro for precision pointing applications A. Matthews and D. A. Bauer Hughes Delco S,vsteins Operations Goleta, California ABSTRACT The solid-state Hemispherical Resonator Gyroscope

More information

IN recent years, the development of high power isolated bidirectional

IN recent years, the development of high power isolated bidirectional IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 2, MARCH 2008 813 A ZVS Bidirectional DC DC Converter With Phase-Shift Plus PWM Control Scheme Huafeng Xiao and Shaojun Xie, Member, IEEE Abstract The

More information

ZCS-PWM Converter for Reducing Switching Losses

ZCS-PWM Converter for Reducing Switching Losses IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 1 Ver. III (Jan. 2014), PP 29-35 ZCS-PWM Converter for Reducing Switching Losses

More information

AN IMPROVED ZERO-VOLTAGE-TRANSITION INTERLEAVED BOOST CONVERTER WITH HIGH POWER FACTOR

AN IMPROVED ZERO-VOLTAGE-TRANSITION INTERLEAVED BOOST CONVERTER WITH HIGH POWER FACTOR AN IMPROVED ZERO-VOLTAGE-TRANSITION INTERLEAVED BOOST CONVERTER WITH HIGH POWER FACTOR Naci GENC 1, Ires ISKENDER 1 1 Gazi University, Faculty of Engineering and Architecture, Department of Electrical

More information

DR. R. V. KRISHNAIAH 2 Asst. Professor, SIETK, Puttur, AP-INDIA. ISSN Volume.05, September-2013, Pages:

DR. R. V. KRISHNAIAH 2 Asst. Professor, SIETK, Puttur, AP-INDIA. ISSN Volume.05, September-2013, Pages: www.ijatir.org ISSN 2143-4535 Volume.05, September-2013, Pages:277-286 AC DC Converter for Semi-Bridgeless using Phase-Shifted Gating Technique M.K JAYAVELU 1 M.Tech-PE, SIETK, Puttur, AP-INDIA, Email:

More information

The Parallel Loaded Resonant Converter for the Application of DC to DC Energy Conversions

The Parallel Loaded Resonant Converter for the Application of DC to DC Energy Conversions Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 10, October 2014,

More information

Comparative Analysis of Power Factor Correction Techniques for AC/DC Converter at Various Loads

Comparative Analysis of Power Factor Correction Techniques for AC/DC Converter at Various Loads ISSN 2393-82 Vol., Issue 2, October 24 Comparative Analysis of Power Factor Correction Techniques for AC/DC Converter at Various Loads Nikita Kolte, N. B. Wagh 2 M.Tech.Research Scholar, PEPS, SDCOE, Wardha(M.S.),India

More information

ISSN Vol.07,Issue.06, July-2015, Pages:

ISSN Vol.07,Issue.06, July-2015, Pages: ISSN 2348 2370 Vol.07,Issue.06, July-2015, Pages:0828-0833 www.ijatir.org An improved Efficiency of Boost Converter with Voltage Multiplier Module for PV System N. NAVEENKUMAR 1, E. CHUDAMANI 2, N. RAMESH

More information

Asymmetrical Half Bridge Double Input DC/DC Converter Adopting More Than One Renewable Energy Sources

Asymmetrical Half Bridge Double Input DC/DC Converter Adopting More Than One Renewable Energy Sources Asymmetrical Half Bridge Double Input DC/DC Converter Adopting More Than One Renewable Energy Sources Nishi N S P G student, Dept. of Electrical and Electronics Engineering Vidya Academy of Science and

More information

DUE to the growing penetration of distributed generation

DUE to the growing penetration of distributed generation 3968 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 31, NO. 5, MAY 2016 Fast and Robust Single-Phase DQ Current Controller for Smart Inverter Applications Mohammad Ebrahimi, Student Member, IEEE, Sayed Ali

More information

A New Active Soft Switching Technique for Pulse Width Modulated Full Bridge DC-DC Converters

A New Active Soft Switching Technique for Pulse Width Modulated Full Bridge DC-DC Converters A New Active Soft Switching Technique for Pulse Width Modulated Full Bridge DC-DC Converters Naga Brahmendra Yadav Gorla and N. Lakshmi Narasamma auxiliary switches are not soft switched. A new active

