Maria Smedh, Centre for Cellular Imaging. Maria Smedh, Centre for Cellular Imaging

Size: px
Start display at page:

Download "Maria Smedh, Centre for Cellular Imaging. Maria Smedh, Centre for Cellular Imaging"

Transcription

1 Nonlinear microscopy I: Two-photon fluorescence microscopy Multiphoton Microscopy What is multiphoton imaging? Applications Different imaging modes Advantages/disadvantages Scattering of light in thick tissue Absorption in biological tissue Incident collimated light Image-bearing ballistic light Incident collimated light Image-bearing ballistic light Major intracellular absorbers Human hand Detector (camera) Object Tissue Object Scattered diffuse light Adopted from P. French, Physics World 1999 K. König, Journal of Microscopy 200 (2000) From The Science of Photobiology, Ed. K. C. Smith, Plenum, 1977 Biological tissues both absorbs light and scatter light strongly, which makes high-resolution deep imaging impossible for traditional fluorescence imaging. The relatively high-transmission spectral region between ~ nm is often described as the "optical window" of biological tissue.

2 What is multiphoton microscopy? Theoretically it was shown already in 1931 by Maria Göppert- Mayer that two photons of lesser energy together can cause an excitation normally produced by the absorption of a single photon of higher energy: One-photon excitation Two-photon excitation Göppert-Mayer M., Űber Elementarakte mit zwei Quantensprüngen (On elementary processes with two quantum steps), Ann. Phys. 401 (1931) Her theory was experimentally validated in The first multiphoton images were presented in Science as late as 1990 (Denk et al). UV light is phototoxic! Two-photon excitation uses near-ir, i.e. is less harmful to living cells and tissue. The two-photon excitation (2PE) event depends on that the two photons are absorbed nearly simultaneously (~ s), resulting in a quadratic dependence on the light intensity rather than the linear dependence of conventional fluorescence Non-linear process!

3 In bright sunlight, a molecule of rhodamine B absorbs one photon every second absorbs a photon pair every 10 million years no 3-photon absorption is expected throughout the entire age of the universe! Excitation and bleaching in multiphoton microscopy 1P excitation 2P excitation From Molecular Expressions Optical Microscopy Primer From Molecular Expressions Optical Microscopy Primer Because the excitation only occurs in the focal plane there is no need for a pinhole in multiphoton microscopy Because the excitation only occurs in the focal plane there is no photobleaching in other parts of the sample

4 MP detection set-up MP detection set-up Descanned beam path: The emitted light returns along the same path as the excitation light, striking the scanning mirrors before passing through the confocal pinhole to the detector. From Molecular Expressions Optical Microscopy Primer Non-descanned (direct) beam path: A dichroic mirror can be placed immediately after the objective lens to reflect the emitted light directly to a detector. The multiphoton microscope The multiphoton laser Beam Conditioning Unit (BCU) Specimen Ti:S laser Diode pump laser Direct detectors To generate sufficient MP signal the excitation light has to be very intense. Therefore, pulsed lasers are used that emit ultrashort pulses with high peak intensities. Using a pulsed laser also keeps the average power relatively low, which is less harmful for the specimen. Scan head Z motor The most common MP laser is the mode-locked titanium sapphire (Ti:S) laser, which is tunable between ~ nm. Microscope

5 The multiphoton laser A pulsed laser with pulse width τ occuring at frequency f r increases the npe probability, compared to continuous-wave (CW) illumination, by a factor of: Imaging penetration depth can improve the imaging penetration depth by a factor of two or more in typical biological specimens that are highly light scattering. I 1 Pulsed = n ICW r ( τ f ) 1 The Ti:S laser produces about 80 million pulses per second (80 MHz), each with a pulse duration of about 100 fs. The 2PE probability is increased by a factor of ~ 10 5 by the pulsed laser. Absence of out-of-focus absorption allows more of the excitation light photons to reach the desired specimen level. A non-scattering rhodamine-stained polymer film, which contains a uniform distribution of a high fluorophore concentration. Imaging penetration depth Imaging penetration depth The near-infrared light employed in two-photon excitation undergoes less scattering than light that is bluer in color (shorter wavelengths), i.e. more excitation light reaches the focal plane. Simple approximation of Rayleigh scattering: Incident light I S Particles ~ λ 4 Scattered light 488 nm excitation light scatters approximately 7 times more than 800 nm excitation light! Light scattering affects two-photon microscopy less than confocal microscopy, i.e. more emission reaches the detector. Confocal Two-photon

