Appendix D Ideas for Term Projects

Size: px
Start display at page:

Download "Appendix D Ideas for Term Projects"

Transcription

1 Appendix D Ideas for Term Projects Most of the labs in this course are activities directed by the instructor, and lack much opportunity for the student to exercise creativity. The purpose of a project is to give you that chance. A project is like research it is a task you can solve for yourself over a number of days (or even weeks) and which requires independent planning and thought. The more thought you put into a task the more you will no doubt learn about science and programming. Don t leave your project to the last minute. Level I There are Level I projects and Level II projects. A level I project is easier than a Level II project in that it involves some aspect of the instrumentation of science not recessarily requiring instrument control. If a least squares fit is requested you may use Excel or pro Fit. A level 1 project may also be selected with the instructor s consent from the end-of-chapter practice problems. 1. Standard Form I The color code for carbon composition resistors was given in Table 2-3. Write a G program to display the resistance of a resistor in standard form, i.e., as (resistance ± uncertainty) x unit. Your program should take four controls: one for each color band on the resistor. 2. Standard Form II Instruments are not yet provided with the firmware to display itheir measurements in standard form, viz., (measurement ± uncertainty) unit. Write a G program that takes a typical measurement from, say, a Radio Shack digital multimeter in a control and returns the result in an indicator in standard form. Use the specifications of the RS DMM as given in Table AA-4. Equip your VI with three additional controls: Function, Range and Value. 3. Formatting Number Strings A number returned by an instrument may be in standard floating point notation (1.23E 05) or in scientific format ( ). Write a program in G to take a number in any format and return the number as a string a.bc mu, where U stands for any unit and m stands for one of the common prefixes p pico 10 12, n nano 10 9, etc. etc. 4. Properties of a Sine wave The oscilloscope display of a sine wave signal is reproduced in figure AD-1. The data on which this display is based was saved using Oscar and is stored as the file sine.osc in LabVIEW Demos >> Data >> Oscar Files. Write a G program to input the data from this disk file and calculate the amplitude, peak-to-peak voltage, frequency and period of the wave. As a check on your work, compare your results with the results obtained by the oscilloscope and displayed in the measurement boxes in the figure. Figure AD-1. The display of an oscilloscope showing a sinewave. 5. Properties of a Triangle wave The oscilloscope display of a triangle wave signal is reproduced in figure AD-2. As in problem 3, the data on which the display is based is stored as the AD-1

2 Term Project Ideas file triangle.osc in LabVIEW Demos >> Data >> Oscar Files. Write a G program to input the data from the disk file and calculate the amplitude, peak-to-peak voltage, frequency and period of the wave. As a check on your work, you can compare your results with the results obtained by the oscilloscope and displayed in the measurement boxes in the figure. so forth you used. HINT: You might work at getting a screen save as is shown in Figure AD-4. You can then use the oscilloscope cursors to find the frequency. Figure AD-3. The display of an oscilloscope showing a square wave. Figure AD-2. The display of an oscilloscope showing a triangle wave. 6. Properties of a Square wave The oscilloscope display of a square wave signal is reproduced in figure AD-3. The data on which the display is based was saved using Oscar and is stored as the file square.osc in LabVIEW Demos >> Data >> Oscar Files. Write a G program to input the data from the disk file and calculate the amplitude, peak-to-peak voltage, frequency and period of the wave. As a check on your work, you can compare your results with the results calculated by the oscilloscope and displayed in the measurement boxes in the figure. 7. Blinking LED Module The Blinking LED Module sold by Radio Shack (part number ) produces red light from an LED that blinks at the rate of approximately once a second. (This module is designed to be placed on signboards in stores to attract the attention of customers.) Use this module with a silicon solar array and the Tek TDS210 digital oscilloscope to calculate the blink frequency. For full credit your solution must include a screen dump and a listing of the settings on the oscillo-scope, time base, and Figure AD-4. The signal from a Blinking LED module. 8. Instrument Waveform Preamble Instruments such as the Tek TDS210 digital oscilloscope output their data as I8 integers in binary or as comma-delimited ASCII values. These integers need to be converted to floatingpoint numbers by the controlling computer using calibration data contained in the waveform preamble. 9. Solar Array AD-2

3 Using a silicon solar array, a digital oscilloscope and the application Oscar, analyze the intensity of the light emitted by the fluorescent lights in the physics lab. HINT: You may expect that the light signal is comprised of more than one frequency component. You will need to use Oscar s FFT capability. For a review of FFTs see Appendix E. Term Project Ideas 10. Thermistor Using the control ThermistorData.vi write a G program to graph the data in an XY graph. Your program must include a dynamic readout of the cursor position. In other words, as the user moves the cursor on the graph your program should output the cursor position giving resistance and temperature. Level II Projects Level II projects will require more time to complete than Level I Projects. They involve an actual experiment and the writing and successful demonstration of a G program for collecting and graphing data. Unless otherwise indicated, any of the instruments described in this course may be used. A report must accompany the successful demonstration of the program. A level II project counts for 20% of the final mark in this course. 1. Charge Capacity of a Chemical Cell As described in Chapter 2 the charge capacity of a consumer-type chemical cell is given as a rating in milliampere-hours (ma-hr). Design and perform an experiment to determine the charge capacity of a typical cell. 2. Temperature Dependence of Internal Resistance The power a chemical cell or battery can deliver to a load is determined by the cell s design and internal resistance. The internal resistance is expected to be dependent in some way on temperature. Design and perform an experiment to study the temperature dependence of the internal resistance of a chemical cell. HINT: At each temperature selected you must be able to measure the emf ε of the cell and the current delivered to a load of fixed resistance (see figure). Rin ε precision resistor voltage measuring instrument Switch S in the figure might be a low-current DC switch activated by a logic signal from a DAQ card. The output voltage can be measured via one of the analog input lines on the DAQ card. 3. Calculating Heat Capacity with a Thermistor Design and perform an experiment to graph the rise in temperature of a known amount of water in response to the input of a known amount of heat. The heat may be transferred by a resistor of known resistance and the temperature may be measured with a thermistor. Determine from the graph the heat capacity of water. You may find the apparatus from the first year physics experiment Temperature and Heat to be useful in this project. 4. Monitoring Temperature with a Thermocouple The physics lab is supplied with a number of small electrically-powered ovens. Design and perform an experiment to examine the heating characteristics of such an oven, i.e., how the temperature varies with time once the power is applied and how stable is the maximum temperature reached. 5. Cooling I Hot coffee in a styrofoam cup might be expected to cool less rapidly when the top is on than when it is off. Design and perform an experiment using two temperature sensors to test this hypothesis. For full credit your project must include a data AD-3