More information

A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications

A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications International OPEN ACCESS Journal Of Modern Engineering Research (IJMER A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications Aswathi M. Nair 1, K. Keerthana 2 1, 2 (P.G

More information

A High Efficient DC-DC Converter with Soft Switching for Stress Reduction

A High Efficient DC-DC Converter with Soft Switching for Stress Reduction A High Efficient DC-DC Converter with Soft Switching for Stress Reduction S.K.Anuja, R.Satheesh Kumar M.E. Student, M.E. Lecturer Sona College of Technology Salem, TamilNadu, India ABSTRACT Soft switching

More information

Narasimharaju. Balaraju *1, B.Venkateswarlu *2

Narasimharaju. Balaraju *1, B.Venkateswarlu *2 Narasimharaju.Balaraju*, et al, [IJRSAE]TM Volume 2, Issue 8, pp:, OCTOBER 2014. A New Design and Development of Step-Down Transformerless Single Stage Single Switch AC/DC Converter Narasimharaju. Balaraju

More information

High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit

High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit RESEARCH ARTICLE OPEN ACCESS High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit C. P. Sai Kiran*, M. Vishnu Vardhan** * M-Tech (PE&ED) Student, Department of EEE, SVCET,

More information

Half bridge converter with LCL filter for battery charging application using DC-DC converter topology

Half bridge converter with LCL filter for battery charging application using DC-DC converter topology Half bridge converter with LCL filter for battery charging application using DC-DC converter topology Manasa.B 1, Kalpana S 2 Assistant Professor Department of Electrical and Electronics PESITM, Shivamogga

More information

MOST electrical systems in the telecommunications field

MOST electrical systems in the telecommunications field IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 2, APRIL 1999 261 A Single-Stage Zero-Voltage Zero-Current-Switched Full-Bridge DC Power Supply with Extended Load Power Range Praveen K. Jain,

More information

Simulation and Analysis of Zero Voltage Switching PWM Full Bridge Converter

Simulation and Analysis of Zero Voltage Switching PWM Full Bridge Converter Simulation and Analysis of Zero Voltage Switching PWM Full Bridge Converter 1 Neha Gupta, 2 Dr. A.K. pandey, 3 Dr. K.G. Upadhyay 1. M.Tech(Power Electronics & Drives), Electrical Engineering Department,

More information

LLC Resonant Converter with Capacitor Diode Clamped Current Limiting Fundamental Harmonic Approximation

LLC Resonant Converter with Capacitor Diode Clamped Current Limiting Fundamental Harmonic Approximation IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p-ISSN: 2278-8735 PP 57-62 www.iosrjournals.org LLC Resonant Converter with Capacitor Diode Clamped Current Limiting

More information

International Journal of Engineering Research and General Science Volume 3, Issue 4, July-August, 2015 ISSN

International Journal of Engineering Research and General Science Volume 3, Issue 4, July-August, 2015 ISSN A High-Performance Single-Phase Bridgeless Interleaved PFC Converter with Over - Current Protection Edwin Basil Lal 1, Bos Mathew Jos 2,Leena Thomas 3 P.G Student 1, edwinbasil@gmail.com, 9746710546 Abstract-

More information

Power Factor Correction of LED Drivers with Third Port Energy Storage

Power Factor Correction of LED Drivers with Third Port Energy Storage Power Factor Correction of LED Drivers with Third Port Energy Storage Saeed Anwar Mohamed O. Badawy Yilmaz Sozer sa98@zips.uakron.edu mob4@zips.uakron.edu ys@uakron.edu Electrical and Computer Engineering

More information

Analysis and Design Considerations of a Load and Line Independent Zero Voltage Switching Full Bridge DC/DC Converter Topology

Analysis and Design Considerations of a Load and Line Independent Zero Voltage Switching Full Bridge DC/DC Converter Topology IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 17, NO. 5, SEPTEMBER 2002 649 Analysis and Design Considerations of a Load and Line Independent Zero Voltage Switching Full Bridge DC/DC Converter Topology

More information

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications Karthik Sitapati Professor, EEE department Dayananda Sagar college of Engineering Bangalore, India Kirthi.C.S

More information

International Journal of Current Research and Modern Education (IJCRME) ISSN (Online): & Impact Factor: Special Issue, NCFTCCPS -