6 Comparison of imaging penetration depth Two-photon crossections The selection rules for absorption are different for 1PE and 2PE. Sometimes the 2P peak absorption is at twice the 1P peak, but often it is not. For symmetrical molecules, like Rhodamine, the single-photon excited states are two-photon forbidden. Three XZ profiles through the same acid-fucsin-stained monkey kidney sample imaged through a depth of 140 µm (scale bar, 20 µm). The imaging penetration depth with multiphoton (1047 nm, descanned, open pinhole) imaging is improved at least twofold relative to confocal (532 nm). Direct detection provides increased signal detection and even more increased depth of imaging. Coumarin Rhodamine Centonze and White, Biophys. J., 75 (1998) Two photon crossections Resolution in multiphoton microscopy 1P absorption 2P absorption DAPI fluorescein bodipy rhodamine PSF PSF PSF confocal = ( ) 2 illumination detection and PSF = PSF two-photon illumination The 2P absorption spectra are often very broad as opposed to the peak-like 1P absorption spectra. It is therefore possible to find one wavelength that excites two fluorophores equally well. Because of the longer excitation wavelengths (red to near-infrared, ~ 700 to 1200 nanometers) used in 2PE the point spread function is larger than for confocal microscopy.

7 Resolution in multiphoton microscopy Deep 2PE imaging in living animals 1PE 543 nm y z x x FWHM xy = 0.25 µm FWHM z = 0.50 µm scale bar = 0.50 µm scale bar = 0.50 µm 2PE 900 nm y z x x FWHM xy = 0.40 µm FWHM z = 1.1 µm There are different methods to reach deep into the tissue of living animals. For the study of the brain either the scull can be thinned down or completely removed and replaced with a coverslip. Other organs can be surgically exposed in a similar manner or be exteriorized. Orange bead ( 0.18 µm) imaged with 60x/1.4 oil objective Helmchen & Denk, Nature Methods 2 (2005) 932 Deep 2PE imaging in living animals 2PE imaging of human skin The neocortex of a transgenic mouse expressing Clomeleon, a genetically encoded chloride indicator. After removal of the scull nearly the entire depth of the six-layered brain tissue can be imaged! Helmchen & Denk, Nature Methods 2 (2005) 932 Potential endogenous two-photon excitable fluorophores are NADH, NADPH, flavins and collagen.

8 Different MPM imaging modes Two-photon excited (2PE) fluorescence is usually the primary signal source in MP microscopy, but three-photon excited (3PE) fluorescence, second- and third-harmonic generation (SHG, THG) can also be used for imaging. 3PE is an absorption process similar to the 2PE process, but three photons instead of two has to be absorbed at the same time. Energy Absorption processes 2PE 3PE Excited state Virtual state Ground state Different MPM imaging modes Second- and third- harmonic generation (SHG, THG) are scattering processes, not absorption with subsequent emission of fluorescence. Ordered structural protein assemblies like collagen fibres and microtubuli has the highest SHG signals. Energy Scattering processes SHG THG Excited state Virtual state Ground state 1 n E S ( nhg) = nei λs ( nhg) = λi Advantages Multi-photon pros and cons Ability to produce thin ( µm) optical sections deep into thick specimens. Less phototoxic wavelengths for living cells and tissue Disadvantages The high purchasing and operating cost of pulsed femtosecond IR lasers. Lab. demo 2a: Multiphoton microscopy Where? When? Who? Centre for Cellular Imaging Medicinareg. 7A, floor 1 (basement) Thursday 23 October 9:00 - Group 1 13:00 - Group 2 Carl Simonsson, Dermatochemistry

TRAINING MANUAL. Multiphoton Microscopy LSM 510 META-NLO

TRAINING MANUAL. Multiphoton Microscopy LSM 510 META-NLO TRAINING MANUAL Multiphoton Microscopy LSM 510 META-NLO September 2010 Multiphoton Microscopy Training Manual Multiphoton microscopy is only available on the LSM 510 META-NLO system. This system is equipped

More information

3D light microscopy techniques

3D light microscopy techniques 3D light microscopy techniques The image of a point is a 3D feature In-focus image Out-of-focus image The image of a point is not a point Point Spread Function (PSF) 1D imaging 1 1 2! NA = 0.5! NA 2D imaging

More information

Non-Descanned FLIM Detection in Multiphoton Microscopes

Non-Descanned FLIM Detection in Multiphoton Microscopes Non-Descanned FLIM Detection in Multiphoton Microscopes Abstract. Multiphoton microscopes use a femtosecond NIR laser to excite fluorescence in the sample. Excitation is performed via a multi-photon absorption

