BNL Collider Complex Overview. MPS at the collider accelerator department (C-AD) RHIC Accelerator Protection Elements

Size: px
Start display at page:

Download "BNL Collider Complex Overview. MPS at the collider accelerator department (C-AD) RHIC Accelerator Protection Elements"

Transcription

1 MPS Experience at BNL-RHIC BNL Collider Complex Overview MPS at the collider accelerator department (C-AD) RHIC Accelerator Protection Elements Operational Experience Summary

2 BNL Collider Complex Overview

3 BNL Collider Complex Overview MPS at C-AD RHIC Accelerator Protection Elements Operational Experience Summary

4 MPS at C-AD The Machine Protection Systems at BNL are very mature. Conception and implementation for the pre-injectors was established long ago, before the RHIC-era. The RHIC MPS was designed in the 1990 s and leveraged strongly off the experiences from FNAL. This talk will present the machine protections systems of the presently operating accelerator facilities at C-AD. The Machine Protection System at BNL consists of three parts: 1) input measurements (and subsystem interlock systems) 2) beam interlock system ( permit system ) 3) consequences: mechanisms for preventing beam into regions of interest (injectors) or dumping the beams (in RHIC)

5 Presently there are 5 permit links (which are not interdependent) and a stand-alone MPS for the linac. RHIC EBIS LINAC Booster NSRL AGS AGS-to-RHIC transport (AtR) Permit Link Function #1 Booster prevent beam in the NSRL line / acceleration in Booster #2 AGS prevent accelerating beam in the AGS #3 AtR (U/V/W) prevent beam from entering the AtR line #4 Arc prevent beam from entering RHIC #5 RHIC eliminate circulating beam in RHIC These protect the accelerators from damage due to the beam. At RHIC, the superconducting magnets are also protected from the release of stored energy by quench protection links.

6 12 MV LINAC 200 MeV LINAC Booster MPS prevents beam in the NSRL line and acceleration in the Booster R-Line NSRL (NASA Space Radiation laboratory) BOOSTER ~ 1 GeV/A Au ~ 2.3 GeV pol protons AGS EBIS He to Au ~ 2 ma H- 50 ma (polarized) protons 1 na

7 Booster MPS input measurements condition for beam inhibit vacuum valves (R-line) vacuum valves* (Booster) power supply status (R-line) PLCs valves closed valves closed on/off status fault dose on NSRL target sample (measured using ion chambers) desired dose achieved consequences booster RF drive signal set to zero R-Line extraction bumps inhibited main magnet power supply ramped up to spiral beam into dump * (reachback to chopper in linac fast-beam inhibit system) The Booster permit link system also allows for inhibiting beam to R-Line while allowing beam in Booster for other Booster-users (e.g. AGS and/or other Booster beam development)

8 Booster Permit Link configuration and status example operator level readbacks link monitoring status inputs status of inputs input enable/disable

9 AGS MPS prevents accelerating beam in the AGS BOOSTER ~ 1 GeV/A Au ~ 2.3 GeV pol protons BtA AGS ~ 10 GeV/A Au ~ 24 GeV pol protons input measurements vacuum valves loss monitor manager loss monitors at sensitive locations magnet ( snake ) quench detector dump bump power supply status beam current transformer (2 units) transformer keep-alive statuses condition for beam inhibit valve closed beam loss exceeds threshold beam loss exceeds threshold quench event on/off status fault beam current exceeds threshold (and AtR dipoles on) status fault consequences AGS RF drive signal set to zero extraction bumps inhibited if operating with polarized protons, source is inhibited

10 ARC MPS prevents beam from entering RHIC RHIC ~ 100 GeV/A Au ~ 250 GeV pol protons input measurements vacuum valves RHIC permits to the arc condition for beam inhibit valve closed fault Blue magnet quench detector Yellow magnet quench detector consequences quench event quench event switching magnet turned off U/V/W (Accelerator to RHIC) MPS prevents beam from entering the AtR line AGS ~ 10 GeV/A Au ~ 24 GeV pol protons input measurements vacuum valves PASS (aka PPS) status, division A PASS status, division B condition for beam inhibit valve closed access control state not in no access consequences extraction kicker triggers from AGS disabled

11 RHIC MPS eliminates circulating beam in RHIC RHIC ~ 100 GeV/A Au ~ 250 GeV pol protons input measurements condition for beam inhibit loss monitors vacuum valves power supply status PLCs beam loss exceeds threshold valve closed on/off status fault roman pot positions (both rings) beam loss at roman pots RF cavity voltage PASS (aka PPS) status, division A PASS status, division B PASS Beam Stop status (A and B) Blue magnet quench detector Yellow magnet quench detector quench detector (snakes and rotators) position error beam loss exceeds threshold voltage status fault access controls state not in no access quench event quench event quench event consequences RHIC abort kickers triggered

12 BNL Collider Complex Overview MPS at C-AD RHIC Accelerator Protection Elements Operational Experience Summary

13 RHIC Accelerator Protection Elements Equipment monitoring systems Beam monitoring systems Beam interlock system ( permit system ) Beam dumping system (collimation and gap cleaning primarily for detector backgrounds) Equipment monitoring systems Conventional: vacuum valves, vacuum pump status, power supply outputs, RHIC specific: superconducting magnet quench protection system

14 RHIC superconducting magnet quench protection system consists of quench detectors quench protection assembly (and interface chasses) quench protection switches quench link (one link per ring) one QD in every arc s center alcove monitoring voltage taps in the arcs two QDs in service buildings monitoring magnet and lead voltage taps in the insertion regions voltage readout at 720 Hz

15 Beam monitoring systems: beam loss monitors (BLM) For MPS: ~ 430 gas ionization chambers (RHIC) ~ 100 in AGS to RHIC transfer line based on Tevatron design (R. Shafer) BLM data handling, two paths: (1) to MADCs (1 Hz averaged data for logging, 720 Hz for post mortem analyses) (2) to pair of threshold detectors (comparators) for detection of slow losses (time constant ~ 20 ms) fast losses (time constant ~ 100 ms) which produce an inhibit if threshold is exceeded Other beam loss diagnostics: pin diodes (Bergoz) photomultiplier tubes (JLAB-CEBAF design)

16 Beam monitoring systems: beam current monitors Pair (for redundancy) of back-to-back Bergoz NPCTs with internal keep-alive circuit (constant 15 ma rms / 65 mv rms, khz signal). Fault produced if current exceeds threshold or if keep-alive current not measured. assembly in shop as installed in the AGS Plan for ERL: pair of Bergoz New Parametric Current Transformers (NPCT) for differential beam loss measurement

