Laser processing of materials. Laser safety

Size: px
Start display at page:

Download "Laser processing of materials. Laser safety"

Transcription

1 Laser processing of materials Laser safety Prof. Dr. Frank Mücklich Dr. Andrés Lasagni Lehrstuhl für Funktionswerkstoffe Sommersemester 2007 Contents: LASER Safety Laser-tissue interaction Type of interaction Thermal interaction Thermo-acoustic Interaction Photochemical Interaction Absorption of radiation by the organism Absorption of laser light by the skin and eye Effect of ultraviolet radiation Effect of Infra-Red radiation Wavelength bands as relevant for photobiology Laser Exposure Limits Terms Maximum permissible exposure (MPE) Nominal hazard zone (NHZ) Laser Safety Classes Subdivision of Potential Hazards

2 Laser-tissue interaction Laser radiation affects that kind of tissue, which absorbs the radiation. The absorption of laser radiation in tissue, especially in ocular tissue, is strongly wavelength dependent. The type of interaction depends on the wavelength and on the interaction duration. Reflection diffus direct Dispersion Absorption Lambert-Beer Law: I(z) = I 0. e -γ.z Transmission γ [cm -1 ] = Absorption coefficient Type of interaction Depending on the interaction duration and peak irradiance values, each interaction type can be assigned a general domain:

3 Thermal interaction High power densities in small volumes strong local heating The most frequent damages are: Skin turning red to burns cooking and evaporation Thermo-acoustic Interaction Explosion-like evaporation mechanism (Popcorn-Effect) in i.e. veins and arteries Formation of Pressure-waves veins and arteries are broken into pieces, particles are ejected painful, partially to strongly bleeding injuries

4 Photochemical Interaction Chemical properties are changed h ν A B Biological functions are destroyed A + C Biological Function 1 B + C Biological Function 1 Example: UV-Radiation: Skin Cancer Examples: Laser-tissue interaction (examples) When the temperature of the tissue is increased above a critical temperature, proteins are denaturised and thermal damage occurs. If temperatures above 100 C are induced, water in the tissue begins to boil and further temperature increases lead to a carbonisation of the tissue. In the ultraviolet and blue end of the visible spectrum, photochemical damage can occur, as photon energies are sufficiently high to cause direct damage to macromolecules of cells such as to the DNA.

5 Absorption of radiation by the organism ArF-Excimer XeCl-Excimer Ar-Ionen HeNe Dioden Nd:YAG Ho:YAG Tm:YAG Er:YSSG Er:YAG CO 2 Absorption coefficient α [µm -1 ] Water Penetration depth d [µm] Water Wavelength λ [µm] Absorption of laser light by the skin and eye

6 Absorption of radiation by the skin 100 bright Reflectance [%] 50 dark Wavelength λ [nm] (From Seiler, Lasertechnik in der Medizin) Absorption of radiation by the skin

7 Absorption of radiation by the eye Laser Light RPE (retinal pigment epithelium ): in VIS range absorbs practically all of the incident optical radiation => very little power is needed to produce large temperature rises 5 µm For near IR wavelengths => radiation is partially transmitted through the RPE and is absorbed in the choroid (absorption volume is much larger and also for long term exposure, the blood support reduces the temperature rise) Cross section through the retina Absorption of radiation by the eye In contrast to light from conventional sources to which the retina is regularly exposed, if laser radiation is imaged onto the retina, the diameter of the irradiated spot on the retina is as small as µm!

8 Absorption of radiation by the eye Example: λ = 550 nm; f = 17,05 mm; D = 7 mm d b = λ f 2,44 D d b = 4 µm It means, that if a Energy density l p penetrates the pupil, the Energy density I N at the retina is given by: N = IP = I 6 P 3 10 I 4 10 Absorption of radiation by the eye => Laser Pointers can damage eyes! Green laser pointers commonly sold in stores and on the Internet now conclusively have been shown to cause eye damage, Mayo Clinic researchers announced in May (about situations in Internet!)

9 Absorption of radiation by the eye white spots: thermal burns => coagulation of retinal layers. With larger energies, holes in the retina are produced which result either in bleeding injuries Injuries induced with a Nd:YAG laser on a monkey retina. Effect of ultraviolet radiation In the entire UV spectral region ( nm) the biological effect of the radiation is cumulative. For the evaluation of the exposure one must calculate therefore the TIME-INTEGRAL (30,000 s = 1 working day) of the irradiancy. UV-A ( nm): The Penetration depth into the skin is some millimeters. Biological effects: Pigmentation of the skin (max. at 380 nm, Threshold value: 10 J/cm²) Formation of cataract UV-A ( nm): Photokeratitis: A burn of the cornea (the clear front surface of the eye)

10 Effect of Infra-Red radiation The damaging effect of the infrared radiation is practically thermal. Near IR (IR-A, nm): penetrates up to the retina Biological effects: Formation of cataract Middle IR (IR-B, nm) & Large IR (IR-C, 3 µm - 1 mm): high water absorption, retina cannot be achieved Wavelength bands as relevant for photobiology CIE Shorthand UV-C UV-B UV-A* IR-A* IR-B IR-C Wavelength Range 100 nm nm 280 nm nm 315 nm nm 700 nm nm 1400 nm nm 3000 nm - 1 mm Tissue Interaction absorbed in uppermost cell layers of eye and skin; highly effective in producing photokeratoconjunktivitis ; germicidal. Radiation with wavelengths smaller than about 180 nm nm are heavily absorbed by the oxygen of the air and is also termed "vacuum ultraviolet". Vacuum UV usually need not be considered for hazard evaluation. intermediate absorption depth; highly effective in producing photokeratoconjunktivitis and sunburn penetrates deep into eye and skin; possible damage to the lens radiation focussed onto the retina, but not visible; deep penetration into the skin radiation absorbed in volume of the eye radiation absorbed in uppermost cell layers of eye and skin

11 Wavelength bands as relevant for photobiology Laser Exposure Limits - Terms Maximum permissible exposure (MPE) The highest laser energy to which the eye or skin can be exposed for a given laser Nominal hazard zone (NHZ) Area within the MPE is equalled or exceeded Nominal Ocular Hazard distance (NOHD) Distance along the axis of the direct laser beam to the human eye beyond which the MPE is not equalled or exceeded