4 Term Project Ideas analysis and the calculation of time constants. 6. Cooling II The heat absorbed by a metal surface is known to depend to some extent on the surface type, whether shiny or dull, white or black. Design and perform an experiment using a heat lamp shining with equal intensity on two metal containers of water, one painted white the other black. The two temperatures may be measured with two AD595 thermometers. 7. Controlling Oscilloscope Cursors The cursors on the Tek oscilloscope can be set as well as read programmatically. Devise an experiment involving a filter (RC circuit), the signal generator and oscilloscope to get two waveforms on the oscilloscope that differ significanly in phase. Write a G program to set the vertical cursors on zero crossings of the waveforms, read the cursors and thence determine the phase difference between the waveforms. 8. Measurement of Time Write and demonstrate a G program to perform the function of an electronic stopwatch using the DAQ card. A pushbutton switch with a debouncing circuit has been constructed for your use. This will require the connection of a 100 kω resistor and pushbutton switch as shown in the following circuit: 9. Digital Balance A modern digital balance is at heart a calibrated strain gauge. Design a procedure involving a G program to calibrate a sensor as a digital scale calibrated in kg. 10. Ohm s Law The IV characteristic of a carbon composition resistor (Ohm s Law) can be studied with the circuit drawn in the figure. can be read remotely. WARNING: You need to ensure that the power delivered to the resistor does not exceed the resistor s maximum power rating or the resistor may burn up. 11. IV Characteristic of a Solar Array Design and perform an experiment to graph and analyze the IV characteristic of a solar array. For this purpose you may use the apparatus that is used in the Solar Array experiment in the first year physics lab. Your project must involve the simultaneous reading of current and voltage across the load resistor. 12. IV Characteristic of an LED Design and perform an experiment to graph the IV characteristic of an LED which is forward biased. A similar caution applies as in the case of the resistor. 13. Temperature Dependence of V T The rectifier equation of a typical semiconductor diode is written I f = I r e V / V T ( 1 ) where V T = kt/e, k is Boltzmann s constant, T is the absolute temperature and e is the electronic charge. Design and perform an experiment to test the predicted temperature dependence of V T. 14. Temperature Dependence of Capacitance Much research is being done in an effort to find materials for making capacitors with a capacitance as independent of temperature as is possible. Design and perform an experiment to determine the temperature dependence of the capacitance of a capacitor over the range 0 to 100 C. 15. Photoresistance 16. Magnetic Field of a Coil The magnetic field strength at the centre of a solenoid of N turns of wire is given by The Agilent programmable power supply can be controlled via GPIB or serial interface such that the current and voltage delivered by the supply AD-4 Design and perform an experiment using the programmable power supply, a Hall effect sensor

5 and a standard solenoid to test this expression and determine the value of µ. 17. Transformer A transformer is designed to be more-or-less ideal over a fairly narrow range of frequency. Design an experiment to study the ideality/non-ideality of a common nominally 1:1 transformer. 18. Weather Station Data Write a G program to obtain via FTP a five-day dataset from the UTSC weather station and graph it. The project must include graphs of temperature, atmospheric pressure, relative humidity, wind speed and direction, precipitation and solar illumination. 19. Solar Illumination Maximum daily solar illumination (obtained at approximately local noon with a pyranometer as is used in the UTSC weather station) trends downward before the winter solstice and upwards after the solstice. Write a G program to extract via FTP and graph the solar illumination data from the UTSC weather station for one full year. Find a function for interpolating the average maximum solar illumination for any day of the year. 20. Instrument Calibration Because the Agilent 34401A DMM has 6-1/2 digits of precision it is commonly used to calibrate instruments having less precision. Design and perform an experiment to use the Agilent DMM to calibrate the RS DMM over the voltage range 0 to 5 volts. This project will involve controlling the RS DMM via the serial port and the Agilent DMM via a second serial port or GPIB. 21. Nyquist Frequency Design and perform an experiment to illustrate the effect of the Nyquist frequency. 22. Fourier Analysis I 23. Fourier Analysis II 24. Proximity Sensing Proximity sensing is of wide interest in the Life Sciences in monitoring the movement and behavior of small animals. Term Project Ideas 25. Temperature Control of Enclosures Controlling the temperature of an enclosure containing small animals is an important activity in the Life Sciences. This task can be simulated by controlling the temperature inside a popular cooler sold by Canadian Tire. 26. Heat Conduction in Water. Water is regarded as a good conductor of heat. In the process of heating a beaker of water on a hot surface like a hotplate it is of interest to know if the water heats uniformly throughout the volume of water or if the heat is conducted or convected from the bottom up. Set up an experiment as shown in the figure employing 4 Vernier Software standard temperature sensors at positions 4/5 H, 3/5 H, 2/5 H and 1/5 H, where H is the depth of the water. Connect the sensors to analog input channels 6, 4, 2, 0 of the DAQ beakout box. H B A C hot surface Write a G program to investigate the following questions: 1) Is the rate of temperature increase the same for sensors A, B, C and D? 2) How much time is required for the 4 sensors to reach the same temperature? 3) Does the data exhibit any evidence of thermalinduced currents in the beaker (i.e., is there any evidence of systematic variation in temperature?) D 27. AD-5