17 Beam interlock system consists of 10 MHz carrier(s) 3 permit links (2 for QDs, 1 for all else) 32 beam interlock controllers (BIC) up to 192 distributed user system inputs 1 dedicated master to initiate establishment of a permit Full system tests on demand (typically during startup) Max response time (permit failure to abort) ~ 40 microseconds or ~ 3.2 turns BIC, conceptual view BIC FEC list QD link inputs

18 Beam dumping system consists of kicker magnets pulse forming networks (PFNs) dump absorber design assumptions: E max = 200 kj at 100 GeV/A with N b =60, N ppb =1E9 (Au) concern: secondary particle emission from dump absorber could heat and quench downstream superconducting magnets response time: charging supply for PFN disconnect ~ 10 ms (~ 1 turn) trigger synchronization (~ 1 turn) (plus transit time from permit link ~ 3 turns 5 turns total or 60 ms) RHIC blue dump kicker assemblies RHIC blue beam dump

19 BNL Collider Complex Overview MPS at C-AD RHIC Accelerator Protection Elements Operational Experience Summary

20 Operational Experience The well-established C-AD MPS system generally works as expected. There may be more permit pulls than necessary, but not excessively so. Failures of the MPS concern dynamics either not considered in the MPS design or result from operation with beam intensities higher than envisioned in the MPS design. These lessons learned will be reviewed next.

21 AGS beam-induced vacuum failures (2008) Issue Remedies operation with 4 Au bunches, 5E9 ppb resulted in 3 vacuum leaks dump bump amplitude increased dump moved closer to beam plunging stripping foil implemented motivation: force Au ions to lose 2 remaining electrons in 1 mil Tungsten foil resulting in beam rigidity decrease and hence larger deflection due to dump bump AGS beam dump AGS plunging stripping foil Recent issue (2014): MPS designed to inhibit beam to downstream systems but not to protect the accelerator from itself (plethora of spurious BLM readings causing beam inward spiral during acceleration due to rf turn-off strategy)

22 RHIC quenches due to beam aborts (2010) Issue Remedies beam aborts at high energy caused quenching of magnets downstream of dump additional BLMs installed (subsequently determined desire for less sensitive BLMs avoiding saturation during an abort as potentially useful in understanding beam abort dynamics) additional absorbers (20 5-inch sleeves) installed in the RHIC beam pipe adjacent to the dump to increase wall thickness no abort-induced quenches in following year of operations simulations: no quenches for up to 2.5E11 ppb (250 GeV protons) dump shielding sleeve

23 RHIC quenches due to beam aborts (2013) Issue Observations quenches caused by beam abort measured abort kicker currents different (during operations and maintenance days) measured abort kicker currents does not track with new fast-sampled beam position measurements Diagnosis Remedies inductance of ferrites changes with beam-induced temperature rise actively being investigated plan for major abort kicker upgrades in summer, 2014

24 RHIC abort kicker pre-fires (up to and including 2013) Issue damage to experiment s detectors (STAR in particular) Remedy run 14 move beam towards aperture so that prefire deposits beam upstream Remedy > run 14 installation of dedicated collimator(s)

25 Summary The RHIC physics program entails a very wide variety of particle species and energies The MPS design for the C-AD preinjectors is mature, maybe rudimentary by today s standards, but robust Ever-increasing beam intensities required by the evolving requirements of the physics programs have motivated and continue to motivate MPS sub-system upgrades A new era of MPS systems is under development at C-AD for (electron-based) new projects including electron lenses, conventional electron cooling, coherent electron cooling (new), and the energy recovery linac project

26 Acknowledgements (for this presentation) For MPS as seen by Operations throughout the accelerator complex: Travis Shrey For user-distributed inputs: general: Travis Shrey and Greg Marr (Operations) + Loralie Smart (Vacuum) + John Butler (RF) + Don Bruno (Power Supplies, Quench Detection) + David Gassner, Peter Oddo, Michelle Wilinski (Beam Instrumentation) For beam permit system: Kevin Brown, Peter Ingrassia, Travis Shrey, Charles Theisen For RHIC beam dump: RHIC Configuration Manual (2006) For operational experience: AGS vacuum issues Leif Ahrens RHIC quenches due to beam aborts, 2010 Christoph Montag RHIC quenches due to beam aborts, 2013 Rob Hulsart, Rob Michnoff, Peter Thieberger RHIC abort kicker prefires, 2013 Angelika Drees, Christoph Montag, Rob Hulsart, Aljosa Marusic, Rob Michnoff, Peter Thieberger, Simon White For photographs: Don Bruno, Dave Gassner, Paul Sampson, Joe Tuozzolo

27 Current and Future Developments in Controls A stand-along MPS system for the Electron Beam Ion Source (EBIS), called EGIS, was developed by Omar Gould MPS designs for future projects Energy Recovery Linac (ERL) electron lens new 56 MHz SC cavity for RHIC Coherent Electron Cooling are being developed using NI CompactRIO platforms The Controls portion of the MPS for these systems is being developed by: Zeynep Altinbas, Mike Costanzo, Chung Ho and Charles Theisen (systems design and permit link boards) Jim Jamilkowski, and Prerana Kankiya (ADO manager interfaces) Peggy Harvey (MPS interfaces to rf systems) Prachi Chitnis (student, reliability analysis) Also under development is a stand-alone quench detection system for the ERL superconducting solenoids (using NI PXIe platform)

28 Quench protection in RHIC spare slides

29 Preparation for higher beam intensities: beam position monitors Issue The cold BPM cables (those located in the insulating vacuum) consist of a stainless steel outer conductor with a tefzel dielectric. If the beam-induced power is too large, this dielectric will melt. achieved bunch length limitation by cryogenic system nominal intensity intensity after upgrades BPM excursion monitor developed based on absolute BPM measurements (striplines)

CEBAF Overview June 4, 2010

CEBAF Overview June 4, 2010 CEBAF Overview June 4, 2010 Yan Wang Deputy Group Leader of the Operations Group Outline CEBAF Timeline Machine Overview Injector Linear Accelerators Recirculation Arcs Extraction Systems Beam Specifications

More information

Beam Loss Monitoring (BLM) System for ESS

Beam Loss Monitoring (BLM) System for ESS Beam Loss Monitoring (BLM) System for ESS Lali Tchelidze European Spallation Source ESS AB lali.tchelidze@esss.se March 2, 2011 Outline 1. BLM Types; 2. BLM Positioning and Calibration; 3. BLMs as part

More information

Slide Title. Bulleted Text

Slide Title. Bulleted Text Slide Title 1 Slide Outline Title Brief view of the C-AD Complex Review of the RHIC LLRF Upgrade Platform Generic Implementation of a Feedback Loop RHIC Bunch by Bunch Longitudinal Damper Cavity Controller