12 Maximum permissible exposure (MPE) 1) Optical and thermal properties of the skin and the eye are different => MPE for the eye and the skin differ => MPE skin, MPE eye! (especially in the retinal hazard wavelength region) 2) The MPE values are specified in units of J m -2 and W m -2 3) MPE values depend on the exposure duration (for longer exposure durations, the maximum safe exposure level generally is smaller than for shorter exposure durations) 4) MPE values depend on the laser wavelength 5) The ocular MPE is defined at the position of the cornea, i.e. the focussing properties of the eye and the pupil size are accounted for in the derivation of the MPEs in the retinal hazard region. Maximum permissible exposure (MPE)

13 Maximum permissible exposure (MPE) How are the MPE values calculated? Exposure dose at which 50 % of the exposures lead to a lesion is called "Effective Dose 50%" or ED-50 (for a given laser wavelength, pulse duration and spot size) MPE < 10% A typical dose-response curve as obtained in threshold experiments (here for a 850 nm laser, 180 ns pulse duration, minimal retinal spot size, beam diameter = 8mm) MPE Nominal hazard zone (NHZ) NHZ: The space within which the level of direct, scattered or reflected laser radiation exceeds the MPE (a) Specular Reflection (b) Diffuse Reflection The NHZ must be calculated in each case differently

14 NHZ Calculations: Nominal hazard zone (NHZ) NHZ From the table = 0.1 W/cm² The location where the irradiance or the exposure per pulse equals the maximum permissible exposure (MPE) defines the border of the Nominal Hazard Zone Nominal hazard zone (NHZ) MPE Case 2. NHZ calculation for a collimated beam which is focussed by a lens of focal length f. Nd:Yag Laser λ = 1064 nm MPE = W/cm² d = 10 mm P = 0.2 W f = 500 mm r = 61 mts

15 Nominal hazard zone (NHZ) MPE Case 1. NHZ calculation for a divergent beam, under the assumption of a linear divergence (far field approximation; Θ is the full angle divergence). Nd:Yag Laser λ = 1064 nm MPE = W/cm² d = 10 mm P = 2 W Θ = 0.5 mrad r = mts = 24 Km!!! Nominal hazard zone (NHZ) MPE Case 3. NHZ calculation for diffuse reflection from a rough surface Nd:Yag Laser λ = 1064 nm MPE = W/cm² ρ= 80 % (Pt at λ=1064nm ) P = 0.2 W ε = 30 r = 0.5 mts

16 Nominal hazard zone (NHZ) MPE Case 4. NHZ for a fibre with half divergence angle β Nd:Yag Laser λ = 1064 nm MPE = W/cm² P = 0.2 W β = 10 r = 2.9 mts Nominal hazard zone (NHZ)

17 Nominal hazard zone (NHZ) Nominal Hazard Zone and Entryway Controls Laser Safety Classes As MPE evaluations and the determination of hazard areas are quite complicated and involved, a laser safety classification scheme has been developed by international standardisation committees according to which laser products are grouped into classes with similar hazard potentials Laser Safety Classes Legislation: IEC (International Electrotechnical Commission) EN (European standardisation organisation) BS EN (British Standard) DIN EN (Deutsches Institut für Normung)

18 Laser Safety Classes Class Type of lasers Meaning Relationship to MPE Hazard Area Class 1 (CD-ROM players) Very low power lasers or encapsulated lasers Safe MPEs are not exceeded, even for long exposure duration (either 100 s or s), even with the use of optical instruments No hazard area (NHZ) Class 1M Very low power lasers; either collimated with large beam diameter or highly divergent Safe for the naked eye, potentially hazardous when optical instruments are used MPEs are not exceeded for the naked eye, even for long exposure durations, but maybe exceeded with the use of optical instruments No hazard area for the naked eye, but hazard area for the use of optical instruments (extended NHZ) Laser Safety Classes Class Type of lasers Meaning Relationship to MPE Hazard Area Class 2 (Supermarket scanners) Visible low power lasers Safe for unintended exposure, prolonged staring should be avoided Blink reflex limits exposure duration to nominally 0.25 s. MPE for 0.25 s not exceeded, even with the use of optical instruments. No hazard area when based on unintended exposure (0.25 s exposure duration) Class 2M Visible low power lasers; either collimated with large beam diameter or highly divergent Same as Class 2, but potentially hazardous when optical instruments are used MPE for 0.25 s not exceeded for the naked eye, but maybe exceeded with the use of optical instruments No hazard area for the naked eye when based on accidental exposure (0.25 s exposure duration), but hazard area for the use of optical instruments (extended NHZ)

19 Laser Safety Classes Class Type of lasers Meaning Relationship to MPE Hazard Area Class 3R (Laser pointers) Low power lasers Safe when handled carefully. Only small hazard potential for accidental exposure MPE with naked eye and optical instruments may be exceeded up to 5 times 5 times the limit of Class 1 in UV and IR, and 5 times the limit for Class 2 in visible, i.e. 5 mw Class 3B (research) Medium power lasers Hazardous when eye is exposed. Usually no hazard to the skin. Diffuse reflections usually safe Ocular MPE with naked eye and optical instruments may be exceeded more than 5 times. Skin MPE usually not exceeded. Hazard area for the eye (NOHA), no hazard area for the skin Laser Safety Classes Class Class 4 (research) Type of lasers High power lasers Meaning Hazardous to eye and skin, also diffuse reflection may be hazardous Fire hazard Relationship to MPE Ocular and skin MPE exceeded, diffuse reflections exceed ocular MPE Hazard Area Hazard area for the eye and skin, hazard area for diffuse reflections Accessible Emission Limit (AEL): maximum value of accessible laser radiation that an individual may be exposed to during the operation of a laser. Laser Class 1 1M 2 2M 3R 3B 4 Typical AEL for cw lasers 40 µw for blue Same as Class 1, distinction with measurement requirements 1 mw Same as Class 2, distinction with measurement requirements 5 times the limit of Class 1 in UV and IR, and 5 times the limit for Class 2 in visible, i.e. 5 mw 500 mw No limit

20 Subdivision of Potential Hazards Safety goals Priority 1: Eliminating or minimizing dangers through constructive measures Example: covering dangerous areas (danger of being crushed, struck, etc.) Priority 2: Implementing necessary safety measures for dangers which cannot be eliminated Example: optical sensors for securing moving machine parts Priority 3: Informing users about remaining dangers which cannot be avoided by constructional or safety measures Example: a note in the operating instructions about wearing gloves as a means of protection against sharp edges or hot workpieces