More information

MULTIPHOTON MICROSCOPY. Matyas Molnar Dirk Pacholsky

MULTIPHOTON MICROSCOPY. Matyas Molnar Dirk Pacholsky MULTIPHOTON MICROSCOPY Matyas Molnar Dirk Pacholsky Information Information given here about 2 Photon microscopy were mainly taken from these sources: Background information on 2-Photon microscopy: http://micro.magnet.fsu.edu/primer/techniques/fluorescence/multiphoton/

More information

INTRODUCTION TO MICROSCOPY. Urs Ziegler THE PROBLEM

INTRODUCTION TO MICROSCOPY. Urs Ziegler THE PROBLEM INTRODUCTION TO MICROSCOPY Urs Ziegler ziegler@zmb.uzh.ch THE PROBLEM 1 ORGANISMS ARE LARGE LIGHT AND ELECTRONS: ELECTROMAGNETIC WAVES v = Wavelength ( ) Speed (v) Frequency ( ) Amplitude (A) Propagation

More information

Fundamentals of Light Microscopy II: Fluorescence, Deconvolution, Confocal, Multiphoton, Spectral microscopy. Integrated Microscopy Course

Fundamentals of Light Microscopy II: Fluorescence, Deconvolution, Confocal, Multiphoton, Spectral microscopy. Integrated Microscopy Course Fundamentals of Light Microscopy II: Fluorescence, Deconvolution, Confocal, Multiphoton, Spectral microscopy Integrated Microscopy Course Review Lecture 1: Microscopy Basics Light train Kohler illumination*

More information

Dynamic Confocal Imaging of Living Brain. Advantages and risks of multiphoton microscopy in physiology

Dynamic Confocal Imaging of Living Brain. Advantages and risks of multiphoton microscopy in physiology Dynamic Confocal Imaging of Living Brain Advantages and risks of multiphoton microscopy in physiology Confocal laser scanning microscopy In conventional optical microscopy focused and out-offocus light

More information

5/4/2015 INTRODUCTION TO LIGHT MICROSCOPY. Urs Ziegler MICROSCOPY WITH LIGHT. Image formation in a nutshell. Overview of techniques

5/4/2015 INTRODUCTION TO LIGHT MICROSCOPY. Urs Ziegler MICROSCOPY WITH LIGHT. Image formation in a nutshell. Overview of techniques INTRODUCTION TO LIGHT MICROSCOPY Urs Ziegler ziegler@zmb.uzh.ch MICROSCOPY WITH LIGHT INTRODUCTION TO LIGHT MICROSCOPY Image formation in a nutshell Overview of techniques Widefield microscopy Resolution

More information

Multiphoton Microscopy

Multiphoton Microscopy Multiphoton Microscopy A. Neumann, Y. Kuznetsova Introduction Multi-Photon Fluorescence Microscopy is a relatively novel imaging technique in cell biology. It relies on the quasi-simultaneous absorption

More information

3D light microscopy techniques

3D light microscopy techniques 3D light microscopy techniques The image of a point is a 3D feature In-focus image Out-of-focus image The image of a point is not a point Point Spread Function (PSF) 1D imaging 2D imaging 3D imaging Resolution

More information

You won t be able to measure the incident power precisely. The readout of the power would be lower than the real incident power.

You won t be able to measure the incident power precisely. The readout of the power would be lower than the real incident power. 1. a) Given the transfer function of a detector (below), label and describe these terms: i. dynamic range ii. linear dynamic range iii. sensitivity iv. responsivity b) Imagine you are using an optical

More information

Introduction to light microscopy

Introduction to light microscopy Center for Microscopy and Image Anaylsis Introduction to light Imaging with light / Overview of techniques Urs Ziegler ziegler@zmb.uzh.ch Light interacting with matter Absorbtion Refraction Diffraction

More information

Why and How? Daniel Gitler Dept. of Physiology Ben-Gurion University of the Negev. Microscopy course, Michmoret Dec 2005

Why and How? Daniel Gitler Dept. of Physiology Ben-Gurion University of the Negev. Microscopy course, Michmoret Dec 2005 Why and How? Daniel Gitler Dept. of Physiology Ben-Gurion University of the Negev Why use confocal microscopy? Principles of the laser scanning confocal microscope. Image resolution. Manipulating the

More information

Introduction to light microscopy

Introduction to light microscopy Center for Microscopy and Image Anaylsis Introduction to light microscopy Basic concepts of imaging with light Urs Ziegler ziegler@zmb.uzh.ch Light interacting with matter Absorbtion Refraction Diffraction

More information

Introduction to light microscopy

Introduction to light microscopy Center for Microscopy and Image Anaylsis Introduction to light Basic concepts of imaging with light Urs Ziegler ziegler@zmb.uzh.ch Microscopy with light 1 Light interacting with matter Absorbtion Refraction

More information

Bio 407. Applied microscopy. Introduction into light microscopy. José María Mateos. Center for Microscopy and Image Analysis