More information

Re-commissioning the Recycler Storage Ring at Fermilab

Re-commissioning the Recycler Storage Ring at Fermilab Re-commissioning the Recycler Storage Ring at Fermilab Martin Murphy, Fermilab Presented August 10, 2012 at SLAC National Laboratory for the Workshop on Accelerator Operations The Fermi National Accelerator

More information

Beam Loss monitoring R&D. Arden Warner Fermilab MPS2014 Workshop March 5-6, 2014

Beam Loss monitoring R&D. Arden Warner Fermilab MPS2014 Workshop March 5-6, 2014 Beam Loss monitoring R&D Arden Warner Fermilab MPS2014 Workshop March 5-6, 2014 Outline PXIE Technical Concerns PXIE Study plans Preliminary scvd R&D Cold Ionization chambers 2 MPS2014; Arden Warner Loss

More information

ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory

ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory ERL 09 8 th 12 th June 2009 ALICE Accelerators and Lasers In Combined Experiments Brief Description ALICE Superconducting

More information

Packaging of Cryogenic Components

Packaging of Cryogenic Components Packaging of Cryogenic Components William J. Schneider Senior Mechanical Engineer Emeritus November 19-23 2007 1 Packaging of Cryogenic Components Day one Introduction and Overview 2 What is important?

More information

R. Assmann, CERN/AB. for the Collimation Project 7/12/2007 LHC MAC RWA, LHC MAC 12/07

R. Assmann, CERN/AB. for the Collimation Project 7/12/2007 LHC MAC RWA, LHC MAC 12/07 Plan for Collimator Commissioning R. Assmann, CERN/AB 7/12/2007 for the Collimation Project LHC MAC RWA, LHC MAC 12/07 1) Installation Planning and Performance Reach Collimation is an performance-driven

More information

Physics Requirements Document Document Title: SCRF 1.3 GHz Cryomodule Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7

Physics Requirements Document Document Title: SCRF 1.3 GHz Cryomodule Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7 Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7 Document Approval: Originator: Tor Raubenheimer, Physics Support Lead Date Approved Approver: Marc Ross, Cryogenic System Manager Approver: Jose Chan,

More information

FLASH at DESY. FLASH. Free-Electron Laser in Hamburg. The first soft X-ray FEL operating two undulator beamlines simultaneously

FLASH at DESY. FLASH. Free-Electron Laser in Hamburg. The first soft X-ray FEL operating two undulator beamlines simultaneously FLASH at DESY The first soft X-ray FEL operating two undulator beamlines simultaneously Katja Honkavaara, DESY for the FLASH team FEL Conference 2014, Basel 25-29 August, 2014 First Lasing FLASH2 > First

More information

THE CRYOGENIC SYSTEM OF TESLA

THE CRYOGENIC SYSTEM OF TESLA THE CRYOGENIC SYSTEM OF TESLA S. Wolff, DESY, Notkestr. 85, 22607 Hamburg, Germany for the TESLA collaboration Abstract TESLA, a 33 km long 500 GeV centre-of-mass energy superconducting linear collider

More information

Recommended Locations of Beam Loss Monitors for the ATLAS Roman Pots

Recommended Locations of Beam Loss Monitors for the ATLAS Roman Pots LHC Project Note 397 19 March 2007 Richard.Hall-Wilton@cern.ch Recommended Locations of Beam Loss Monitors for the ATLAS Roman Pots R.J.Hall-Wilton TS/LEA, D.Macina TS/LEA, V.Talanov TS/LEA Keywords: long

More information

BCS UPDATE. j. welch 2/9/17

BCS UPDATE. j. welch 2/9/17 BCS UPDATE j. welch 2/9/17 TOPICS RP requirements Shutoff path Beam loss detection scheme Beam loss detectors and FPGAs Current monitors Dumps RP REQUIREMENTS Revised BCS PRD was circulated Tuesday for

More information

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES S. Belomestnykh HPC workshop JLAB, 30 October 2002 Introduction Many aspects of the high-power coupler design, fabrication, preparation, conditioning, integration

More information

3 General layout of the XFEL Facility

3 General layout of the XFEL Facility 3 General layout of the XFEL Facility 3.1 Introduction The present chapter provides an overview of the whole European X-Ray Free-Electron Laser (XFEL) Facility layout, enumerating its main components and

More information

Engineering Challenges and Solutions for MeRHIC. Andrew Burrill for the MeRHIC Team

Engineering Challenges and Solutions for MeRHIC. Andrew Burrill for the MeRHIC Team Engineering Challenges and Solutions for MeRHIC Andrew Burrill for the MeRHIC Team Key Components Photoinjector Design Photocathodes & Drive Laser Linac Cavities 703.75 MHz 5 cell cavities 3 rd Harmonic

More information

Nonintercepting Diagnostics for Transverse Beam Properties: from Rings to ERLs

Nonintercepting Diagnostics for Transverse Beam Properties: from Rings to ERLs Nonintercepting Diagnostics for Transverse Beam Properties: from Rings to ERLs Alex H. Lumpkin Accelerator Operations Division Advanced Photon Source Presented at Jefferson National Accelerator Laboratory

More information

Upper limit of the electron beam energy at the CEBAF 2D injector spectrometer and its functionality

Upper limit of the electron beam energy at the CEBAF 2D injector spectrometer and its functionality Upper limit of the electron beam energy at the CEBAF 2D injector spectrometer and its functionality Jonathan Dumas 1,2, Joe Grames 2, Eric Voutier 1 December 16, 28 JLAB-TN-8-86 1 Laboratoire de Physique

More information

Using Higher Order Modes in the Superconducting TESLA Cavities for Diagnostics at DESY

Using Higher Order Modes in the Superconducting TESLA Cavities for Diagnostics at DESY Using Higher Order Modes in the Superconducting TESLA Cavities for Diagnostics at FLASH @ DESY N. Baboi, DESY, Hamburg for the HOM team : S. Molloy 1, N. Baboi 2, N. Eddy 3, J. Frisch 1, L. Hendrickson

More information

MuCool Test Area Experimental Program Summary

MuCool Test Area Experimental Program Summary MuCool Test Area Experimental Program Summary Alexey Kochemirovskiy The University of Chicago/Fermilab Alexey Kochemirovskiy NuFact'16 (Quy Nhon, August 21-27, 2016) Outline Introduction Motivation MTA

More information

Linear Particle Accelerator Control Performance

Linear Particle Accelerator Control Performance Linear Particle Accelerator Control Performance 2007 ExpertTune-TiPS Conference April 17-19, 2007 Austin, TX Johnny Tang Overview of the Spallation Neutron Source Accelerator J. Tang 2 Overview of the