6 Term Project Ideas AD-6

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Name: MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.091 Hands-On Introduction to EE Lab Skills Laboratory No. 1 Oscilloscopes, Multimeter, Function Generator IAP 2008 1 Objective In this laboratory, you will

More information

SENSOR AND MEASUREMENT EXPERIMENTS

SENSOR AND MEASUREMENT EXPERIMENTS SENSOR AND MEASUREMENT EXPERIMENTS Page: 1 Contents 1. Capacitive sensors 2. Temperature measurements 3. Signal processing and data analysis using LabVIEW 4. Load measurements 5. Noise and noise reduction

More information

Lab 2: Linear and Nonlinear Circuit Elements and Networks

Lab 2: Linear and Nonlinear Circuit Elements and Networks OPTI 380B Intermediate Optics Laboratory Lab 2: Linear and Nonlinear Circuit Elements and Networks Objectives: Lean how to use: Function of an oscilloscope probe. Characterization of capacitors and inductors

More information

EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 6 Diodes: Half-Wave and Full-Wave Rectifiers Converting AC to DC

EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 6 Diodes: Half-Wave and Full-Wave Rectifiers Converting AC to DC EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 6 Diodes: Half-Wave and Full-Wave Rectifiers Converting C to DC The process of converting a sinusoidal C voltage to a

More information

Class #9: Experiment Diodes Part II: LEDs

Class #9: Experiment Diodes Part II: LEDs Class #9: Experiment Diodes Part II: LEDs Purpose: The objective of this experiment is to become familiar with the properties and uses of LEDs, particularly as a communication device. This is a continuation

More information

ANALOG TO DIGITAL CONVERTER ANALOG INPUT

ANALOG TO DIGITAL CONVERTER ANALOG INPUT ANALOG INPUT Analog input involves sensing an electrical signal from some source external to the computer. This signal is generated as a result of some changing physical phenomenon such as air pressure,

More information

EKT 314/4 LABORATORIES SHEET

EKT 314/4 LABORATORIES SHEET EKT 314/4 LABORATORIES SHEET WEEK DAY HOUR 4 1 2 PREPARED BY: EN. MUHAMAD ASMI BIN ROMLI EN. MOHD FISOL BIN OSMAN JULY 2009 Creating a Typical Measurement Application 5 This chapter introduces you to common

More information

Direct Current Waveforms

Direct Current Waveforms Cornerstone Electronics Technology and Robotics I Week 20 DC and AC Administration: o Prayer o Turn in quiz Direct Current (dc): o Direct current moves in only one direction in a circuit. o Though dc must

More information

Electric Circuit Fall 2017 Lab3 LABORATORY 3. Diode. Guide

Electric Circuit Fall 2017 Lab3 LABORATORY 3. Diode. Guide LABORATORY 3 Diode Guide Diodes Overview Diodes are mostly used in practice for emitting light (as Light Emitting Diodes, LEDs) or controlling voltages in various circuits. Typical diode packages in same

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 2 BASIC CIRCUIT ELEMENTS OBJECTIVES The purpose of this experiment is to familiarize the student with

More information

EXPERIMENT 12 PHYSICS 250 TRANSDUCERS: TIME RESPONSE

EXPERIMENT 12 PHYSICS 250 TRANSDUCERS: TIME RESPONSE EXPERIMENT 12 PHYSICS 250 TRANSDUCERS: TIME RESPONSE Apparatus: Signal generator Oscilloscope Digital multimeter Microphone Photocell Hall Probe Force transducer Force generator Speaker Light sources Calibration

More information

Curriculum. Technology Education ELECTRONICS

Curriculum. Technology Education ELECTRONICS Curriculum Technology Education ELECTRONICS Supports Academic Learning Expectation # 3 Students and graduates of Ledyard High School will employ problem-solving skills effectively Approved by Instructional

More information

Practical 2P12 Semiconductor Devices

Practical 2P12 Semiconductor Devices Practical 2P12 Semiconductor Devices What you should learn from this practical Science This practical illustrates some points from the lecture courses on Semiconductor Materials and Semiconductor Devices

More information

Industrial Electricity. Answer questions and/or record measurements in the spaces provided.