Bio 407. Applied microscopy. Introduction into light microscopy. José María Mateos. Center for Microscopy and Image Analysis Center for Microscopy and Image Analysis Bio 407 Applied Introduction into light José María Mateos Fundamentals of light Compound microscope Microscope composed of an objective and an additional lens (eyepiece,

More information

Confocal Microscopy. Kristin Jensen

Confocal Microscopy. Kristin Jensen Confocal Microscopy Kristin Jensen 17.11.05 References Cell Biological Applications of Confocal Microscopy, Brian Matsumoto, chapter 1 Studying protein dynamics in living cells,, Jennifer Lippincott-Schwartz

More information

Point Spread Function. Confocal Laser Scanning Microscopy. Confocal Aperture. Optical aberrations. Alternative Scanning Microscopy

Point Spread Function. Confocal Laser Scanning Microscopy. Confocal Aperture. Optical aberrations. Alternative Scanning Microscopy Bi177 Lecture 5 Adding the Third Dimension Wide-field Imaging Point Spread Function Deconvolution Confocal Laser Scanning Microscopy Confocal Aperture Optical aberrations Alternative Scanning Microscopy

More information

Introduction to light microscopy

Introduction to light microscopy Center for Microscopy and Image Anaylsis Introduction to light microscopy (an overview) Microscopy with light Components of a light microscope 1. Light source 2. Objective 3. Sample or specimen holder

More information

Examination, TEN1, in courses SK2500/SK2501, Physics of Biomedical Microscopy,

Examination, TEN1, in courses SK2500/SK2501, Physics of Biomedical Microscopy, KTH Applied Physics Examination, TEN1, in courses SK2500/SK2501, Physics of Biomedical Microscopy, 2009-06-05, 8-13, FB51 Allowed aids: Compendium Imaging Physics (handed out) Compendium Light Microscopy

More information

Akinori Mitani and Geoff Weiner BGGN 266 Spring 2013 Non-linear optics final report. Introduction and Background

Akinori Mitani and Geoff Weiner BGGN 266 Spring 2013 Non-linear optics final report. Introduction and Background Akinori Mitani and Geoff Weiner BGGN 266 Spring 2013 Non-linear optics final report Introduction and Background Two-photon microscopy is a type of fluorescence microscopy using two-photon excitation. It

More information

Prof. Enrico Gratton - Lecture 6 Fluorescence Microscopy

Prof. Enrico Gratton - Lecture 6 Fluorescence Microscopy Prof. Enrico Gratton - Lecture 6 Fluorescence Microscopy Instrumentation Light Sources: One-photon and Multi-photon Excitation Applications in Cells Lifetime Imaging Figures acknowledgements: E.D. Salmon

More information

Shreyash Tandon M.S. III Year

Shreyash Tandon M.S. III Year Shreyash Tandon M.S. III Year 20091015 Confocal microscopy is a powerful tool for generating high-resolution images and 3-D reconstructions of a specimen by using point illumination and a spatial pinhole

More information

Boulevard du Temple Daguerrotype (Paris,1838) a busy street? Nyquist sampling for movement

Boulevard du Temple Daguerrotype (Paris,1838) a busy street? Nyquist sampling for movement Boulevard du Temple Daguerrotype (Paris,1838) a busy street? Nyquist sampling for movement CONFOCAL MICROSCOPY BioVis Uppsala, 2017 Jeremy Adler Matyas Molnar Dirk Pacholsky Widefield & Confocal Microscopy

More information

Components of confocal and two-photon microscopes

Components of confocal and two-photon microscopes Components of confocal and two-photon microscopes Internal training 07/04/2016 A. GRICHINE Platform Optical microscopy Cell imaging, IAB, ISdV Plan Confocal laser scanning microscope o o o Principle Main

More information

Light Microscopy. Upon completion of this lecture, the student should be able to:

Light Microscopy. Upon completion of this lecture, the student should be able to: Light Light microscopy is based on the interaction of light and tissue components and can be used to study tissue features. Upon completion of this lecture, the student should be able to: 1- Explain the

More information

Multifluorescence The Crosstalk Problem and Its Solution

Multifluorescence The Crosstalk Problem and Its Solution Multifluorescence The Crosstalk Problem and Its Solution If a specimen is labeled with more than one fluorochrome, each image channel should only show the emission signal of one of them. If, in a specimen

More information

Invitation for a walk through microscopy. Sebastian Schuchmann Jörg Rösner

Invitation for a walk through microscopy. Sebastian Schuchmann Jörg Rösner Invitation for a walk through microscopy Sebastian Schuchmann Jörg Rösner joerg.roesner@charite.de Techniques in microscopy Conventional (light) microscopy bright & dark field, phase & interference contrast