21 Commercial Examples Closed safety cabin Optical sensors

Laser Safety & the Human Eye Recall the human eye is a simple single lens system Crystalline lens provide focus Cornea: outer surface protection

Laser Safety & the Human Eye Recall the human eye is a simple single lens system Crystalline lens provide focus Cornea: outer surface protection Laser Safety & the Human Eye Recall the human eye is a simple single lens system Crystalline lens provide focus Cornea: outer surface protection Iris: control light Retina: where image is focused Note

More information

Biophysical Basis of Optical Radiation Exposure Limits. Bruce E. Stuck

Biophysical Basis of Optical Radiation Exposure Limits. Bruce E. Stuck Biophysical Basis of Optical Radiation Exposure Limits Bruce E. Stuck ICNIRP Member bstuck@satx.rr.com ICNIRP 8 th International Radiation Workshop Cape Town International Conference Center Cape Town,

More information

Winter College on Optics: Trends in Laser Development and Multidisciplinary Applications to Science and Industry February 2013

Winter College on Optics: Trends in Laser Development and Multidisciplinary Applications to Science and Industry February 2013 2443-28 Winter College on Optics: Trends in Laser Development and Multidisciplinary Applications to Science and Industry 4-15 February 2013 Laser Safety V. Lakshminarayanan University of Waterloo Canada

More information

Light has some interesting properties, many of which are used in medicine:

Light has some interesting properties, many of which are used in medicine: LIGHT IN MEDICINE Light has some interesting properties, many of which are used in medicine: 1- The speed of light changes when it goes from one material into another. The ratio of the speed of light in

More information

Statement on ICNIRP guidelines on limits of exposure to laser radiation

Statement on ICNIRP guidelines on limits of exposure to laser radiation Statement on ICNIRP guidelines on limits of exposure to laser radiation Content 1. Introduction 2. General remarks 2.1 Margins of protection and reduction factors 2.2 Beam diameter 2.3 Averaging apertures

More information

Figure 1. Relative intensity of solar energy of different wavelength at the earth's surface.

Figure 1. Relative intensity of solar energy of different wavelength at the earth's surface. Spectrum of light from the sun: Fig.1 Figure 1. Relative intensity of solar energy of different wavelength at the earth's surface. Properties of light 1-The speed of light changes when it goes from one

More information

Safety Issues of the Baseband IR PHY

Safety Issues of the Baseband IR PHY Aueust 1994 doc: IEEE P802.11-94/174 IEEE 802.11 Wireless Access Method and Physical Layer Specification Title: Safety Issues of the Baseband IR PHY Authors: Cipriano R. A. T. Lomba, Rui T. Valadas, A.M.

More information

Operating Instructions for ISSI Series LM2X, LM2X-DM, LM2X-DMHP

Operating Instructions for ISSI Series LM2X, LM2X-DM, LM2X-DMHP Operating Instructions for ISSI Series LM2X, LM2X-DM, LM2X-DMHP and LM2X-DMHP-RGB LED Modules August 31, 2006 Rev. 1 Caution This LED illuminator is manufactured with very high power LEDs. Please be aware

More information

Light as a stimulus for vision. Electromagnetic spectrum. Radiant Energy (Electromagnetic) Spectrum. Solar Radiation Spectrum

Light as a stimulus for vision. Electromagnetic spectrum. Radiant Energy (Electromagnetic) Spectrum. Solar Radiation Spectrum Light as a stimulus for vision The physics of light: Light is considered both as a propagating electromagnetic wave and as a stream of individual particles (photons). In Vision Science, both of these aspects

More information

General Safety Awareness

General Safety Awareness General Safety Awareness If you have not done so already, take the General Safety Awareness training Log onto access.caltech Introduction LIGO Laser Safety Program LIGO-M960001-v1 Based on ANSI Z136.1

More information

JAWIRA TIMUR SDN. BHD.,

JAWIRA TIMUR SDN. BHD., SIRIM QAS International Sdn.Bhd. (410334-X) No.1, Persiaran Dato Menteri, Section 2, P.O.BOX 7035, 40700 Shah Alam, Selangor Darul Ehsan, Malaysia. Tel: 03-55446252 Fax: 03-55446272 www.sirim-qas.com.my

More information

Micropulse Duty Cycle. # of eyes (20 ms) Total spots (200 ms)

Micropulse Duty Cycle. # of eyes (20 ms) Total spots (200 ms) Micropulse Duty Cycle Total spots (2 ms) # of eyes (2 ms) Total spots (2 ms) % 269 44 3 47% 9 4 4 25% 3 5 4 4 5% 2 4 3 5 2% 5 2 NA NA 9% 2 4 6% NA NA 57 2 5% 4 5 6 3 3% 39 5 35 5 # of eyes (2 ms) Supplemental

More information

Biological impact of optical radiation from curing lights

Biological impact of optical radiation from curing lights Biological impact of optical radiation from curing lights Ellen Bruzell Nordic Institute of Dental Materials Symposium on Light Sources in Dentistry Halifax - May 28-30 - 2014 Optical sources in dentistry

More information

Infrared Cataract And Temperature Elevation Within The Eye. Tsutomu OKUNO

Infrared Cataract And Temperature Elevation Within The Eye. Tsutomu OKUNO Infrared Cataract And Temperature Elevation Within The Eye Tsutomu OKUNO International Commission on Non-Ionizing Radiation Protection National Institute of Occupational Safety and Health, Japan 13.05.2016

More information

Description. Features Advanced Multiple Quantum Well (MQW) Fabry-Perot Laser Design Cost-effective Uncooled Laser Technology 5.6-mm TO-style package

Description. Features Advanced Multiple Quantum Well (MQW) Fabry-Perot Laser Design Cost-effective Uncooled Laser Technology 5.6-mm TO-style package Description The series of Multi-Quantum Well (MQW) Fabry-Perot (FP) lasers are well suited for low-cost high-speed transmitters. The devices feature high output power and wide operating temperature range.