More information

ELECTRON BEAM DIAGNOSTICS AND FEEDBACK FOR THE LCLS-II*

ELECTRON BEAM DIAGNOSTICS AND FEEDBACK FOR THE LCLS-II* THB04 Proceedings of FEL2014, Basel, Switzerland ELECTRON BEAM DIAGNOSTICS AND FEEDBACK FOR THE LCLS-II* Josef Frisch, Paul Emma, Alan Fisher, Patrick Krejcik, Henrik Loos, Timothy Maxwell, Tor Raubenheimer,

More information

Maurizio Vretenar Linac4 Project Leader EuCARD-2 Coordinator

Maurizio Vretenar Linac4 Project Leader EuCARD-2 Coordinator Maurizio Vretenar Linac4 Project Leader EuCARD-2 Coordinator Every accelerator needs a linac as injector to pass the region where the velocity of the particles increases with energy. At high energies (relativity)

More information

Overview of ERL Projects: SRF Issues and Challenges. Matthias Liepe Cornell University

Overview of ERL Projects: SRF Issues and Challenges. Matthias Liepe Cornell University Overview of ERL Projects: SRF Issues and Challenges Matthias Liepe Cornell University Overview of ERL projects: SRF issues and challenges Slide 1 Outline Introduction: SRF for ERLs What makes it special

More information

2008 JINST 3 S The RF systems and beam feedback. Chapter Introduction

2008 JINST 3 S The RF systems and beam feedback. Chapter Introduction Chapter 4 The RF systems and beam feedback 4.1 Introduction The injected beam will be captured, accelerated and stored using a 400 MHz superconducting cavity system, and the longitudinal injection errors

More information

Interfaces with MPS/PSS

Interfaces with MPS/PSS Interfaces with / European Spallation Source Accelerator Division TB, 16 November 2016, Lund, Sweden / interfaces 1/21 Outline 1 Introduction 2 3 4 Conclusions / interfaces 2/21 Outline 1 Introduction

More information

New Tracking Gantry-Synchrotron Idea. G H Rees, ASTeC, RAL, U.K,

New Tracking Gantry-Synchrotron Idea. G H Rees, ASTeC, RAL, U.K, New Tracking Gantry-Synchrotron Idea G H Rees, ASTeC, RAL, U.K, Scheme makes use of the following: simple synchrotron and gantry magnet lattices series connection of magnets for 5 Hz tracking one main

More information

Superconducting RF Cavity Performance Degradation after Quenching in Static Magnetic Field

Superconducting RF Cavity Performance Degradation after Quenching in Static Magnetic Field Superconducting RF Cavity Performance Degradation after Quenching in Static Magnetic Field T. Khabiboulline, D. Sergatskov, I. Terechkine* Fermi National Accelerator Laboratory (FNAL) *MS-316, P.O. Box

More information

Acceleration of High-Intensity Protons in the J-PARC Synchrotrons. KEK/J-PARC M. Yoshii

Acceleration of High-Intensity Protons in the J-PARC Synchrotrons. KEK/J-PARC M. Yoshii Acceleration of High-Intensity Protons in the J-PARC Synchrotrons KEK/J-PARC M. Yoshii Introduction 1. J-PARC consists of 400 MeV Linac, 3 GeV Rapid Cycling Synchrotron (RCS) and 50 GeV Main synchrotron

More information

Commissioning of the ALICE SRF Systems at Daresbury Laboratory Alan Wheelhouse, ASTeC, STFC Daresbury Laboratory ESLS RF 1 st 2 nd October 2008

Commissioning of the ALICE SRF Systems at Daresbury Laboratory Alan Wheelhouse, ASTeC, STFC Daresbury Laboratory ESLS RF 1 st 2 nd October 2008 Commissioning of the ALICE SRF Systems at Daresbury Laboratory Alan Wheelhouse, ASTeC, STFC Daresbury Laboratory ESLS RF 1 st 2 nd October 2008 Overview ALICE (Accelerators and Lasers In Combined Experiments)

More information

ACCELERATOR FAST KICKER R&D WITH ULTRA COMPACT 50MVA NANO-SECOND FID PULSE GENERATOR

ACCELERATOR FAST KICKER R&D WITH ULTRA COMPACT 50MVA NANO-SECOND FID PULSE GENERATOR ACCELERATOR FAST KICKER R&D WITH ULTRA COMPACT 50MVA NANO-SECOND FID PULSE GENERATOR W. Zhang ξ, W. Fischer, H. Hahn, C.J. Liaw, J. Sandberg, J. Tuozzolo Collider-Accelerator Department, Brookhaven National

More information

Norbert Meyners, DESY. LCTW 09 Orsay, Nov. 2009

Norbert Meyners, DESY. LCTW 09 Orsay, Nov. 2009 DESY Test Beam Facilities - Status and Plan Norbert Meyners, DESY LCTW 09 Orsay, 3.-5. Nov. 2009 DESY Test Beam DESY provides three test beam lines with 1-5 (-6) GeV/c electrons Very simple system, no

More information

ERL Prototype at BNL. Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.

ERL Prototype at BNL. Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. ERL Prototype at BNL Ilan Ben-Zvi, for the Superconducting Accelerator and Electron Cooling group, Collider-Accelerator Department Brookhaven National Laboratory & Center for Accelerator Science and Education

More information

Beam Control: Timing, Protection, Database and Application Software

Beam Control: Timing, Protection, Database and Application Software Beam Control: Timing, Protection, Database and Application Software C.M. Chu, J. Tang 储中明 / 唐渊卿 Spallation Neutron Source Oak Ridge National Laboratory Outline Control software overview Timing system Protection

More information

FAST RF KICKER DESIGN

FAST RF KICKER DESIGN FAST RF KICKER DESIGN David Alesini LNF-INFN, Frascati, Rome, Italy ICFA Mini-Workshop on Deflecting/Crabbing Cavity Applications in Accelerators, Shanghai, April 23-25, 2008 FAST STRIPLINE INJECTION KICKERS

More information

Workshop,, Nov , Hirschberg. DITANET-Workshop

Workshop,, Nov , Hirschberg. DITANET-Workshop DITANET-Workshop Workshop,, Nov. 24-25 25 2009, Hirschberg A Cryogenic Current Comparator for FAIR M. Schwickert, H. Reeg, GSI Beam Diagnostics Department W. Vodel, R. Geithner, Friedrich-Schiller-Universität

More information

BEPCII-THE SECOND PHASE CONSTRUCTION OF BEIJING ELECTRON POSITRON COLLIDER

BEPCII-THE SECOND PHASE CONSTRUCTION OF BEIJING ELECTRON POSITRON COLLIDER BEPCII-THE SECOND PHASE CONSTRUCTION OF BEIJING ELECTRON POSITRON COLLIDER C. Zhang, G.X. Pei for BEPCII Team IHEP, CAS, P.O. Box 918, Beijing 100039, P.R. China Abstract BEPCII, the second phase construction