International Journal of Current Research and Modern Education (IJCRME) ISSN (Online): & Impact Factor: Special Issue, NCFTCCPS - HIGH VOLTAGE BOOST-HALF- BRIDGE (BHB) CELLS USING THREE PHASE DC-DC POWER CONVERTER FOR HIGH POWER APPLICATIONS WITH REDUCED SWITCH V. Saravanan* & R. Gobu** Excel College of Engineering and Technology,

More information

Analysis and Design of Soft Switched DC-DC Converters for Battery Charging Application

Analysis and Design of Soft Switched DC-DC Converters for Battery Charging Application ISSN (Online) : 239-8753 ISSN (Print) : 2347-67 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 24 24 International Conference on Innovations

More information

A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER

A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER M. Mohamed Razeeth # and K. Kasirajan * # PG Research Scholar, Power Electronics and Drives, Einstein College of Engineering, Tirunelveli, India

More information

Implementation of Voltage Multiplier Module in Interleaved High Step-up Converter with Higher Efficiency for PV System

Implementation of Voltage Multiplier Module in Interleaved High Step-up Converter with Higher Efficiency for PV System Implementation of Voltage Multiplier Module in Interleaved High Step-up Converter with Higher Efficiency for PV System 1 Sindhu P., 2 Surya G., 3 Karthick D 1 PG Scholar, EEE Department, United Institute

More information

BIDIRECTIONAL dc dc converters are widely used in

BIDIRECTIONAL dc dc converters are widely used in 816 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 62, NO. 8, AUGUST 2015 High-Gain Zero-Voltage Switching Bidirectional Converter With a Reduced Number of Switches Muhammad Aamir,

More information

Photovoltaic Controller with CCW Voltage Multiplier Applied To Transformerless High Step-Up DC DC Converter

Photovoltaic Controller with CCW Voltage Multiplier Applied To Transformerless High Step-Up DC DC Converter Photovoltaic Controller with CCW Voltage Multiplier Applied To Transformerless High Step-Up DC DC Converter Elezabeth Skaria 1, Beena M. Varghese 2, Elizabeth Paul 3 PG Student, Mar Athanasius College

More information

A Novel Single Phase Soft Switched PFC Converter

A Novel Single Phase Soft Switched PFC Converter J Electr Eng Technol Vol. 9, No. 5: 1592-1601, 2014 http://dx.doi.org/10.5370/jeet.2014.9.5.1592 ISSN(Print) 1975-0102 ISSN(Online) 2093-7423 A Novel Single Phase Soft Switched PFC Converter Nihan ALTINTAŞ

More information

Performance Improvement of Bridgeless Cuk Converter Using Hysteresis Controller

Performance Improvement of Bridgeless Cuk Converter Using Hysteresis Controller International Journal of Electrical Engineering. ISSN 0974-2158 Volume 6, Number 1 (2013), pp. 1-10 International Research Publication House http://www.irphouse.com Performance Improvement of Bridgeless

More information

Improvements of LLC Resonant Converter

Improvements of LLC Resonant Converter Chapter 5 Improvements of LLC Resonant Converter From previous chapter, the characteristic and design of LLC resonant converter were discussed. In this chapter, two improvements for LLC resonant converter

More information

PI Controller Based New Soft-Switching Boost Converter With A Coupled Inductor

PI Controller Based New Soft-Switching Boost Converter With A Coupled Inductor PI Controller Based New Soft-Switching Boost Converter With A Coupled Inductor 1 Amala Asokan 1 PG Scholar (Electrical and Electronics Engineering) Nehru College of Engineering and Research Centre Thrissur,

More information

A Cooperative Localization Algorithm for UWB Indoor Sensor Networks

A Cooperative Localization Algorithm for UWB Indoor Sensor Networks Wireless Pers Commun (2013) 72:85 99 DOI 10.1007/s11277-013-1002-6 A Cooperative Localization Algorithm for UWB Indoor Sensor Networks Eva Arias-de-Reyna Published online: 17 January 2013 Springer Science+Business

More information

WITH THE development of high brightness light emitting

WITH THE development of high brightness light emitting 1410 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 3, MAY 2008 Quasi-Active Power Factor Correction Circuit for HB LED Driver Kening Zhou, Jian Guo Zhang, Subbaraya Yuvarajan, Senior Member, IEEE,

More information

Resonant Power Conversion

Resonant Power Conversion Resonant Power Conversion Prof. Bob Erickson Colorado Power Electronics Center Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Outline. Introduction to resonant