Industrial Electricity. Answer questions and/or record measurements in the spaces provided. Industrial Electricity Lab 10: Building a Basic Power Supply ame Due Friday, 3/16/18 Answer questions and/or record measurements in the spaces provided. Measure resistance (impedance actually) on each

More information

EE 43 Smart Dust Lab: Experiment Guide

EE 43 Smart Dust Lab: Experiment Guide Smart Dust Motes EE 43 Smart Dust Lab: Experiment Guide The motes that you ll use are contained in translucent plastic boxes that measure 1.5 x 2.5 x 0.6 cubic inches. There is an insulated antenna (inside

More information

EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 0: Course Introduction

EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 0: Course Introduction EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 0: Course Introduction The primary goal of the one-unit EE110 course is to serve as a small window to allow the freshman

More information

PHYS 3152 Methods of Experimental Physics I E2. Diodes and Transistors 1

PHYS 3152 Methods of Experimental Physics I E2. Diodes and Transistors 1 Part I Diodes Purpose PHYS 3152 Methods of Experimental Physics I E2. In this experiment, you will investigate the current-voltage characteristic of a semiconductor diode and examine the applications of

More information

Resistance and Ohm s Law R V I. 1 ohm = 1 volt ampere

Resistance and Ohm s Law R V I. 1 ohm = 1 volt ampere Resistance and Ohm s Law If you maintain an electric potential difference, or voltage V, across any conductor, an electric current occurs. In general, the magnitude of the current depends on the potential

More information

Verification of competency for ELTR courses

Verification of competency for ELTR courses Verification of competency for ELTR courses The purpose of these performance assessment activities is to verify the competence of a prospective transfer student with prior work experience and/or formal

More information

LABORATORY 3 v1 CIRCUIT ELEMENTS

LABORATORY 3 v1 CIRCUIT ELEMENTS University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Bernhard Boser LABORATORY 3 v1 CIRCUIT ELEMENTS The purpose of this laboratory is to familiarize

More information

LABORATORY MODULE. Analog Electronics. Semester 2 (2005/2006)

LABORATORY MODULE. Analog Electronics. Semester 2 (2005/2006) LABORATORY MODULE ENT 162 Analog Electronics Semester 2 (2005/2006) EXPERIMENT 1 : Introduction to Diode Name Matric No. : : PUSAT PENGAJIAN KEJURUTERAAN MEKATRONIK KOLEJ UNIVERSITI KEJURUTERAAN UTARA

More information

Understanding Solar Energy Teacher Page

Understanding Solar Energy Teacher Page Understanding Solar Energy Teacher Page Photovoltaic Power Output & I-V Curves Student Objective The student: will be able to determine the voltage, current and power of a given PV module given the efficiency,

More information

Lab 2A: Introduction to Sensing and Data Acquisition

Lab 2A: Introduction to Sensing and Data Acquisition Lab 2A: Introduction to Sensing and Data Acquisition Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin June 12, 2014 1 Lab 2A 2 Sensors 3 DAQ 4 Experimentation

More information

Maltase cross tube. D. Senthilkumar P a g e 1

Maltase cross tube.  D. Senthilkumar P a g e 1 Thermionic Emission Maltase cross tube Definition: The emission of electrons when a metal is heated to a high temperature Explanation: In metals, there exist free electrons which are able to move around

More information

GCSE Electronics. Scheme of Work

GCSE Electronics. Scheme of Work GCSE Electronics Scheme of Work Week Topic Detail Notes 1 Practical skills assemble a circuit using a diagram recognize a component from its physical appearance (This is a confidence building/motivating

More information

Workshop 1 Measurement techniques and sensors

Workshop 1 Measurement techniques and sensors The University of British Columbia GEOG 309 / Andreas Christen January 31, 2008 Workshop 1 Measurement techniques and sensors Goals 1 Use components and a multi-meter to understand measurement principles

More information

IT.MLD900 SENSORS AND TRANSDUCERS TRAINER. Signal Conditioning

IT.MLD900 SENSORS AND TRANSDUCERS TRAINER. Signal Conditioning SENSORS AND TRANSDUCERS TRAINER IT.MLD900 The s and Instrumentation Trainer introduces students to input sensors, output actuators, signal conditioning circuits, and display devices through a wide range

More information

EE351 Laboratory Exercise 1 Diode Circuits

EE351 Laboratory Exercise 1 Diode Circuits revised July 19, 2009 The purpose of this laboratory exercise is to gain experience and understanding working with diodes. Focus on taking good data so that the plots and calculations you will do later

More information

Electricity Basics

Electricity Basics Western Technical College 31660310 Electricity Basics Course Outcome Summary Course Information Description Career Cluster Instructional Level Total Credits 4.00 Total Hours 144.00 DC/AC electrical theory

More information

APPENDIX D DISCUSSION OF ELECTRONIC INSTRUMENTS

APPENDIX D DISCUSSION OF ELECTRONIC INSTRUMENTS APPENDIX D DISCUSSION OF ELECTRONIC INSTRUMENTS DC POWER SUPPLIES We will discuss these instruments one at a time, starting with the DC power supply. The simplest DC power supplies are batteries which

More information

BME 3512 Bioelectronics Laboratory Five - Operational Amplifiers

BME 3512 Bioelectronics Laboratory Five - Operational Amplifiers BME 351 Bioelectronics Laboratory Five - Operational Amplifiers Learning Objectives: Be familiar with the operation of a basic op-amp circuit. Be familiar with the characteristics of both ideal and real

More information

Using Circuits, Signals and Instruments

Using Circuits, Signals and Instruments Using Circuits, Signals and Instruments To be ignorant of one s ignorance is the malady of the ignorant. A. B. Alcott (1799-1888) Some knowledge of electrical and electronic technology is essential for

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

+ 24V 3.3K - 1.5M. figure 01

+ 24V 3.3K - 1.5M. figure 01 ELECTRICITY ASSESSMENT 35 questions Revised: 08 Jul 2013 1. Which of the wire sizes listed below results in the least voltage drop in a circuit carrying 10 amps: a. 16 AWG b. 14 AWG c. 18 AWG d. 250 kcmil

More information

Physics 281 EXPERIMENT 7 I-V Curves of Non linear Device

Physics 281 EXPERIMENT 7 I-V Curves of Non linear Device Physics 281 EXPERIMENT 7 I-V Curves of Non linear Device Print this page to start your lab report (1 copy) Bring a diskette to save your data. OBJECT: To study the method of obtaining the characteristics

More information

6. Bipolar Diode. Owing to this one-direction conductance, current-voltage characteristic of p-n diode has a rectifying shape shown in Fig. 2.