More information

The VARIAN 250 MeV Superconducting Compact Proton Cyclotron

The VARIAN 250 MeV Superconducting Compact Proton Cyclotron The VARIAN 250 MeV Superconducting Compact Proton Cyclotron VARIAN Medical Systems Particle Therapy GmbH Friedrich-Ebert-Str. 1 D-51429 BERGISCH GLADBACH GERMANY OUTLINE 1. Why having a Superconducting

More information

Accelerator Complex U70 of IHEP-Protvino: Status and Upgrade Plans

Accelerator Complex U70 of IHEP-Protvino: Status and Upgrade Plans INSTITUTE FOR HIGH ENERGY PHYSICS () Protvino, Moscow Region, 142281, Russia Accelerator Complex U70 of -Protvino: Status and Upgrade Plans (report 4.1-1) Sergey Ivanov, on behalf of the U70 staff September

More information

Specification of the kicker Measurement of the magnetic field inside the kicker Optimisation of the kicker impedance to 50 Status and picture of the

Specification of the kicker Measurement of the magnetic field inside the kicker Optimisation of the kicker impedance to 50 Status and picture of the Specification of the kicker Measurement of the magnetic field inside the kicker Optimisation of the kicker impedance to 50 Status and picture of the kicker The Specification of the Feedbackkicker technical

More information

CEBAF waveguide absorbers. R. Rimmer for JLab SRF Institute

CEBAF waveguide absorbers. R. Rimmer for JLab SRF Institute CEBAF waveguide absorbers R. Rimmer for JLab SRF Institute Outline Original CEBAF HOM absorbers Modified CEBAF loads for FEL New materials for replacement loads High power loads for next generation FELs

More information

LHC COMMISSIONING AT HIGHER ENERGY

LHC COMMISSIONING AT HIGHER ENERGY LHC COMMISSIONING AT HIGHER ENERGY P. Collier, F. Bordry, J. Wenninger, CERN, Geneva, Switzerland Abstract The LHC has just come to the end of its first Long Shutdown (LS1) and preparations are underway

More information

First Observation of Stimulated Coherent Transition Radiation

First Observation of Stimulated Coherent Transition Radiation SLAC 95 6913 June 1995 First Observation of Stimulated Coherent Transition Radiation Hung-chi Lihn, Pamela Kung, Chitrlada Settakorn, and Helmut Wiedemann Applied Physics Department and Stanford Linear

More information

HITACHI Proton Therapy System with Spot Scanning

HITACHI Proton Therapy System with Spot Scanning Workshop on Hadron Therapy of Cancer 27 th April, Erice, Sicily, Italy HITACHI Proton Therapy System with Spot Scanning Kazuo Hiramoto Energy & Environmental Systems Laboratory, Hitachi, Ltd. Contents

More information

Study the Compact Photon Source Radiation Using FLUKA

Study the Compact Photon Source Radiation Using FLUKA Study the Compact Photon Source Radiation Using FLUKA Jixie Zhang, Donal Day, Rolf Ent Nov 30, 2017 This is a summary of radiation studies done for both the UVa target alone (for electron and photon beams)

More information

two pairs of dipole steering windings that t inside the quadrupole yoke an RF beam position monitor (BPM) consisting of a pill box RF cavity,

two pairs of dipole steering windings that t inside the quadrupole yoke an RF beam position monitor (BPM) consisting of a pill box RF cavity, Chapter 6 Quadrupole Package The quadrupole package is shown in Fig. 6.1. It consists of a superferric quadrupole doublet powered in series enclosed in a stainless steel vessel and cooled by 4 K LHe; two

More information

THz Pump Beam for LCLS. Henrik Loos. LCLS Hard X-Ray Upgrade Workshop July 29-31, 2009

THz Pump Beam for LCLS. Henrik Loos. LCLS Hard X-Ray Upgrade Workshop July 29-31, 2009 Beam for LCLS Henrik Loos Workshop July 29-31, 29 1 1 Henrik Loos Overview Coherent Radiation Sources Timing THz Source Performance 2 2 Henrik Loos LCLS Layout 6 MeV 135 MeV 25 MeV 4.3 GeV 13.6 GeV σ z.83

More information

A Synchrotron Phase Detector for the Fermilab Booster

A Synchrotron Phase Detector for the Fermilab Booster FERMILAB-TM-2234 A Synchrotron Phase Detector for the Fermilab Booster Xi Yang and Rene Padilla Fermi National Accelerator Laboratory Box 5, Batavia IL 651 Abstract A synchrotron phase detector is diagnostic

More information

Converters for Cycling Machines

Converters for Cycling Machines Converters for Cycling Machines Neil Marks, DLS/CCLRC, Daresbury Laboratory, Warrington WA4 4AD, U.K. DC and AC accelerators; Contents suitable waveforms in cycling machines; the magnet load; reactive

More information

The SIRAD irradiation facility at the INFN - Legnaro National Laboratory

The SIRAD irradiation facility at the INFN - Legnaro National Laboratory The SIRAD irradiation facility at the INFN - Legnaro National Laboratory I. Introduction 2 The INFN - Legnaro National Laboratory (LNL) SIRAD beamline http://www.lnl.infn.it 3 What is SIRAD? SIRAD is the

More information

Couplers for Project X. S. Kazakov, T. Khabiboulline

Couplers for Project X. S. Kazakov, T. Khabiboulline Couplers for Project X S. Kazakov, T. Khabiboulline TTC meeting on CW-SRF, 2013 Requirements to Project X couplers Cavity SSR1 (325MHz): Cavity SSR2 (325MHz): Max. energy gain - 2.1 MV, Max. power, 1 ma

More information

CMS Beam Condition Monitoring Wim de Boer, Hannes Bol, Alexander Furgeri, Steffen Muller

CMS Beam Condition Monitoring Wim de Boer, Hannes Bol, Alexander Furgeri, Steffen Muller CMS Beam Condition Monitoring Wim de Boer, Hannes Bol, Alexander Furgeri, Steffen Muller BCM2 8diamonds BCM1 8diamonds each BCM2 8diamonds Beam Condition Monitoring at LHC BCM at LHC is done by about 3700

More information

SIMULATION OF A SIGNAL IN THE BEAM LOSS

SIMULATION OF A SIGNAL IN THE BEAM LOSS RADIATION ASPECTS OF LHC SIMULATION OF A SIGNAL IN THE BEAM LOSS MONITORS OF THE MOMENTUM CLEANING INSERTION FOR THE NEW COLLIMATOR JAWS DESIGN IHEP, Protvino, Russia Summary of the presentation Page 1