More information

Measurement overview

Measurement overview Measurement overview The EU Physical Agents (Artificial Optical Radiation) Directive Meeting Globe Room, Bushy House 23 rd May 2007 Simon Hall NPL Outline Artificial Optical Radiation Directive measurements

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD IEC 60825-1 Edition 1.2 2001-08 Edition 1:1993 consolidated with amendments 1:1997 and 2:2001 GROUP SAFETY PUBLICATION Safety of laser products Part 1: Equipment classification,

More information

National 3 Physics Waves and Radiation. 1. Wave Properties

National 3 Physics Waves and Radiation. 1. Wave Properties 1. Wave Properties What is a wave? Waves are a way of transporting energy from one place to another. They do this through some form of vibration. We see waves all the time, for example, ripples on a pond

More information

Technische Universität Chemnitz Physikalische Chemie. Laser Safety

Technische Universität Chemnitz Physikalische Chemie. Laser Safety Technische Universität Chemnitz Physikalische Chemie Laser Safety. Lasers and laser systems are classified by their ability to cause biological damage to the eye or skin during use. Class I: Lasers or

More information

Laser pointers endanger the retina?!

Laser pointers endanger the retina?! Laser pointers endanger the retina?! S. Stry, P. Hering Institut für Lasermedizin, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany Introduction With the availability of low cost laser diodes in

More information

The Safe Use of Lasers. in Clinical Practice

The Safe Use of Lasers. in Clinical Practice The Safe Use of Lasers in Clinical Practice John Saunderson Laser Protection Adviser Hull & East Yorkshire Hospitals Content Welcome Nature of laser radiation Laser classes & hazards Local safety systems

More information

Lecture 5: Introduction to Lasers

Lecture 5: Introduction to Lasers Lecture 5: Introduction to Lasers http://en.wikipedia.org/wiki/laser History of the Laser v Invented in 1958 by Charles Townes (Nobel prize in Physics 1964) and Arthur Schawlow of Bell Laboratories v Was

More information

Ch.2 Optical Properties of Biological Tissues

Ch.2 Optical Properties of Biological Tissues Ch.2 Optical Properties of Biological Tissues 2.1 Optical Properties of Biological Tissues 2.1.1 Skin 2.1.2 Eye 2.1.3 Muscle 2.1.4 Fat 2.1.5 Brain 2.1.6 Tumor tissues 2.2 Laser Safety 1 2000/5/17 2.1 Optical

More information

Application Note 26. Optical Hazard Measurements with JETI specbos 1211UV

Application Note 26. Optical Hazard Measurements with JETI specbos 1211UV Optical Hazard Measurements with JETI specbos 1211UV Contents 1 Introduction 3 2 Regulations 3 3 Categories of Optical Hazard 3 4 Available Accessories for JETI specbos 1211UV 5 5 Schemes and Peculiarities

More information

LASERS. & Protective Glasses. Your guide to Lasers and the Glasses you need to wear for protection.

LASERS. & Protective Glasses. Your guide to Lasers and the Glasses you need to wear for protection. LASERS & Protective Glasses Your guide to Lasers and the Glasses you need to wear for protection. FACTS Light & Wavelengths Light is a type of what is called electromagnetic radiation. Radio waves, x-rays,

More information

Laser Protective Eyewear Guide

Laser Protective Eyewear Guide Laser Protective Eyewear Use of Laser Protective Eyewear According to the directives from the Ministry of Health, Labor and Welfare [On Measures to Prevent Injury from Laser Radiation], laser protective

More information

Author: Rachel Johnston, Carl Paton Date: 09/07/10 Manager: Brent Price

Author: Rachel Johnston, Carl Paton Date: 09/07/10 Manager: Brent Price Title: FastSCAN Laser Hazard Analysis Version 3 Controlled Documentation Author: Rachel Johnston, Carl Paton Date: 09/07/10 Manager: Brent Price Summary This document outlines hazard analysis for two WorldStar

More information

Upcoming Changes in the ANSI Z136.1 Standard - Safe Use of Lasers

Upcoming Changes in the ANSI Z136.1 Standard - Safe Use of Lasers Upcoming Changes in the ANSI Z136.1 Standard - Safe Use of Lasers 0 Ritchie Buschow, MEM, CLSO U.S. EPA/ORD/IO/SHEM buschow.ritchie@epa.gov Spring NCHPS Meeting- Chapel Hill, NC - March 4, 2011 Disclaimer

More information

TEST REPORT IEC and/or EN Photobiological safety of lamps and lamp systems

TEST REPORT IEC and/or EN Photobiological safety of lamps and lamp systems Test Report issued under the responsibility of: TEST REORT and/or EN 62471 hotobiological safety of lamps and lamp systems Report Reference No.... : GZES150400337431 Tested by (name + signature)... : Change

More information

The Puzzle of Light and AMD

The Puzzle of Light and AMD RETINAL PHOTOTOXICITY BLUE LIGHT AND AMD WHAT DO WE KNOW? David H Sliney, Ph.D. Consulting Medical Physicist Fallston, MD USA and Faculty Associate, Bloomberg School of Public Health Johns Hopkins University,

More information

PiXL Independence: GCSE Physics Student Booklet KS4. I. Level 1- Multiple Choice Quiz 20 credits. Level 3 - Science in The News 100 credits

PiXL Independence: GCSE Physics Student Booklet KS4. I. Level 1- Multiple Choice Quiz 20 credits. Level 3 - Science in The News 100 credits PiXL Independence: GCSE Physics Student Booklet KS4 Topic: Light and electromagnetic waves Contents: I. Level 1- Multiple Choice Quiz 20 credits II. III. IV. Level 2-5 questions, 5 sentences, 5 words 10

More information

Review of exposure limits and experimental data for corneal and lenticular damage from short pulsed UV and IR laser radiation

Review of exposure limits and experimental data for corneal and lenticular damage from short pulsed UV and IR laser radiation JOURNAL OF LASER APPLICATIONS VOLUME 20, NUMBER 2 MAY 2008 Review of exposure limits and experimental data for corneal and lenticular damage from short pulsed UV and IR laser radiation Karl Schulmeister

More information

Physics in Modern Medicine Fall 2010

Physics in Modern Medicine Fall 2010 Physics in Modern Medicine Fall 2010 Homework #3 Chapter 3 Lasers in Medicine Questions Q3.1 Absorption in melanin increases with decreasing wavelength, and has a maximum, according to figure 3.23 in the