More information

Resolution. Diffraction from apertures limits resolution. Rayleigh criterion θ Rayleigh = 1.22 λ/d 1 peak at 2 nd minimum. θ f D

Resolution. Diffraction from apertures limits resolution. Rayleigh criterion θ Rayleigh = 1.22 λ/d 1 peak at 2 nd minimum. θ f D Microscopy Outline 1. Resolution and Simple Optical Microscope 2. Contrast enhancement: Dark field, Fluorescence (Chelsea & Peter), Phase Contrast, DIC 3. Newer Methods: Scanning Tunneling microscopy (STM),

More information

ADVANCED METHODS FOR CONFOCAL MICROSCOPY II. Jean-Yves Chatton Sept. 2006

ADVANCED METHODS FOR CONFOCAL MICROSCOPY II. Jean-Yves Chatton Sept. 2006 ADVANCED METHODS FOR CONFOCAL MICROSCOPY II Jean-Yves Chatton Sept. 2006 Workshop outline Confocal microscopy of living cells and tissues X-Z scanning Time series Bleach: FRAP, photoactivation Emission

More information

Development of a High-speed Super-resolution Confocal Scanner

Development of a High-speed Super-resolution Confocal Scanner Development of a High-speed Super-resolution Confocal Scanner Takuya Azuma *1 Takayuki Kei *1 Super-resolution microscopy techniques that overcome the spatial resolution limit of conventional light microscopy

More information

Imaging Retreat - UMASS Customized real-time confocal and 2-photon imaging

Imaging Retreat - UMASS Customized real-time confocal and 2-photon imaging Imaging Retreat - UMASS 2012 Customized real-time confocal and 2-photon imaging Mike Sanderson Department of Microbiology and Physiological Systems University of Massachusetts Medical School Thanks for

More information

Opterra II Multipoint Scanning Confocal Microscope. Innovation with Integrity

Opterra II Multipoint Scanning Confocal Microscope. Innovation with Integrity Opterra II Multipoint Scanning Confocal Microscope Enabling 4D Live-Cell Fluorescence Imaging through Speed, Sensitivity, Viability and Simplicity Innovation with Integrity Fluorescence Microscopy The

More information

BASICS OF CONFOCAL IMAGING (PART I)

BASICS OF CONFOCAL IMAGING (PART I) BASICS OF CONFOCAL IMAGING (PART I) INTERNAL COURSE 2012 LIGHT MICROSCOPY Lateral resolution Transmission Fluorescence d min 1.22 NA obj NA cond 0 0 rairy 0.61 NAobj Ernst Abbe Lord Rayleigh Depth of field

More information

Confocal Imaging Through Scattering Media with a Volume Holographic Filter

Confocal Imaging Through Scattering Media with a Volume Holographic Filter Confocal Imaging Through Scattering Media with a Volume Holographic Filter Michal Balberg +, George Barbastathis*, Sergio Fantini % and David J. Brady University of Illinois at Urbana-Champaign, Urbana,

More information

Final Exam, 150 points PMB 185: Techniques in Light Microscopy

Final Exam, 150 points PMB 185: Techniques in Light Microscopy Final Exam, 150 points Name PMB 185: Techniques in Light Microscopy Point value is in parentheses at the end of each question. Note: GFP = green fluorescent protein ; CFP = cyan fluorescent protein ; YFP

More information

Basics of confocal imaging (part I)

Basics of confocal imaging (part I) Basics of confocal imaging (part I) Swiss Institute of Technology (EPFL) Faculty of Life Sciences Head of BIOIMAGING AND OPTICS BIOP arne.seitz@epfl.ch Lateral resolution BioImaging &Optics Platform Light

More information

Precision-tracking of individual particles By Fluorescence Photo activation Localization Microscopy(FPALM) Presented by Aung K.

Precision-tracking of individual particles By Fluorescence Photo activation Localization Microscopy(FPALM) Presented by Aung K. Precision-tracking of individual particles By Fluorescence Photo activation Localization Microscopy(FPALM) Presented by Aung K. Soe This FPALM research was done by Assistant Professor Sam Hess, physics

More information

Reflecting optical system to increase signal intensity. in confocal microscopy

Reflecting optical system to increase signal intensity. in confocal microscopy Reflecting optical system to increase signal intensity in confocal microscopy DongKyun Kang *, JungWoo Seo, DaeGab Gweon Nano Opto Mechatronics Laboratory, Dept. of Mechanical Engineering, Korea Advanced