More information

Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs. Josef Frisch Pohang, March 14, 2011

Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs. Josef Frisch Pohang, March 14, 2011 Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs Josef Frisch Pohang, March 14, 2011 Room Temperature / Superconducting Very different pulse structures RT: single bunch or short bursts

More information

3 rd Harmonic Cavity at ELETTRA

3 rd Harmonic Cavity at ELETTRA 3 rd Harmonic Cavity at ELETTRA G.Penco, M.Svandrlik FERMI @ Elettra G.O.F. RF UPGRADE BOOSTER Big Projects Started FINALLY at ELETTRA during 25 Experiments with 3HC concluded in December 24 Now activities

More information

LHC TRANSVERSE FEEDBACK SYSTEM: FIRST RESULTS OF COMMISSIONING. V.M. Zhabitsky XXI Russian Particle Accelerator Conference

LHC TRANSVERSE FEEDBACK SYSTEM: FIRST RESULTS OF COMMISSIONING. V.M. Zhabitsky XXI Russian Particle Accelerator Conference LHC TRANSVERSE FEEDBACK SYSTEM: FIRST RESULTS OF COMMISSIONING V.M. Zhabitsky XXI Russian Particle Accelerator Conference 28.09-03.10.2008, Zvenigorod LHC Transverse Feedback System: First Results of Commissioning

More information

DESIGN CONSIDERATIONS OF FAST KICKER SYSTEMS FOR HIGH. W. Zhang, J. Sandberg. W. M. Parsons, P. Walstrom, M. M. Murray. E. Cook, E.

DESIGN CONSIDERATIONS OF FAST KICKER SYSTEMS FOR HIGH. W. Zhang, J. Sandberg. W. M. Parsons, P. Walstrom, M. M. Murray. E. Cook, E. DESGN CONSDERATONS OF FAST KCKER SYSTEMS FOR HGH N T E N S T Y P R O T O N A C C E L E R A T O R S 1' 2 W. Zhang, J. Sandberg Brookhaven National Laboratory, C-A Dept Upton, NY, USA W. M. Parsons, P. Walstrom,

More information

The Current Cyclotron Development Activities at CIAE. Current acyclotron

The Current Cyclotron Development Activities at CIAE. Current acyclotron Current Cyclotron Development Activities Shizhong An, Tianjue Zhang China Institute of Atomic Energy (CIAE) Beijing 2010-11.22 Greatful acknowledged is very fruitful and long lasting collaboration with

More information

Herwig Schopper CERN 1211 Geneva 23, Switzerland. Introduction

Herwig Schopper CERN 1211 Geneva 23, Switzerland. Introduction THE LEP PROJECT - STATUS REPORT Herwig Schopper CERN 1211 Geneva 23, Switzerland Introduction LEP is an e + e - collider ring designed and optimized for 2 100 GeV. In an initial phase an energy of 2 55

More information

VIBRATING WIRE SENSORS FOR BEAM INSTRUMENTATION Suren Arutunian

VIBRATING WIRE SENSORS FOR BEAM INSTRUMENTATION Suren Arutunian VIBRATING WIRE SENSORS FOR BEAM INSTRUMENTATION Suren Arutunian Yerevan Physics Institute Yerevan Physics Institute S.Arutunian, VIBRATING WIRE SENSORS FOR BEAM INSTRUMENTATION BIW 2008, Lake Tahoe, USA

More information

QUARTER WAVE COAXIAL LINE CAVITY FOR NEW DELHI LINAC BOOSTER*

QUARTER WAVE COAXIAL LINE CAVITY FOR NEW DELHI LINAC BOOSTER* QUARTER WAVE COAXIAL LINE CAVITY FOR NEW DELHI LINAC BOOSTER* P.N. Prakash and A.Roy Nuclear Science Centre, P.O.Box 10502, New Delhi 110 067, INDIA and K.W.Shepard Physics Division, Argonne National Laboratory,

More information

DESIGN AND BEAM DYNAMICS STUDIES OF A MULTI-ION LINAC INJECTOR FOR THE JLEIC ION COMPLEX

DESIGN AND BEAM DYNAMICS STUDIES OF A MULTI-ION LINAC INJECTOR FOR THE JLEIC ION COMPLEX DESIGN AND BEAM DYNAMICS STUDIES OF A MULTI-ION LINAC INJECTOR FOR THE JLEIC ION COMPLEX Speaker: P.N. Ostroumov Contributors: A. Plastun, B. Mustapha and Z. Conway HB2016, July 7, 2016, Malmö, Sweden

More information

The CLEO-III Drift Chamber Vienna Conference on Instrumentation, 19-February-2001 Daniel Peterson, Cornell University

The CLEO-III Drift Chamber Vienna Conference on Instrumentation, 19-February-2001 Daniel Peterson, Cornell University The CLEO-III Drift Chamber Vienna Conference on Instrumentation, 19-February-2001 Daniel Peterson, Cornell University K. Berkelman R. Briere G. Chen D. Cronin-Hennessy S. Csorna M. Dickson S. von Dombrowski

More information

Improvement in High-Frequency Properties of Beam Halo Monitor using Diamond Detectors for SPring-8 XFEL

Improvement in High-Frequency Properties of Beam Halo Monitor using Diamond Detectors for SPring-8 XFEL 32 nd International Free Electron Laser Conference FEL 2010 Improvement in High-Frequency Properties of Beam Halo Monitor using Diamond Detectors for SPring-8 XFEL August 26, 2010 Thursday, THOC4 1 Hideki

More information

Outline. I. Progress and R&D plan on SRF cavity. II. HOM damping for low-risk and FFAG lattice erhic. III. Summary. Wencan Xu 2

Outline. I. Progress and R&D plan on SRF cavity. II. HOM damping for low-risk and FFAG lattice erhic. III. Summary. Wencan Xu 2 BROOKHAVEN SCIENCE ASSOCIATES SRF R&D for erhic On behalf of team Brookhaven National Laboratory JLEIC Collaboration workshop 1 Outline I. Progress and R&D plan on SRF cavity II. HOM damping for low-risk

More information

Brett Parker, representing the

Brett Parker, representing the Compact Superconducting Magnet Solution for the 20 mr Crossing Angle Final Focus Brett Parker, representing the Brookhaven Superconducting Magnet Division Message: Progress continues on the compact superconducting

More information

THE HARDWARE INTERFACES BETWEEN WARM MAGNET INTERLOCK SYSTEM, NORMAL CONDUCTING MAGNETS, POWER CONVERTERS AND BEAM INTERLOCK SYSTEM FOR THE LHC RING