More information

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004 Lithography 3 rd lecture: introduction Prof. Yosi Shacham-Diamand Fall 2004 1 List of content Fundamental principles Characteristics parameters Exposure systems 2 Fundamental principles Aerial Image Exposure

More information

ELECTROMAGNETIC WAVES AND LIGHT. Physics 5 th Six Weeks

ELECTROMAGNETIC WAVES AND LIGHT. Physics 5 th Six Weeks ELECTROMAGNETIC WAVES AND LIGHT Physics 5 th Six Weeks What are Electromagnetic Waves Electromagnetic Waves Sound and water waves are examples of waves resulting from energy being transferred from particle

More information

P6 Quick Revision Questions

P6 Quick Revision Questions P6 Quick Revision Questions H = Higher tier only SS = Separate science only Question 1... of 50 Define wavelength Answer 1... of 50 The distance from a point on one wave to the equivalent point on the

More information

Laser Induced Damage Threshold of Optical Coatings

Laser Induced Damage Threshold of Optical Coatings White Paper Laser Induced Damage Threshold of Optical Coatings An IDEX Optics & Photonics White Paper Ronian Siew, PhD Craig Hanson Turan Erdogan, PhD INTRODUCTION Optical components are used in many applications

More information

End Capped High Power Assemblies

End Capped High Power Assemblies Fiberguide s end capped fiber optic assemblies allow the user to achieve higher coupled power into a fiber core by reducing the power density at the air/ silica interface, commonly the point of laser damage.

More information

POWER DETECTORS. How they work POWER DETECTORS. Overview

POWER DETECTORS. How they work POWER DETECTORS. Overview G E N T E C - E O POWER DETECTORS Well established in this field for over 30 years Gentec Electro-Optics has been a leader in the field of laser power and energy measurement. The average power density

More information

4.6.1 Waves in air, fluids and solids Transverse and longitudinal waves Properties of waves

4.6.1 Waves in air, fluids and solids Transverse and longitudinal waves Properties of waves 4.6 Waves Wave behaviour is common in both natural and man-made systems. Waves carry energy from one place to another and can also carry information. Designing comfortable and safe structures such as bridges,

More information

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve I am Watching YOU!! Human Retina Sharp Spot: Fovea Blind Spot: Optic Nerve Human Vision Optical Antennae: Rods & Cones Rods: Intensity Cones: Color Energy of Light 6 10 ev 10 ev 4 1 2eV 40eV KeV MeV Energy

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves What is an Electromagnetic Wave? An EM Wave is a disturbance that transfers energy through a field. A field is a area around an object where the object can apply a force on another

More information

Science 8 Unit 2 Pack:

Science 8 Unit 2 Pack: Science 8 Unit 2 Pack: Name Page 0 Section 4.1 : The Properties of Waves Pages By the end of section 4.1 you should be able to understand the following: Waves are disturbances that transmit energy from

More information

Unit 1.5 Waves. The number waves per second. 1 Hz is 1waves per second. If there are 40 waves in 10 seconds then the frequency is 4 Hz.

Unit 1.5 Waves. The number waves per second. 1 Hz is 1waves per second. If there are 40 waves in 10 seconds then the frequency is 4 Hz. Unit 1.5 Waves Basic information Transverse: The oscillations of the particles are at right angles (90 ) to the direction of travel (propagation) of the wave. Examples: All electromagnetic waves (Light,

More information

ICNIRP TG STATEMENT ADJUSTMENT OF GUIDELINES FOR EXPOSURE OF THE EYE TO OPTICAL RADIATION FROM OCULAR INSTRUMENTS

ICNIRP TG STATEMENT ADJUSTMENT OF GUIDELINES FOR EXPOSURE OF THE EYE TO OPTICAL RADIATION FROM OCULAR INSTRUMENTS INTERNATIONAL COMMISSION ON NON IONIZING RADIATION PROTECTION ICNIRP TG STATEMENT ADJUSTMENT OF GUIDELINES FOR EXPOSURE OF THE EYE TO OPTICAL RADIATION FROM OCULAR INSTRUMENTS PUBLISHED IN: APPLIED OPTICS

More information

ISO INTERNATIONAL STANDARD. Ophthalmic instruments Fundamental requirements and test methods Part 2: Light hazard protection

ISO INTERNATIONAL STANDARD. Ophthalmic instruments Fundamental requirements and test methods Part 2: Light hazard protection INTERNATIONAL STANDARD ISO 15004-2 First edition 2007-02-15 Ophthalmic instruments Fundamental requirements and test methods Part 2: Light hazard protection Instruments ophtalmiques Exigences fondamentales

More information

4.6 Waves Waves in air, fluids and solids Transverse and longitudinal waves

4.6 Waves Waves in air, fluids and solids Transverse and longitudinal waves 4.6 Waves Wave behaviour is common in both natural and man-made systems. Waves carry energy from one place to another and can also carry information. Designing comfortable and safe structures such as bridges,

More information

Statement on ICNIRP guidelines on limits of exposure to incoherent optical radiation

Statement on ICNIRP guidelines on limits of exposure to incoherent optical radiation Statement on ICNIRP guidelines on limits of exposure to incoherent optical radiation H.-P. Berlien, M. Brose, J. Franek, M.-J. Graf, W. Halbritter, W. Janßen, G. Ott, H.-D. Reidenbach, E. Romanus, B. Schmitz,

More information

LMT F14. Cut in Three Dimensions. The Rowiak Laser Microtome: 3-D Cutting and Imaging

LMT F14. Cut in Three Dimensions. The Rowiak Laser Microtome: 3-D Cutting and Imaging LMT F14 Cut in Three Dimensions The Rowiak Laser Microtome: 3-D Cutting and Imaging The Next Generation of Microtomes LMT F14 - Non-contact laser microtomy The Rowiak laser microtome LMT F14 is a multi-purpose

More information

COB Laser Safety Training

COB Laser Safety Training COB Laser Safety Training Department of Occupational and Environmental Safety Out of the Blue The Israel Festival 1998 by Yoram Goldhammer COB Laser Training Topics Covered Are: Laser Definition and History