More information

Femtosecond laser microfabrication in. Prof. Dr. Cleber R. Mendonca

Femtosecond laser microfabrication in. Prof. Dr. Cleber R. Mendonca Femtosecond laser microfabrication in polymers Prof. Dr. Cleber R. Mendonca laser microfabrication focus laser beam on material s surface laser microfabrication laser microfabrication laser microfabrication

More information

THIN-FILM OPTICAL COMPONENTS FOR USE IN NON-LINEAR OPTICAL SYSTEMS

THIN-FILM OPTICAL COMPONENTS FOR USE IN NON-LINEAR OPTICAL SYSTEMS THIN-FILM OPTICAL COMPONENTS FOR USE IN NON-LINEAR OPTICAL SYSTEMS Alannah Johansen, Amber Czajkowski, Niels Cooper, Mike Scobey, Peter Egerton, and Rance Fortenberry, PhD April 2016 Dispersion controlled

More information

Observing Microorganisms through a Microscope LIGHT MICROSCOPY: This type of microscope uses visible light to observe specimens. Compound Light Micros

Observing Microorganisms through a Microscope LIGHT MICROSCOPY: This type of microscope uses visible light to observe specimens. Compound Light Micros PHARMACEUTICAL MICROBIOLOGY JIGAR SHAH INSTITUTE OF PHARMACY NIRMA UNIVERSITY Observing Microorganisms through a Microscope LIGHT MICROSCOPY: This type of microscope uses visible light to observe specimens.

More information

MULTIPHOTON MICROSCOPY

MULTIPHOTON MICROSCOPY MULTIPHOTON MICROSCOPY Methods for Cell Analysis Course BioVis Uppsala, 2014 Matyas Molnar Dirk Pacholsky Information Information given here about 2 Photon microscopy were mainly taken from these sources:

More information

Confocal and 2-photon Imaging. October 15, 2010

Confocal and 2-photon Imaging. October 15, 2010 Confocal and 2-photon Imaging October 15, 2010 Review Optical Elements Adapted from Sluder & Nordberg 2007 Review Optical Elements Collector Lens Adapted from Sluder & Nordberg 2007 Review Optical Elements

More information

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Qiyuan Song (M2) and Aoi Nakamura (B4) Abstracts: We theoretically and experimentally

More information

Imaging Introduction. September 24, 2010

Imaging Introduction. September 24, 2010 Imaging Introduction September 24, 2010 What is a microscope? Merriam-Webster: an optical instrument consisting of a lens or combination of lenses for making enlarged images of minute objects; especially:

More information

Confocal Laser Scanning Microscopy

Confocal Laser Scanning Microscopy Name of the Core Facility: Confocal Laser Scanning Microscopy CORE Forschungszentrum Immunologie Mainz Welcome to the CSLM Core Facility: The CLSM Core Facility enables working groups to incorporate high

More information

Confocal Microscopy. (Increasing contrast and resolu6on using op6cal sec6oning) Lecture 7. November 2017

Confocal Microscopy. (Increasing contrast and resolu6on using op6cal sec6oning) Lecture 7. November 2017 Confocal Microscopy (Increasing contrast and resolu6on using op6cal sec6oning) Lecture 7 November 2017 3 Flavours of Microscope Confocal Laser Scanning Problem: Out of Focus Light Spinning disc 2-Photon

More information

In Vivo Two-Photon Laser Scanning Microscopy with Concurrent Plasma- Mediated Ablation

In Vivo Two-Photon Laser Scanning Microscopy with Concurrent Plasma- Mediated Ablation 3 In Vivo Two-Photon Laser Scanning Microscopy with Concurrent Plasma- Mediated Ablation Principles and Hardware Realization Philbert S. Tsai and David Kleinfeld Contents 3.1 Introduction... 61 3. Overview...

More information

plasmonic nanoblock pair

plasmonic nanoblock pair Nanostructured potential of optical trapping using a plasmonic nanoblock pair Yoshito Tanaka, Shogo Kaneda and Keiji Sasaki* Research Institute for Electronic Science, Hokkaido University, Sapporo 1-2,

More information

Zeiss 780 Training Notes

Zeiss 780 Training Notes Zeiss 780 Training Notes Turn on Main Switch, System PC and Components Switches 780 Start up sequence Do you need the argon laser (458, 488, 514 nm lines)? Yes Turn on the laser s main power switch and

More information

Modes of light microscopy Choosing the appropriate system

Modes of light microscopy Choosing the appropriate system Modes of light microscopy Choosing the appropriate system Wide-field microscopy Confocal microscopy Multi-photon microscopy Wide-field, inverted fluorescence microscope Nikon MicroscopyU Endosome migration

More information

Supplementary Information. Stochastic Optical Reconstruction Microscopy Imaging of Microtubule Arrays in Intact Arabidopsis thaliana Seedling Roots

Supplementary Information. Stochastic Optical Reconstruction Microscopy Imaging of Microtubule Arrays in Intact Arabidopsis thaliana Seedling Roots Supplementary Information Stochastic Optical Reconstruction Microscopy Imaging of Microtubule Arrays in Intact Arabidopsis thaliana Seedling Roots Bin Dong 1,, Xiaochen Yang 2,, Shaobin Zhu 1, Diane C.