THE HARDWARE INTERFACES BETWEEN WARM MAGNET INTERLOCK SYSTEM, NORMAL CONDUCTING MAGNETS, POWER CONVERTERS AND BEAM INTERLOCK SYSTEM FOR THE LHC RING CERN CH-1211 Geneva 23 Switzerland the Large Hadron Collider project LHC Project Document No. CERN Div./Group or Supplier/Contractor Document No. AB/CO EDMS Document No. 599288 Date: 2005-06-09 Engineering

More information

PULSED POWER APPLICATIONS IN HIGH INTENSITY PROTON RINGS*

PULSED POWER APPLICATIONS IN HIGH INTENSITY PROTON RINGS* D POWER APPLICATIONS IN HIGH INTENSITY PROTON RINGS* W. Zhang, J. Sandberg, BNL, Upton, NY 11973, USA R. Cutler, ORNL, Oak Ridge, TN 37830, USA L. Ducimetière, A. Fowler, V. Mertens, CERN, 1211 Geneva

More information

The HPRF system for a new 6 GeV synchrotron light source in Beijing

The HPRF system for a new 6 GeV synchrotron light source in Beijing 中国科学院高能物理研究所 INSTITUTE OF HIGH ENERGY PHYSICS CHINESE ACADEMY OF SCIENCES The HPRF system for a new 6 GeV synchrotron light source in Beijing (RF group, IHEP) The HEPS HPRF team Power coupler & power source

More information

APAC 2007, Raja Ramanna Centre for Advanced Technology(RRCAT), Indore, India LHC STATUS. Lyndon Evans, CERN, Geneva, Switzerland

APAC 2007, Raja Ramanna Centre for Advanced Technology(RRCAT), Indore, India LHC STATUS. Lyndon Evans, CERN, Geneva, Switzerland LHC STATUS Lyndon Evans, CERN, Geneva, Switzerland Abstract The installation of the Large Hadron Collider at CERN is now approaching completion. Almost 1100 of the 1232 main bending magnets are installed

More information

Status and Future Perspective of the HIE-ISOLDE Project

Status and Future Perspective of the HIE-ISOLDE Project Status and Future Perspective of the HIE-ISOLDE Project International Particle Accelerator Conference, IPAC 12 New Orleans, Louisiana, USA, May 20-25, 2012 Yacine.Kadi@cern.ch OUTLINE Scope of HIE-ISOLDE

More information

Physical Design of Superconducting Magnet for ADS Injection I

Physical Design of Superconducting Magnet for ADS Injection I Submitted to Chinese Physics C' Physical Design of Superconducting Magnet for ADS Injection I PENG Quan-ling( 彭全岭 ), WANG Bing( 王冰 ), CHEN Yuan( 陈沅 ) YANG Xiang-chen( 杨向臣 ) Institute of High Energy Physics,

More information

Energy Recovering Linac Issues

Energy Recovering Linac Issues Energy Recovering Linac Issues L. Merminga Jefferson Lab EIC Accelerator Workshop Brookhaven National Laboratory February 26-27, 2002 Outline Energy Recovery RF Stability in Recirculating, Energy Recovering

More information

The ILC Accelerator Complex

The ILC Accelerator Complex The ILC Accelerator Complex Nick Walker DESY/GDE UK LC meeting 3 rd September 2013 Oxford University, UK. 1 ILC in a Nutshell 200-500 GeV E cm e + e - collider L ~2 10 34 cm -2 s -1 upgrade: ~1 TeV central

More information

The Ecloud Measurement Setup in the Main Injector

The Ecloud Measurement Setup in the Main Injector The Ecloud Measurement Setup in the Main Injector FERMILAB-CONF-10-508-AD C.Y. Tan, M. Backfish, R. Zwaska, Fermilab, Batavia, IL 60504, USA Abstract An ecloud measurement setup was installed in a straight

More information

FREIA Facility for Research Instrumentation and Accelerator Development Infrastructure and Control Architecture

FREIA Facility for Research Instrumentation and Accelerator Development Infrastructure and Control Architecture FREIA Facility for Research Instrumentation and Accelerator Development Infrastructure and Control Architecture Konrad Gajewski 10 September 2013, Uppsala Why FREIA? Several circumstances test stand for

More information

C ll l i l m i a m to t rs Słąwomir Wronka O t u l t i l n i e

C ll l i l m i a m to t rs Słąwomir Wronka O t u l t i l n i e Collimators High Power Hadron Machines, CAS Bilbao, 31.05.2011 Słąwomir Wronka Outline Introduction & definitions Types of collimators Typical chalanges & problems Examples 1 Definition A collimator is

More information

Proton beam for UCN. UCN TAC-Meeting, May 12-13, 2005 Urs Rohrer, beam line physicist

Proton beam for UCN. UCN TAC-Meeting, May 12-13, 2005 Urs Rohrer, beam line physicist Proton beam for UCN UCN TAC-Meeting, May 12-13, 2005 Urs Rohrer, beam line physicist PSI Accelerator Division Department of Large Research Facilities Introduction Important parameters of the PSI proton

More information

INSTRUMENTATION AND CONTROL SYSTEM FOR THE INTERNATIONAL ERL CRYOMODULE

INSTRUMENTATION AND CONTROL SYSTEM FOR THE INTERNATIONAL ERL CRYOMODULE INSTRUMENTATION AND CONTROL SYSTEM FOR THE INTERNATIONAL ERL CRYOMODULE S. M. Pattalwar, R. Bate, G. Cox, P.A. McIntosh and A. Oates, STFC, Daresbury Laboratory, Warrington, UK Abstract ALICE is a prototype

More information

A Facility for Accelerator Physics and Test Beam Experiments

A Facility for Accelerator Physics and Test Beam Experiments A Facility for Accelerator Physics and Test Beam Experiments Experimental Program Advisory Committee Roger Erickson for the SABER Design Team December 4, 2006 The Problem: FFTB is gone! The Final Focus

More information

Current Industrial SRF Capabilities and Future Plans

Current Industrial SRF Capabilities and Future Plans and Future Plans Capabilities in view of Design Engineering Manufacturing Preparation Testing Assembly Taking into operation Future Plans Participate in and contribute to development issues, provide prototypes

More information

Draft of Conceptual Phase 2 Collimation System Design. Phase 2 Specification and Implementation Meeting R. Assmann

Draft of Conceptual Phase 2 Collimation System Design. Phase 2 Specification and Implementation Meeting R. Assmann Draft of Conceptual Phase 2 Collimation System Design Phase 2 Specification and Implementation Meeting R. Assmann 22.05.2008 Introduction So far 5 meetings for phase 2 specification. Goal today: Discuss