More information

LASER SAFETY. 5 Dye lasers (3-6) to 1 mj/pulse 20 Hz or 1 khz up to 1

LASER SAFETY. 5 Dye lasers (3-6) to 1 mj/pulse 20 Hz or 1 khz up to 1 LASER SAFETY Abstract - This is an in-house manual on safe laser practice. It is designed to supplement government and University regulations, but it is strictly subordinate to them. Introduction Our laboratory

More information

Standard Grade Physics Health Physics Ink Exercise G1

Standard Grade Physics Health Physics Ink Exercise G1 Standard Grade Physics Health Physics Ink Exercise G1 1. Sounds can travel through : A a vacuum B solids only C liquids only D gases only E solids, liquids and gases 2. A doctor uses a stethoscope like

More information

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 20 at the start of class PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

More information

This document is a preview generated by EVS

This document is a preview generated by EVS INTERNATIONAL STANDARD ISO 15858 First edition 2016-07-15 UV-C Devices Safety information Permissible human exposure Dispositifs UV-C Information sur la sécurité Limites admissibles pour l exposition humaine

More information

ELECTROMAGNETIC WAVES AND THE EM SPECTRUM MR. BANKS 8 TH GRADE SCIENCE

ELECTROMAGNETIC WAVES AND THE EM SPECTRUM MR. BANKS 8 TH GRADE SCIENCE ELECTROMAGNETIC WAVES AND THE EM SPECTRUM MR. BANKS 8 TH GRADE SCIENCE ELECTROMAGNETIC WAVES Do not need matter to transfer energy. Made by vibrating electric charges. When an electric charge vibrates,

More information

TECHNICAL REPORT. Safety of laser products. Sécurité des appareils à laser

TECHNICAL REPORT. Safety of laser products. Sécurité des appareils à laser TECHNICAL EPOT IEC T 60825-9 First edition 1999-10 Safety of laser products Part 9: Compilation of maximum permissible exposure to incoherent optical radiation Sécurité des appareils à laser Partie 9:

More information

BASIC LASER SAFETY. 1. Review of Light Waves 5. Stimulated emission 6. II. The Unique Characteristics of Laser Light 6

BASIC LASER SAFETY. 1. Review of Light Waves 5. Stimulated emission 6. II. The Unique Characteristics of Laser Light 6 BASIC LASER SAFETY SUBJECT PAGE 1. Review of Light Waves 5 Stimulated emission 6 II. The Unique Characteristics of Laser Light 6 A. Monochromaticity 6 B. Directionality 6 C. Coherence 6 111. How a Laser

More information

Maria Smedh, Centre for Cellular Imaging. Maria Smedh, Centre for Cellular Imaging

Maria Smedh, Centre for Cellular Imaging. Maria Smedh, Centre for Cellular Imaging Nonlinear microscopy I: Two-photon fluorescence microscopy Multiphoton Microscopy What is multiphoton imaging? Applications Different imaging modes Advantages/disadvantages Scattering of light in thick

More information

Transferring wavefront measurements to ablation profiles. Michael Mrochen PhD Swiss Federal Institut of Technology, Zurich IROC Zurich

Transferring wavefront measurements to ablation profiles. Michael Mrochen PhD Swiss Federal Institut of Technology, Zurich IROC Zurich Transferring wavefront measurements to ablation profiles Michael Mrochen PhD Swiss Federal Institut of Technology, Zurich IROC Zurich corneal ablation Calculation laser spot positions Centration Calculation

More information

TEST REPORT IEC Photobiological safety of lamps and lamp systems

TEST REPORT IEC Photobiological safety of lamps and lamp systems TEST REORT hotobiological safety of lamps and lamp systems Report Reference No.... : SHES170800821171 Date of issue... : 2017-09-04 Total number of pages... : 15 Testing Laboratory... : Address... : Applicant

More information

Vision 1. Physical Properties of Light. Overview of Topics. Light, Optics, & The Eye Chaudhuri, Chapter 8

Vision 1. Physical Properties of Light. Overview of Topics. Light, Optics, & The Eye Chaudhuri, Chapter 8 Vision 1 Light, Optics, & The Eye Chaudhuri, Chapter 8 1 1 Overview of Topics Physical Properties of Light Physical properties of light Interaction of light with objects Anatomy of the eye 2 3 Light A

More information

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points WRITE ON SCANTRON WITH NUMBER 2 PENCIL DO NOT WRITE ON THIS TEST LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points Multiple Choice Identify the choice that best completes the statement or

More information

Next, know your supply voltage. It should be a few volts above the LED forward voltage for reliable, stable LED operation

Next, know your supply voltage. It should be a few volts above the LED forward voltage for reliable, stable LED operation 4. handling 4.1. biasing LEDs The light generated by an LED is directly proportional to the forward current flowing through the device. Various biasing schemes can be used to set the value of the current.

More information

Oriel Flood Exposure Sources

Oriel Flood Exposure Sources 218 Oriel Flood Exposure Sources High intensity outputs CALIBRATION SOURCES Highly uniform, large collimated beams Efficient out of band rejection Timed exposures DEUTERIUM SOURCES ARC SOURCES INCANDESCENT

More information

TECHNICAL QUICK REFERENCE GUIDE MANUFACTURING CAPABILITIES GLASS PROPERTIES COATING CURVES REFERENCE MATERIALS

TECHNICAL QUICK REFERENCE GUIDE MANUFACTURING CAPABILITIES GLASS PROPERTIES COATING CURVES REFERENCE MATERIALS TECHNICAL QUICK REFERENCE GUIDE COATING CURVES GLASS PROPERTIES MANUFACTURING CAPABILITIES REFERENCE MATERIALS TABLE OF CONTENTS Why Edmund Optics?... 3 Anti-Reflective (AR) Coatings... 4-16 Metallic Mirror

More information

Experimental Physics. Experiment C & D: Pulsed Laser & Dye Laser. Course: FY12. Project: The Pulsed Laser. Done by: Wael Al-Assadi & Irvin Mangwiza

Experimental Physics. Experiment C & D: Pulsed Laser & Dye Laser. Course: FY12. Project: The Pulsed Laser. Done by: Wael Al-Assadi & Irvin Mangwiza Experiment C & D: Course: FY1 The Pulsed Laser Done by: Wael Al-Assadi Mangwiza 8/1/ Wael Al Assadi Mangwiza Experiment C & D : Introduction: Course: FY1 Rev. 35. Page: of 16 1// In this experiment we