More information

APPLICATION NOTE. Timing and Recombination Unit (TRU) for Time-Resolved Spectroscopy and Multiphoton Microscopy

APPLICATION NOTE. Timing and Recombination Unit (TRU) for Time-Resolved Spectroscopy and Multiphoton Microscopy APPLICATION NOTE Timing and Recombination Unit (TRU) for Time-Resolved Spectroscopy and Multiphoton Microscopy 60 Timing and Recombination Unit (TRU) for Time-Resolved Spectroscopy and Multiphoton Microscopy

More information

Confocal Microscopy and Related Techniques

Confocal Microscopy and Related Techniques Confocal Microscopy and Related Techniques Chau-Hwang Lee Associate Research Fellow Research Center for Applied Sciences, Academia Sinica 128 Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan E-mail:

More information

Rates of excitation, emission, ISC

Rates of excitation, emission, ISC Bi177 Lecture 4 Fluorescence Microscopy Phenomenon of Fluorescence Energy Diagram Rates of excitation, emission, ISC Practical Issues Lighting, Filters More on diffraction Point Spread Functions Thus Far,

More information

TCSPC at Wavelengths from 900 nm to 1700 nm

TCSPC at Wavelengths from 900 nm to 1700 nm TCSPC at Wavelengths from 900 nm to 1700 nm We describe picosecond time-resolved optical signal recording in the spectral range from 900 nm to 1700 nm. The system consists of an id Quantique id220 InGaAs

More information

Second Harmonic Generation Imaging

Second Harmonic Generation Imaging Second Harmonic Generation Imaging Nirupama Bhattacharya, Eric Weiss 1 Introduction Physics 173 / BGGN 266 Spring 2012 Second harmonic generation (or SHG) is a nonlinear optical process wherein a material

More information

Pulse Shaping Application Note

Pulse Shaping Application Note Application Note 8010 Pulse Shaping Application Note Revision 1.0 Boulder Nonlinear Systems, Inc. 450 Courtney Way Lafayette, CO 80026-8878 USA Shaping ultrafast optical pulses with liquid crystal spatial

More information

MOM#3: LIGHT SHEET MICROSCOPY (LSM) Stanley Cohen, MD

MOM#3: LIGHT SHEET MICROSCOPY (LSM) Stanley Cohen, MD MOM#3: LIGHT SHEET MICROSCOPY (LSM) Stanley Cohen, MD Introduction. Although the technical details of light sheet imaging and its various permutations appear at first glance to be complex and require some

More information

FLUORESCENCE MICROSCOPY. Matyas Molnar and Dirk Pacholsky

FLUORESCENCE MICROSCOPY. Matyas Molnar and Dirk Pacholsky FLUORESCENCE MICROSCOPY Matyas Molnar and Dirk Pacholsky 1 The human eye perceives app. 400-700 nm; best at around 500 nm (green) Has a general resolution down to150-300 μm (human hair: 40-250 μm) We need

More information

Copyright. Benjamin Andreas Holfeld

Copyright. Benjamin Andreas Holfeld Copyright by Benjamin Andreas Holfeld 2007 Study of Imaging Depth in Turbid Tissue with Two-Photon Microscopy by Benjamin Andreas Holfeld Thesis Presented to the Faculty of the Graduate School of The University

More information

IC 2 S High Performance Objectives

IC 2 S High Performance Objectives M i c r o s c o p y f r o m C a r l Z e i s s IC 2 S igh Performance Objectives for Biomedical Applications with Laser Based Imaging Systems LSM,, ConfoCor, TIRF and ELYRA Carl Zeiss offers a large range

More information

NIH Public Access Author Manuscript Opt Lett. Author manuscript; available in PMC 2010 August 9.