More information

MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM CHAMBER

MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM CHAMBER Frascati Physics Series Vol. X (1998), pp. 371-378 14 th Advanced ICFA Beam Dynamics Workshop, Frascati, Oct. 20-25, 1997 MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM

More information

Radiological Safety Analysis Document for the CLAS12 Engineering and the first physics run of Run Group A

Radiological Safety Analysis Document for the CLAS12 Engineering and the first physics run of Run Group A Radiological Safety Analysis Document for the CLAS12 Engineering and the first physics run of Run Group A This Radiological Safety Analysis Document (RSAD) will identify the general conditions associated

More information

XFEL Cryo System. Project X Collaboration Meeting, FNAL September 8-9, 2010 Bernd Petersen DESY MKS (XFEL WP10 & WP13) 1 st stage. Possible extension

XFEL Cryo System. Project X Collaboration Meeting, FNAL September 8-9, 2010 Bernd Petersen DESY MKS (XFEL WP10 & WP13) 1 st stage. Possible extension XFEL Cryo System Possible extension 1 st stage Project X Collaboration Meeting, FNAL September 8-9, 2010 (XFEL WP10 & WP13) Outline 2 XFEL accelerator structure TESLA technology Basic cryogenic parameters

More information

Status of the PRad Experiment (E )

Status of the PRad Experiment (E ) Status of the PRad Experiment (E12-11-106) NC A&T State University Outline Experimental apparatus, current status Installation plan Draft run plan Summary PRad Experimental Setup Main detectors and elements:

More information

Power Supplies in Accelerators

Power Supplies in Accelerators Power Supplies in Accelerators Neil Marks, ASTeC, Cockcroft Institute, Daresbury, Warrington WA4 4AD, neil.marks@stfc.ac.uk Tel: (44) (0)1925 603191 Fax: (44) (0)1925 603192 Contents 1. Basic elements

More information

Beam Transfer to Targets

Beam Transfer to Targets Volume III Update Report Chapter 3 Beam Transfer to Targets 3-1 Authors and Contributors Beam Transfer to Targets The executive summary was prepared by: R Maier 1 and KN Clausen 3 on behalf of the Beam

More information

Does the short pulse mode need energy recovery?

Does the short pulse mode need energy recovery? Does the short pulse mode need energy recovery? Rep. rate Beam power @ 5GeV 1nC @ 100MHz 500MW Absolutely 1nC @ 10MHz 1nC @ 1MHz 50MW 5MW Maybe 1nC @ 100kHz 0.5MW No Most applications we have heard about

More information

THE LINAC LASER NOTCHER FOR THE FERMILAB BOOSTER*

THE LINAC LASER NOTCHER FOR THE FERMILAB BOOSTER* FERMILAB-CONF-16-388-AD THE LINAC LASER NOTCHER FOR THE FERMILAB BOOSTER* David E. Johnson #, Kevin Laurence Duel, Matthew Gardner, Todd R. Johnson, David Slimmer (Fermilab, Batavia, Illinois), Sreenivas

More information

THE HIGH LUMINOSITY PERFORMANCE OF CESR WITH THE NEW GENERATION SUPERCONDUCTING CAVITY

THE HIGH LUMINOSITY PERFORMANCE OF CESR WITH THE NEW GENERATION SUPERCONDUCTING CAVITY Presented at the 1999 Particle Accelerator Conference, New York City, NY, USA, March 29 April 2 CLNS 99/1614 / SRF 990407-03 THE HIGH LUMINOSITY PERFORMANCE OF CESR WITH THE NEW GENERATION SUPERCONDUCTING

More information

Thermionic Bunched Electron Sources for High-Energy Electron Cooling

Thermionic Bunched Electron Sources for High-Energy Electron Cooling Thermionic Bunched Electron Sources for High-Energy Electron Cooling Vadim Jabotinski 1, Yaroslav Derbenev 2, and Philippe Piot 3 1 Institute for Physics and Technology (Alexandria, VA) 2 Thomas Jefferson

More information

TECHNICAL CHALLENGES OF THE LCLS-II CW X-RAY FEL *

TECHNICAL CHALLENGES OF THE LCLS-II CW X-RAY FEL * TECHNICAL CHALLENGES OF THE LCLS-II CW X-RAY FEL * T.O. Raubenheimer # for the LCLS-II Collaboration, SLAC, Menlo Park, CA 94025, USA Abstract The LCLS-II will be a CW X-ray FEL upgrade to the existing

More information

Plan for Accelerator Beam Study Towards J-PARC Muon Project. Koji YOSHIMURA (KEK) for KEK Muon Working Group at NuFACT08 July 2nd, 2008

Plan for Accelerator Beam Study Towards J-PARC Muon Project. Koji YOSHIMURA (KEK) for KEK Muon Working Group at NuFACT08 July 2nd, 2008 Plan for Accelerator Beam Study Towards J-PARC Muon Project Koji YOSHIMURA (KEK) for KEK Muon Working Group at NuFACT08 July 2nd, 2008 Contents Introduction Muon Project at J-PARC Beam Requirements R&D

More information

Grounding for EMC at the European XFEL

Grounding for EMC at the European XFEL Grounding for EMC at the European XFEL Herbert Kapitza, Hans-Jörg Eckoldt, Markus Faesing Deutsches Elektronensynchrotron (DESY) D-22603 Hamburg, Germany Email: herbert.kapitza@desy.de Abstract The European

More information

1.8 MW Upgrade of the PSI Proton Accelerator Facility

1.8 MW Upgrade of the PSI Proton Accelerator Facility 1.8 MW Upgrade of the PSI Proton Accelerator Facility Pierre A. Schmelzbach for the PSI Accelerator Divisions This talk: analyzes the potential for improvements from the ion source to the spallation target

More information

DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT

DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT G. Olry, J-L. Biarrotte, S. Blivet, S. Bousson, C. Commeaux, C. Joly, T. Junquera, J. Lesrel, E. Roy,

More information

Superstructures; First Cold Test and Future Applications

Superstructures; First Cold Test and Future Applications Superstructures; First Cold Test and Future Applications DESY: C. Albrecht, V. Ayvazyan, R. Bandelmann, T. Büttner, P. Castro, S. Choroba, J. Eschke, B. Faatz, A. Gössel, K. Honkavaara, B. Horst, J. Iversen,

More information

Electron Cloud Studies in the Fermilab Main Injector using Microwave Transmission

Electron Cloud Studies in the Fermilab Main Injector using Microwave Transmission Electron Cloud Studies in the Fermilab Main Injector using Microwave Transmission J. Charles Thangaraj on behalf of E-cloud team @ Fermilab (B. Zwaska, C. Tan, N. Eddy,..) p ω c ω ω Microwave measurement

More information