More information

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a)

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a) Optical Sources (a) Optical Sources (b) The main light sources used with fibre optic systems are: Light-emitting diodes (LEDs) Semiconductor lasers (diode lasers) Fibre laser and other compact solid-state

More information

ISO Determination of sunscreen UVA photoprotection in vitro. Détermination in vitro de la photoprotection UVA. First edition

ISO Determination of sunscreen UVA photoprotection in vitro. Détermination in vitro de la photoprotection UVA. First edition INTERNATIONAL STANDARD ISO 24443 First edition 2012-06-01 Determination of sunscreen UVA photoprotection in vitro Détermination in vitro de la photoprotection UVA Reference number ISO 2012 Provläsningsexemplar

More information

The Issues of Measurement of Optical Hazard Using Photometers EMRP JRP ENG05 Metrology for Solid State Lighting

The Issues of Measurement of Optical Hazard Using Photometers EMRP JRP ENG05 Metrology for Solid State Lighting The Issues of Measurement of Optical Hazard Using Photometers EMRP JRP ENG05 Metrology for Solid State Lighting Simon Hall,Paul Miller, Neil Haigh, Ben Thornton, Neil Haigh (Lux TSI) 25 th April 2013 Background

More information

Alternative Colored Glass Alternative Filters Filters

Alternative Colored Glass Alternative Filters Filters Alternative Filters Newport's Colored-Glass Alternative (CGA) Filters Newport's patent pending Colored-Glass Alternative (CGA) filters were developed to provide solutions for applications requiring long

More information

VISULAS Trion. Treatment flexibility to the power of three. Multicolor Photocoagulation Laser

VISULAS Trion. Treatment flexibility to the power of three. Multicolor Photocoagulation Laser VISULAS Trion Treatment flexibility to the power of three Multicolor Photocoagulation Laser Carl Zeiss: A pioneer in retinal therapy For many years, Carl Zeiss has fostered a culture of highest precision,

More information

TRAINING MANUAL. Multiphoton Microscopy LSM 510 META-NLO

TRAINING MANUAL. Multiphoton Microscopy LSM 510 META-NLO TRAINING MANUAL Multiphoton Microscopy LSM 510 META-NLO September 2010 Multiphoton Microscopy Training Manual Multiphoton microscopy is only available on the LSM 510 META-NLO system. This system is equipped

More information

ISO Ophthalmic optics and instruments Instruments to measure axial distances in the eye

ISO Ophthalmic optics and instruments Instruments to measure axial distances in the eye Provläsningsexemplar / Preview INTERNATIONAL STANDARD ISO 22665 First edition 2012-12-01 Ophthalmic optics and instruments Instruments to measure axial distances in the eye Optique et instruments ophtalmiques

More information

CVI LASER OPTICS ANTIREFLECTION COATINGS

CVI LASER OPTICS ANTIREFLECTION COATINGS CVI LASER OPTICS ANTIREFLECTION COATINGS BROADBAND MULTILAYER ANTIREFLECTION COATINGS Broadband antireflection coatings provide a very low reflectance over a broad spectral bandwidth. These advanced multilayer

More information

APRAD SOR Excimer group -Progress Report 2011-

APRAD SOR Excimer group -Progress Report 2011- APRAD SOR Excimer group -Progress Report 011- The DPP EUV source activity During 011 the work on the DPP (Discharge Produced Plasma) source of Extreme Ultraviolet (EUV) radiation has been devoted to a

More information

ISO INTERNATIONAL STANDARD. Ophthalmic instruments Slit-lamp microscopes. Instruments ophtalmiques Microscopes avec lampe à fente

ISO INTERNATIONAL STANDARD. Ophthalmic instruments Slit-lamp microscopes. Instruments ophtalmiques Microscopes avec lampe à fente INTERNATIONAL STANDARD ISO 10939 First edition 1998-07-15 Ophthalmic instruments Slit-lamp microscopes Instruments ophtalmiques Microscopes avec lampe à fente A Reference number Provläsningsexemplar /

More information

Section 1: Sound. Sound and Light Section 1

Section 1: Sound. Sound and Light Section 1 Sound and Light Section 1 Section 1: Sound Preview Key Ideas Bellringer Properties of Sound Sound Intensity and Decibel Level Musical Instruments Hearing and the Ear The Ear Ultrasound and Sonar Sound

More information

Sicherheit im Umgang mit Strahlung.

Sicherheit im Umgang mit Strahlung. WIR STEHEN FÜR Sicherheit im Umgang mit Strahlung. Statement on ICNIRP guidelines on limits of exposure to incoherent optical radiation 1. Introduction In April 2006 the European Parliament and the Council

More information

Instruction manual and data sheet ipca h

Instruction manual and data sheet ipca h 1/15 instruction manual ipca-21-05-1000-800-h Instruction manual and data sheet ipca-21-05-1000-800-h Broad area interdigital photoconductive THz antenna with microlens array and hyperhemispherical silicon

More information

GLOSSARY OF TERMS. Terminology Used for Ultraviolet (UV) Curing Process Design and Measurement

GLOSSARY OF TERMS. Terminology Used for Ultraviolet (UV) Curing Process Design and Measurement GLOSSARY OF TERMS Terminology Used for Ultraviolet (UV) Curing Process Design and Measurement This glossary of terms has been assembled in order to provide users, formulators, suppliers and researchers

More information

Description. Applications CATV return path CWDM narrowcast and point-to-point applications. DFB-1XXX-BF-xx-A1-xx Laser Module REV 016

Description. Applications CATV return path CWDM narrowcast and point-to-point applications. DFB-1XXX-BF-xx-A1-xx Laser Module REV 016 Description The DFB-1XXX-BF-xx-A1-xx DFB laser modules are designed for return-path CATV applications. The modules are designed to incorporate high output power while maintaining high linearity. The devices

More information

Optical Fiber Technology. Photonic Network By Dr. M H Zaidi

Optical Fiber Technology. Photonic Network By Dr. M H Zaidi Optical Fiber Technology Numerical Aperture (NA) What is numerical aperture (NA)? Numerical aperture is the measure of the light gathering ability of optical fiber The higher the NA, the larger the core

More information

LASER RADIATION REQUIREMENTS

LASER RADIATION REQUIREMENTS FLORIDA DEPARTMENT OF HEALTH LASER RADIATION REQUIREMENTS DECEMBER 15, 2016 EDITION LASER RADIATION REQUIREMENTS 4.002 As used in rule chapter 64E-4 Florida Administrative Code and this publication: (1)

More information

Term Info Picture. A wave that has both electric and magnetic fields. They travel through empty space (a vacuum).