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 3 Ver. IV (May June 2017), PP 68-76 www.iosrjournals.org Sepic Topology Based High

More information

An Extensive Input Voltage and Fixed-Frequency Single Stage Series- Parallel LLC Resonant Converter for Dc Drive

An Extensive Input Voltage and Fixed-Frequency Single Stage Series- Parallel LLC Resonant Converter for Dc Drive Vol., Issue.5, Sep-Oct. 0 pp-3693-3698 ISSN: 49-6645 An Extensive Input Voltage and Fixed-Frequency Single Stage Series- Parallel LLC Resonant Converter for Dc Drive P.Ganesh, T.Manokaran,.Department of

More information

CHAPTER 2 GENERAL STUDY OF INTEGRATED SINGLE-STAGE POWER FACTOR CORRECTION CONVERTERS

CHAPTER 2 GENERAL STUDY OF INTEGRATED SINGLE-STAGE POWER FACTOR CORRECTION CONVERTERS CHAPTER 2 GENERAL STUDY OF INTEGRATED SINGLE-STAGE POWER FACTOR CORRECTION CONVERTERS 2.1 Introduction Conventional diode rectifiers have rich input harmonic current and cannot meet the IEC PFC regulation,

More information

Key words: Bidirectional DC-DC converter, DC-DC power conversion,zero-voltage-switching.

Key words: Bidirectional DC-DC converter, DC-DC power conversion,zero-voltage-switching. Volume 4, Issue 9, September 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Designing

More information

ADVANCED radar systems benefit from the ability to have

ADVANCED radar systems benefit from the ability to have 1086 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 27, NO. 9, MAY 1, 2009 Coherent PM Optical Link Employing ACP-PPLL Yifei Li, Member, IEEE, and Peter Herczfeld, Fellow, IEEE Abstract This paper concerns the

More information

H-BRIDGE system used in high power dc dc conversion

H-BRIDGE system used in high power dc dc conversion IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 1, JANUARY 2008 353 Quasi Current Mode Control for the Phase-Shifted Series Resonant Converter Yan Lu, K. W. Eric Cheng, Senior Member, IEEE, and S.

More information

Design and Characterization of a Three-Phase Multichip SiC JFET Module

Design and Characterization of a Three-Phase Multichip SiC JFET Module Design and Characterization of a Three-Phase Multichip SiC JFET Module Fan Xu* fxu6@utk.edu Jing Wang* jwang50@utk.edu Dong Jiang* djiang4@utk.edu Fred Wang* fred.wang@utk.edu Leon Tolbert* tolbert@utk.edu

More information

A NOVEL High Step-Up Converter with a Voltage Multiplier Module for a Photo Voltaic System

A NOVEL High Step-Up Converter with a Voltage Multiplier Module for a Photo Voltaic System A NOVEL High Step-Up Converter with a Voltage Multiplier Module for a Photo Voltaic System *S.SWARNALATHA **RAMAVATH CHANDER *M.TECH student,dept of EEE,Chaitanya Institute Technology & Science *Assistant

More information

4438 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 29, NO. 8, AUGUST 2014

4438 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 29, NO. 8, AUGUST 2014 4438 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 29, NO. 8, AUGUST 2014 Self-Oscillating Contactless Resonant Converter With Phase Detection Contactless Current Transformer Kaiqin Yan, Qianhong Chen,

More information

DC-DC Resonant converters with APWM control

DC-DC Resonant converters with APWM control IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) ISSN: 2278-1676 Volume 2, Issue 5 (Sep-Oct. 2012), PP 43-49 DC-DC Resonant converters with APWM control Preeta John 1 Electronics Department,

More information

A Color LED Driver Implemented by the Active Clamp Forward Converter

A Color LED Driver Implemented by the Active Clamp Forward Converter A Color LED Driver Implemented by the Active Clamp Forward Converter C. H. Chang, H. L. Cheng, C. A. Cheng, E. C. Chang * Power Electronics Laboratory, Department of Electrical Engineering I-Shou University,

More information

Renewable Energy 43 (2012) 90e100. Contents lists available at SciVerse ScienceDirect. Renewable Energy

Renewable Energy 43 (2012) 90e100. Contents lists available at SciVerse ScienceDirect. Renewable Energy Renewable Energy 43 (2012) 90e100 Contents lists available at SciVerse ScienceDirect Renewable Energy journal homepage: www.elsevier.com/locate/renene Improvements in the grid connection of renewable generators