6. Bipolar Diode. Owing to this one-direction conductance, current-voltage characteristic of p-n diode has a rectifying shape shown in Fig. 2. 33 6. Bipolar Diode 6.1. Objectives - to experimentally observe temperature dependence of the current flowing in p-n junction silicon and germanium diodes; - to measure current-voltage characteristics

More information

Electronic Systems - B1 23/04/ /04/ SisElnB DDC. Chapter 2

Electronic Systems - B1 23/04/ /04/ SisElnB DDC. Chapter 2 Politecnico di Torino - ICT school Goup B - goals ELECTRONIC SYSTEMS B INFORMATION PROCESSING B.1 Systems, sensors, and actuators» System block diagram» Analog and digital signals» Examples of sensors»

More information

ELECTRONIC SYSTEMS. Introduction. B1 - Sensors and actuators. Introduction

ELECTRONIC SYSTEMS. Introduction. B1 - Sensors and actuators. Introduction Politecnico di Torino - ICT school Goup B - goals ELECTRONIC SYSTEMS B INFORMATION PROCESSING B.1 Systems, sensors, and actuators» System block diagram» Analog and digital signals» Examples of sensors»

More information

Appendix A: Laboratory Equipment Manual

Appendix A: Laboratory Equipment Manual Appendix A: Laboratory Equipment Manual 1. Introduction: This appendix is a manual for equipment used in experiments 1-8. As a part of this series of laboratory exercises, students must acquire a minimum

More information

Farr High School HIGHER PHYSICS. Unit 3 Electricity. Exam Question Booklet

Farr High School HIGHER PHYSICS. Unit 3 Electricity. Exam Question Booklet Farr High School HIGHER PHYSICS Unit 3 Electricity Exam Question Booklet 1 2 MULTIPLE CHOICE QUESTIONS 1. 3. 2. 4. 3 5. 6. 7. 4 8. 9. 5 10. 11. 6 12. 13. 14. 7 15. 16. 17. 8 18. 20. 21. 19. 9 MONITORING

More information

Contents. Acknowledgments. About the Author

Contents. Acknowledgments. About the Author Contents Figures Tables Preface xi vii xiii Acknowledgments About the Author xv xvii Chapter 1. Basic Mathematics 1 Addition 1 Subtraction 2 Multiplication 2 Division 3 Exponents 3 Equations 5 Subscripts

More information

Measurement, Sensors, and Data Acquisition in the Two-Can System

Measurement, Sensors, and Data Acquisition in the Two-Can System Measurement, Sensors, and Data Acquisition in the Two-Can System Prof. R.G. Longoria Updated Fall 2010 Goal of this week s lab Gain familiarity with using sensors Gain familiarity with using DAQ hardware

More information

B. Equipment. Advanced Lab

B. Equipment. Advanced Lab Advanced Lab Measuring Periodic Signals Using a Digital Oscilloscope A. Introduction and Background We will use a digital oscilloscope to characterize several different periodic voltage signals. We will

More information

LabVIEW Based Instrumentation and Experimental Methods Course

LabVIEW Based Instrumentation and Experimental Methods Course Session 2259 LabVIEW Based Instrumentation and Experimental Methods Course Chi-Wook Lee Department of Mechanical Engineering University of the Pacific Stockton, CA 95211 Abstract Instrumentation and Experimental

More information

UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING. Electrical Engineering Science. Laboratory Manual

UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING. Electrical Engineering Science. Laboratory Manual UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING Electrical Engineering Science Laboratory Manual Table of Contents Experiment #1 OHM S LAW... 3 Experiment # 2 SERIES AND PARALLEL CIRCUITS... 8

More information

CHEMISTRY 133 CHEMICAL INSTRUMENTATION LABORATORY MANUAL

CHEMISTRY 133 CHEMICAL INSTRUMENTATION LABORATORY MANUAL CHEMISTRY 133 CHEMICAL INSTRUMENTATION LABORATORY MANUAL Spring 2017 Instructor: Justin P. Miller-Schulze 3.01 mv Table of Contents Laboratory Experiment Page Introduction and Laboratory Format 2 Data

More information

EE EXPERIMENT 1 (2 DAYS) BASIC OSCILLOSCOPE OPERATIONS INTRODUCTION DAY 1

EE EXPERIMENT 1 (2 DAYS) BASIC OSCILLOSCOPE OPERATIONS INTRODUCTION DAY 1 EE 2101 - EXPERIMENT 1 (2 DAYS) BASIC OSCILLOSCOPE OPERATIONS INTRODUCTION The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer

More information

Unit 15: Electrical Circuits and their Applications

Unit 15: Electrical Circuits and their Applications Unit 15: Electrical Circuits and their Applications Level: 3 Unit type: Internal Guided learning hours: 60 Unit in brief This unit covers the principles of electricity, including measurements of electrical