Term Info Picture. A wave that has both electric and magnetic fields. They travel through empty space (a vacuum). Waves S8P4. Obtain, evaluate, and communicate information to support the claim that electromagnetic (light) waves behave differently than mechanical (sound) waves. A. Ask questions to develop explanations

More information

Optical behavior. Reading assignment. Topic 10

Optical behavior. Reading assignment. Topic 10 Reading assignment Optical behavior Topic 10 Askeland and Phule, The Science and Engineering of Materials, 4 th Ed.,Ch. 0. Shackelford, Materials Science for Engineers, 6 th Ed., Ch. 16. Chung, Composite

More information

High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE*

High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE* High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE* Y. Owadano, E. Takahashi, I. Okuda, I. Matsushima, Y. Matsumoto, S. Kato, E. Miura and H.Yashiro 1), K. Kuwahara 2)

More information

Description. Applications CATV forward-path. DFB-1310-P2-xx-A3-xx Predistorted Laser Transmitter REV 007

Description. Applications CATV forward-path. DFB-1310-P2-xx-A3-xx Predistorted Laser Transmitter REV 007 Description The DFB-1310-P2-xx-A3-xx laser transmitter is designed for high-performance forward-path analog transmission, especially in CATV Hybrid Fiber-Coax (HFC) networks. The transmitter module combines

More information

High Performance Thin Film Optical Coatings Technical Reference Document 09/13. Coatings Capabilities. Heat Control - Hot Mirror Filters

High Performance Thin Film Optical Coatings Technical Reference Document 09/13. Coatings Capabilities. Heat Control - Hot Mirror Filters Heat Control - Hot Mirror Filters A hot mirror is in essence a thin film coating applied to substrates in an effort to reflect infra-red radiation either as a means to harness the reflected wavelengths

More information

Technical Notes. Introduction. Optical Properties. Issue 6 July Figure 1. Specular Reflection:

Technical Notes. Introduction. Optical Properties. Issue 6 July Figure 1. Specular Reflection: Technical Notes This Technical Note introduces basic concepts in optical design for low power off-grid lighting products and suggests ways to improve optical efficiency. It is intended for manufacturers,

More information

Section 2: Lithography. Jaeger Chapter 2. EE143 Ali Javey Slide 5-1

Section 2: Lithography. Jaeger Chapter 2. EE143 Ali Javey Slide 5-1 Section 2: Lithography Jaeger Chapter 2 EE143 Ali Javey Slide 5-1 The lithographic process EE143 Ali Javey Slide 5-2 Photolithographic Process (a) (b) (c) (d) (e) (f) (g) Substrate covered with silicon

More information

Wallace Hall Academy Physics Department. Waves. Pupil Notes Name:

Wallace Hall Academy Physics Department. Waves. Pupil Notes Name: Wallace Hall Academy Physics Department Waves Pupil Notes Name: Learning intentions for this unit? Be able to state that waves transfer energy. Be able to describe the difference between longitudinal and

More information

Report Documentation Page

Report Documentation Page Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 35 Lecture RANDALL D. KNIGHT Chapter 35 Optical Instruments IN THIS CHAPTER, you will learn about some common optical instruments and

More information

Lithium Triborate (LiB 3 O 5, LBO)

Lithium Triborate (LiB 3 O 5, LBO) NLO Cr ys tals Introduction Lithium Triborate (LiB 3 O 5, LBO) Lithium Triborate (LiB 3 O 5 or LBO) is an excellent nonlinear optical crystal discovered and developed by FIRSM, CAS (Fujian Institute of

More information

Description. Applications CATV Return-path Analog transmission. DFB-1xxx-C5-2-A-xx-x-x-xx REV 014 APPLIED OPTOELECTRONICS, INC.

Description. Applications CATV Return-path Analog transmission. DFB-1xxx-C5-2-A-xx-x-x-xx REV 014 APPLIED OPTOELECTRONICS, INC. Description Features Advanced Multiple Quantum Well (MQW) Distributed Feedback (DFB) Laser Design Low Distortion o IMD2 50 dbc o IMD3 55 dbc RIN < -145 db/hz Cost-effective Uncooled Laser Technology SMSR

More information

Optical Gain Experiment Manual

Optical Gain Experiment Manual Optical Gain Experiment Manual Table of Contents Purpose 1 Scope 1 1. Background Theory 1 1.1 Absorption, Spontaneous Emission and Stimulated Emission... 2 1.2 Direct and Indirect Semiconductors... 3 1.3

More information

Laser and LED retina hazard assessment with an eye simulator. Arie Amitzi and Menachem Margaliot Soreq NRC Yavne 81800, Israel

Laser and LED retina hazard assessment with an eye simulator. Arie Amitzi and Menachem Margaliot Soreq NRC Yavne 81800, Israel Laser and LED retina hazard assessment with an eye simulator Arie Amitzi and Menachem Margaliot Soreq NRC Yavne 81800, Israel Laser radiation hazard assessment Laser and other collimated light sources

More information

Drilling of Glass by Excimer Laser Mask Projection Technique Abstract Introduction Experimental details

Drilling of Glass by Excimer Laser Mask Projection Technique Abstract Introduction Experimental details Drilling of Glass by Excimer Laser Mask Projection Technique Bernd Keiper, Horst Exner, Udo Löschner, Thomas Kuntze Laserinstitut Mittelsachsen e.v., Hochschule Mittweida, University of Applied Sciences

More information

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models PGx1 PGx3 PGx11 PT2 Transform Limited Broadly Tunable Picosecond OPA optical parametric devices employ advanced design concepts in order to produce broadly tunable picosecond pulses with nearly Fourier-transform

More information

Life Science Chapter 2 Study Guide

Life Science Chapter 2 Study Guide Key concepts and definitions Waves and the Electromagnetic Spectrum Wave Energy Medium Mechanical waves Amplitude Wavelength Frequency Speed Properties of Waves (pages 40-41) Trough Crest Hertz Electromagnetic

More information