More information

doi: info:doi/ /epe17ecceeurope

doi: info:doi/ /epe17ecceeurope doi: info:doi/10.3919/epe17ecceeurope.017.8099085 Solution of Triple Problems in Transformer Windings for Current Resonant Converter with High Power Density and Wide Input ltage Range Seiya Abe (1), Toshiyuki

More information

THE ENVIRONMENTAL concerns and electric utility

THE ENVIRONMENTAL concerns and electric utility 74 IEEE TRANSACTIONS ON SMART GRID, VOL. 7, NO. 1, JANUARY 2016 General Unified Integral Controller With Zero Steady-State Error for Single-Phase Grid-Connected Inverters Xiaoqiang Guo, Senior Member,

More information

POWERED electronic equipment with high-frequency inverters

POWERED electronic equipment with high-frequency inverters IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 2, FEBRUARY 2006 115 A Novel Single-Stage Power-Factor-Correction Circuit With High-Frequency Resonant Energy Tank for DC-Link

More information

A DUAL SERIES DC TO DC RESONANT CONVERTER

A DUAL SERIES DC TO DC RESONANT CONVERTER A DUAL SERIES DC TO DC RESONANT CONVERTER V.ANANDHAN.,BE., ME, POWER SYSTEM SCSVMU UNIVERSITY anandhanvelu@gmail.com Dr.S.SENTAMIL SELVAN.,M.E.,Ph.D., ASSOCIATE PROFESSOR SCSVMU UNIVERSITY Abstract - A

More information

A NOVEL SOFT-SWITCHING BUCK CONVERTER WITH COUPLED INDUCTOR

A NOVEL SOFT-SWITCHING BUCK CONVERTER WITH COUPLED INDUCTOR A NOVEL SOFT-SWITCHING BUCK CONVERTER WITH COUPLED INDUCTOR Josna Ann Joseph 1, S.Bella Rose 2 PG Scholar, Karpaga Vinayaga College of Engineering and Technology, Chennai 1 Professor, Karpaga Vinayaga

More information

GENERALLY, a single-inductor, single-switch boost

GENERALLY, a single-inductor, single-switch boost IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 1, JANUARY 2004 169 New Two-Inductor Boost Converter With Auxiliary Transformer Yungtaek Jang, Senior Member, IEEE, Milan M. Jovanović, Fellow, IEEE

More information

RECENTLY, newly emerging power-electronics applications

RECENTLY, newly emerging power-electronics applications IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 54, NO. 8, AUGUST 2007 1809 Nonisolation Soft-Switching Buck Converter With Tapped-Inductor for Wide-Input Extreme Step-Down Applications

More information

A CLCL Resonant DC/DC Converter for Two-Stage LED Driver System

A CLCL Resonant DC/DC Converter for Two-Stage LED Driver System A CLCL Resonant DC/DC Converter for Two-Stage LED Driver System 1 K. NAGARAJU, 2 K. JITHENDRA GOWD 1 PG Scholar, Dept. of Electrical Power System (EPS), Jawaharlal Nehru Technological University, Anantapuramu,

More information

Page 1026

Page 1026 A New Zcs-Pwm Full-Bridge Dc Dc Converter With Simple Auxiliary Circuits Ramalingeswara Rao M 1, Mr.B,D.S.Prasad 2 1 PG Scholar, Pydah College of Engineering, Kakinada, AP, India. 2 Assistant Professor,

More information

CLOSED LOOP CONTROL OF THE Z SOURCE RESONANT CONVERTER FOR THE ELECTRIC VEHICLE WIRELESS CHARGER Shwetha K B 1, Shubha Kulkarni 2 1

CLOSED LOOP CONTROL OF THE Z SOURCE RESONANT CONVERTER FOR THE ELECTRIC VEHICLE WIRELESS CHARGER Shwetha K B 1, Shubha Kulkarni 2 1 CLOSED LOOP CONTROL OF THE Z SOURCE RESONANT CONVERTER FOR THE ELECTRIC VEHICLE WIRELESS CHARGER Shwetha K B 1, Shubha Kulkarni 2 1 P.G. Student, Power Electronics, Dayananda Sagar College of Engg., Bangalore,

More information