More information

Introduction to Electronic Equipment

Introduction to Electronic Equipment Introduction to Electronic Equipment INTRODUCTION This semester you will be exploring electricity and magnetism. In order to make your time in here more instructive we ve designed this laboratory exercise

More information

Diode Applications Half-Wave Rectifying

Diode Applications Half-Wave Rectifying Lab 5 Diode Applications Half-Wave ectifying Objectives: Study the half-wave rectifying and smoothing with a capacitor for a simple diode circuit. Study the use of a Zener diode in a circuit with an AC

More information

EE283 Electrical Measurement Laboratory Laboratory Exercise #7: Digital Counter

EE283 Electrical Measurement Laboratory Laboratory Exercise #7: Digital Counter EE283 Electrical Measurement Laboratory Laboratory Exercise #7: al Counter Objectives: 1. To familiarize students with sequential digital circuits. 2. To show how digital devices can be used for measurement

More information

Industrial Technology Electronics Technologies

Industrial Technology Electronics Technologies 2010 HIGHER SCHOOL CERTIFICATE EXAMINATION Industrial Technology Electronics Technologies Total marks 40 General Instructions Reading time 5 minutes Working time 1 1 hours 2 Write using black or blue pen

More information

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination.

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination. Name: Number: Department of Mechanical and Aerospace Engineering MAE334 - Introduction to Instrumentation and Computers Final Examination December 12, 2002 Closed Book and Notes 1. Be sure to fill in your

More information

Physics 4B, Lab # 2 Circuit Tools and Voltage Waveforms

Physics 4B, Lab # 2 Circuit Tools and Voltage Waveforms Physics 4B, Lab # 2 Circuit Tools and Voltage Waveforms OBJECTIVES 1. Become familiar with a DC power supply and setting the output voltage. 2. Learn how to measure voltages & currents using a Digital

More information

Lab Exercise # 9 Operational Amplifier Circuits

Lab Exercise # 9 Operational Amplifier Circuits Objectives: THEORY Lab Exercise # 9 Operational Amplifier Circuits 1. To understand how to use multiple power supplies in a circuit. 2. To understand the distinction between signals and power. 3. To understand

More information

Lab 04. Basic Oscilloscope Operation Capacitor Time Constant. 1. The Oscilloscope.

Lab 04. Basic Oscilloscope Operation Capacitor Time Constant. 1. The Oscilloscope. Lab 04 Basic Oscilloscope Operation Capacitor Time Constant Sierra College CIE-01 Jim Weir 530.272.2203 jweir43@gmail.com www.rstengineering.com/sierra. 1. The Oscilloscope. a. As you can see from the

More information

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I ECE285 Electric Circuit Analysis I Spring 2014 Nathalia Peixoto Rev.2.0: 140124. Rev 2.1. 140813 1 Lab reports Background: these 9 experiments are designed as simple building blocks (like Legos) and students

More information

3. Apparatus/ Materials 1) Computer 2) Vernier board circuit

3. Apparatus/ Materials 1) Computer 2) Vernier board circuit Experiment 3 RLC Circuits 1. Introduction You have studied the behavior of capacitors and inductors in simple direct-current (DC) circuits. In alternating current (AC) circuits, these elements act somewhat

More information

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION Objectives: ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION The primary goal of this laboratory is to study the operation and limitations of several commonly used pieces of instrumentation:

More information

INC 253 Digital and electronics laboratory I

INC 253 Digital and electronics laboratory I INC 253 Digital and electronics laboratory I Laboratory 4 Wave Shaping Diode Circuits Author: ID CoAuthors: 1. ID 2. ID 3. ID Experiment Date: Report received Date: Comments For Instructor Full Marks Pre

More information

Construction Electrician/Industrial Electrician/Power Electrician Common Core Level 2

Construction Electrician/Industrial Electrician/Power Electrician Common Core Level 2 Common Core Level 2 Unit: B1 Commercial Electrical Code Level: Two Duration: 60 hours Theory: Practical: 60 hours 0 hours Overview: This unit is designed to provide the apprentice with the knowledge about

More information

Name: Resistors and Basic Resistive Circuits. Objective: To gain experience with data acquisition proto-boards physical resistors. Table of Contents:

Name: Resistors and Basic Resistive Circuits. Objective: To gain experience with data acquisition proto-boards physical resistors. Table of Contents: Objective: To gain experience with data acquisition proto-boards physical resistors Table of Contents: Name: Resistors and Basic Resistive Circuits Pre-Lab Assignment 1 Background 2 National Instruments

More information

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS The purpose of this document is to guide students through a few simple activities to increase familiarity with basic electronics

More information

). The THRESHOLD works in exactly the opposite way; whenever the THRESHOLD input is above 2/3V CC

). The THRESHOLD works in exactly the opposite way; whenever the THRESHOLD input is above 2/3V CC ENGR 210 Lab 8 RC Oscillators and Measurements Purpose: In the previous lab you measured the exponential response of RC circuits. Typically, the exponential time response of a circuit becomes important

More information

CRN: MET-487 Instrumentation and Automatic Control June 28, 2010 August 5, 2010 Professor Paul Lin

CRN: MET-487 Instrumentation and Automatic Control June 28, 2010 August 5, 2010 Professor Paul Lin CRN: 32030 MET-487 Instrumentation and Automatic Control June 28, 2010 August 5, 2010 Professor Paul Lin Course Description: Class 2, Lab 2, Cr. 3, Junior class standing and 216 Instrumentation for pressure,

More information

Electronics II. Calibration and Curve Fitting

Electronics II. Calibration and Curve Fitting Objective Find components on Digikey Electronics II Calibration and Curve Fitting Determine the parameters for a sensor from the data sheets Predict the voltage vs. temperature relationship for a thermistor

More information

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination.

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination. Name: Number: Department of Mechanical and Aerospace Engineering MAE334 - Introduction to Instrumentation and Computers Final Examination December 12, 2003 Closed Book and Notes 1. Be sure to fill in your

More information

Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces.

Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces. Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces. 1. Basic diode characteristics Build the circuit shown in

More information

Electronics Technology and Robotics I Week 5 Resistors and Potentiometers

Electronics Technology and Robotics I Week 5 Resistors and Potentiometers Electronics Technology and Robotics I Week 5 Resistors and Potentiometers Administration: o Prayer o Turn in quiz o Using two switches, design a circuit that correspond to an AND gate. Resistors: o Function:

More information

Experiment 6: Biasing Circuitry

Experiment 6: Biasing Circuitry 1 Objective UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE105 Lab Experiments Experiment 6: Biasing Circuitry Setting up a biasing

More information

Courseware Sample F0

Courseware Sample F0 Electric Power / Controls Courseware Sample 85822-F0 A ELECTRIC POWER / CONTROLS COURSEWARE SAMPLE by the Staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this publication

More information

Laboratory Exercise 6 THE OSCILLOSCOPE

Laboratory Exercise 6 THE OSCILLOSCOPE Introduction Laboratory Exercise 6 THE OSCILLOSCOPE The aim of this exercise is to introduce you to the oscilloscope (often just called a scope), the most versatile and ubiquitous laboratory measuring

More information

Chapter 5: Diodes. I. Theory. Chapter 5: Diodes

Chapter 5: Diodes. I. Theory. Chapter 5: Diodes Chapter 5: Diodes This week we will explore another new passive circuit element, the diode. We will also explore some diode applications including conversion of an AC signal into a signal that never changes

More information

Chapter 2 Analog-to-Digital Conversion...

Chapter 2 Analog-to-Digital Conversion... Chapter... 5 This chapter examines general considerations for analog-to-digital converter (ADC) measurements. Discussed are the four basic ADC types, providing a general description of each while comparing

More information

Experiment No. 1 Half Wave Rectifier using R-Triggering

Experiment No. 1 Half Wave Rectifier using R-Triggering Experiment No. 1 Half Wave Rectifier using R-Triggering Pre-Lab Reading: Power Electronics: Circuits, Devices and Applications, by M. H. Rashid, 3e. Objectives: To analyze resistive firing/triggering of

More information

LLS - Introduction to Equipment

LLS - Introduction to Equipment Published on Advanced Lab (http://experimentationlab.berkeley.edu) Home > LLS - Introduction to Equipment LLS - Introduction to Equipment All pages in this lab 1. Low Light Signal Measurements [1] 2. Introduction

More information

Electronic Circuits I Laboratory 03 Rectifiers

Electronic Circuits I Laboratory 03 Rectifiers Electronic Circuits I Laboratory 03 Rectifiers # Student ID Student Name Grade (10) 1 Instructor signature 2 3 4 5 Delivery Date -1 / 18 - Objectives In this experiment, you will get to know a group of

More information

Number of Lessons:155 #14B (P) Electronics Technology with Digital and Microprocessor Laboratory Completion Time: 42 months

Number of Lessons:155 #14B (P) Electronics Technology with Digital and Microprocessor Laboratory Completion Time: 42 months PROGRESS RECORD Study your lessons in the order listed below. Number of Lessons:155 #14B (P) Electronics Technology with Digital and Microprocessor Laboratory Completion Time: 42 months 1 2330A Current

More information

Electrical Fundamentals and Basic Components Chapters T2, T3, G4

Electrical Fundamentals and Basic Components Chapters T2, T3, G4 Electrical Fundamentals and Basic Components Chapters T2, T3, G4 Some Basic Math, Electrical Fundamentals, AC Power, The Basics of Basic Components, A Little More Component Detail, Reactance and Impedance

More information

Experiment No. 2 Half Wave Rectifier using RC-Triggering

Experiment No. 2 Half Wave Rectifier using RC-Triggering Experiment No. 2 Half Wave Rectifier using RC-Triggering Pre-Lab Reading: 1. Power Electronics: Circuits, Devices and Applications, by M. H. Rashid, 3e. (See page 790 to get help for this experiment).

More information

LAB I. INTRODUCTION TO LAB EQUIPMENT

LAB I. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB I. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Agilent MSO6032A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

EET 1150 Lab 6 Ohm s Law

EET 1150 Lab 6 Ohm s Law Name EQUIPMENT and COMPONENTS Digital Multimeter Trainer with Breadboard Resistors: 220, 1 k, 1.2 k, 2.2 k, 3.3 k, 4.7 k, 6.8 k Red light-emitting diode (LED) EET 1150 Lab 6 Ohm s Law In this lab you ll

More information

Physics 334 Notes for Lab 2 Capacitors

Physics 334 Notes for Lab 2 Capacitors Physics 334 Notes for Lab 2 Capacitors January 19, 2009 Do the Lab Manual sections in the following order 2-1, 2-3, 2-4, 2-2, 2-5, 2-6, 2-8 (Skip 2-7 and 2-9). First, here s a review of some important

More information

Operational Amplifiers: Part II

Operational Amplifiers: Part II 1. Introduction Operational Amplifiers: Part II The name "operational amplifier" comes from this amplifier's ability to perform mathematical operations. Three good examples of this are the summing amplifier,

More information

Physics 310 Lab 4 Transformers, Diodes, & Power Supplies

Physics 310 Lab 4 Transformers, Diodes, & Power Supplies Physics 310 Lab 4 Transformers, Diodes, & Power Supplies Equipment: O scope, W02G Bridge Rectifier, 110 6.3V transformer, four 1N4004 diodes, 1k, 10µF, 100µF, 1N5231 Zeener diode, ½ - Watt 100 Ω, 270Ω,

More information

Sensors. Chapter 3. Storey: Electrical & Electronic Systems Pearson Education Limited 2004 OHT 3.1

Sensors. Chapter 3. Storey: Electrical & Electronic Systems Pearson Education Limited 2004 OHT 3.1 Sensors Chapter 3 Introduction Describing Sensor Performance Temperature Sensors Light Sensors Force Sensors Displacement Sensors Motion Sensors Sound Sensors Sensor Interfacing Storey: Electrical & Electronic

More information

ADC, FFT and Noise. p. 1. ADC, FFT, and Noise

ADC, FFT and Noise. p. 1. ADC, FFT, and Noise ADC, FFT and Noise. p. 1 ADC, FFT, and Noise Analog to digital conversion and the FFT A LabView program, Acquire&FFT_Nscans.vi, is available on your pc which (1) captures a waveform and digitizes it using

More information

GENERATION OF SIGNALS USING LABVIEW FOR MAGNETIC COILS WITH POWER AMPLIFIERS

GENERATION OF SIGNALS USING LABVIEW FOR MAGNETIC COILS WITH POWER AMPLIFIERS GENERATION OF SIGNALS USING LABVIEW FOR MAGNETIC COILS WITH POWER AMPLIFIERS Ashmi G V 1, Meena M S 2 1 ER&DCI-IT, Centre for Development of Advanced Computing, Thiruvananthapuram(India) 2 LAMP Group,

More information

Component modeling. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Component modeling. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Component modeling This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Chapter 20 Electric Circuits

Chapter 20 Electric Circuits Chapter 20 Electric Circuits 1 20.1 Electromotive Force and Current In an electric circuit, an energy source and an energy consuming device are connected by conducting wires through which electric charges

More information

Diodes. Diodes, Page 1

Diodes. Diodes, Page 1 Diodes, Page 1 Diodes V-I Characteristics signal diode Measure the voltage-current characteristic of a standard signal diode, the 1N914, using the circuit shown in Figure 1 below. The purpose of the back-to-back

More information

INTRODUCTION TO ENGINEERING AND LABORATORY EXPERIENCE Spring, 2015

INTRODUCTION TO ENGINEERING AND LABORATORY EXPERIENCE Spring, 2015 INTRODUCTION TO ENGINEERING AND LABORATORY EXPERIENCE Spring, 2015 Saeid Rahimi, Ph.D. Jack Ou, Ph.D. Engineering Science Sonoma State University A SONOMA STATE UNIVERSITY PUBLICATION CONTENTS 1 Electronic

More information

Lab 1: Basic Lab Equipment and Measurements

Lab 1: Basic Lab Equipment and Measurements Abstract: Lab 1: Basic Lab Equipment and Measurements This lab exercise introduces the basic measurement instruments that will be used throughout the course. These instruments include multimeters, oscilloscopes,

More information

Resistance Temperature Detectors (RTDs)

Resistance Temperature Detectors (RTDs) Exercise 2-1 Resistance Temperature Detectors (RTDs) EXERCISE OBJECTIVES To explain how resistance temperature detectors (RTDs) operate; To describe the relationship between the temperature and the electrical

More information

Experiment 6: Biasing Circuitry

Experiment 6: Biasing Circuitry 1 Objective UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE105 Lab Experiments Experiment 6: Biasing Circuitry Setting up a biasing

More information

EE-4022 Experiment 2 Amplitude Modulation (AM)

EE-4022 Experiment 2 Amplitude Modulation (AM) EE-4022 MILWAUKEE SCHOOL OF ENGINEERING 2015 Page 2-1 Student objectives: EE-4022 Experiment 2 Amplitude Modulation (AM) In this experiment the student will use laboratory modules to implement operations

More information

Power Electrician Level 3

Power Electrician Level 3 s Power Electrician Level 3 Rev. September 2008 Power Electrician Unit: C1 Electrical Code III Level: Three Duration: 60 hours Theory: Practical: 60 hours 0 hours Overview: This unit of instruction is

More information

ET1210: Module 5 Inductance and Resonance

ET1210: Module 5 Inductance and Resonance Part 1 Inductors Theory: When current flows through a coil of wire, a magnetic field is created around the wire. This electromagnetic field accompanies any moving electric charge and is proportional to

More information

Associate In Applied Science In Electronics Engineering Technology Expiration Date:

Associate In Applied Science In Electronics Engineering Technology Expiration Date: PROGRESS RECORD Study your lessons in the order listed below. Associate In Applied Science In Electronics Engineering Technology Expiration Date: 1 2330A Current and Voltage 2 2330B Controlling Current

More information

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits Table of Contents: Pre-Lab Assignment 2 Background 2 National Instruments MyDAQ 2 Resistors 3 Capacitors

More information