NIH Public Access Author Manuscript Opt Lett. Author manuscript; available in PMC 2010 August 9. NIH Public Access Author Manuscript Published in final edited form as: Opt Lett. 2010 January 1; 35(1): 67 69. Autoconfocal transmission microscopy based on two-photon induced photocurrent of Si photodiodes

More information

ZEISS LSM510META confocal manual

ZEISS LSM510META confocal manual ZEISS LSM510META confocal manual Switching on the system 1) Switch on the Remote Control button located on the table to the right of the microscope. This is the main switch for the whole system including

More information

Ultrafast lasers have transformed

Ultrafast lasers have transformed Femtosecond Pulses: Control Is Key to New Discoveries From microscopy to micromanipulation, femtosecond pulses are broadening their reach throughout the photonics research world. To fully realize their

More information

LSM 510 META in Chang Gung University

LSM 510 META in Chang Gung University Content LSM 510 META in Chang ung University LSM 510 META 路 理 The features and applications of LSM 510 META 01-09 Introduction of the hardware 10-12 Fluorescence observation in conventional microscope

More information

Training Guide for Leica SP8 Confocal/Multiphoton Microscope

Training Guide for Leica SP8 Confocal/Multiphoton Microscope Training Guide for Leica SP8 Confocal/Multiphoton Microscope LAS AF v3.3 Optical Imaging & Vital Microscopy Core Baylor College of Medicine (2017) Power ON Routine 1 2 Turn ON power switch for epifluorescence

More information

Peak Power in Non-Linear Microscopy: Unraveling the Rhetoric

Peak Power in Non-Linear Microscopy: Unraveling the Rhetoric Peak Power in Non-Linear Microscopy: Unraveling the Rhetoric Multiphoton Excitation (MPE) microscopy has brought femtosecond lasers into biological research labs for over 20 years now. Required wavelength

More information

Nature Methods: doi: /nmeth Supplementary Figure 1. Schematic of 2P-ISIM AO optical setup.

Nature Methods: doi: /nmeth Supplementary Figure 1. Schematic of 2P-ISIM AO optical setup. Supplementary Figure 1 Schematic of 2P-ISIM AO optical setup. Excitation from a femtosecond laser is passed through intensity control and shuttering optics (1/2 λ wave plate, polarizing beam splitting

More information

Fast Raman Spectral Imaging Using Chirped Femtosecond Lasers

Fast Raman Spectral Imaging Using Chirped Femtosecond Lasers Fast Raman Spectral Imaging Using Chirped Femtosecond Lasers Dan Fu 1, Gary Holtom 1, Christian Freudiger 1, Xu Zhang 2, Xiaoliang Sunney Xie 1 1. Department of Chemistry and Chemical Biology, Harvard

More information

Deep and fast live imaging with two-photon scanned light-sheet microscopy

Deep and fast live imaging with two-photon scanned light-sheet microscopy Nature Methods Deep and fast live imaging with two-photon scanned light-sheet microscopy Thai V Truong, Willy Supatto, Davis S Koos, John M Choi & Scott E Fraser Supplementary Figure 1 Supplementary Figure

More information

BIOIMAGING AND OPTICS PLATFORM EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPY PRACTICAL CONSIDERATIONS

BIOIMAGING AND OPTICS PLATFORM EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPY PRACTICAL CONSIDERATIONS LASER SCANNING CONFOCAL MICROSCOPY PRACTICAL CONSIDERATIONS IMPORTANT PARAMETERS Pixel dwell time Zoom and pixel number PIXEL DWELL TIME How much time signal is collected at every pixel Very small values,

More information

Adaptive optics two-photon fluorescence microscopy

Adaptive optics two-photon fluorescence microscopy Adaptive optics two-photon fluorescence microscopy Yaopeng Zhou 1, Thomas Bifano 1 and Charles Lin 2 1. Manufacturing Engineering Department, Boston University 15 Saint Mary's Street, Brookline MA, 02446

More information

Administrative details:

Administrative details: Administrative details: Anything from your side? www.photonics.ethz.ch 1 What are we actually doing here? Optical imaging: Focusing by a lens Angular spectrum Paraxial approximation Gaussian beams Method

More information

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points WRITE ON SCANTRON WITH NUMBER 2 PENCIL DO NOT WRITE ON THIS TEST LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points Multiple Choice Identify the choice that best completes the statement or

More information

Εισαγωγική στην Οπτική Απεικόνιση

Εισαγωγική στην Οπτική Απεικόνιση Εισαγωγική στην Οπτική Απεικόνιση Δημήτριος Τζεράνης, Ph.D. Εμβιομηχανική και Βιοϊατρική Τεχνολογία Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. Χειμερινό Εξάμηνο 2015 Light: A type of EM Radiation EM radiation:

More information

Ultrafast Beams and Applications UBA July, 2017 Presenter: Arsham Yeremyan

Ultrafast Beams and Applications UBA July, 2017 Presenter: Arsham Yeremyan Laser driven facility for irradiation experiments, two-photon microscopy and microfabrication Ultrafast Beams and Applications UBA17 04-07 July, 2017 Presenter: Arsham Yeremyan Outline Parallel operation

More information

Training Guide for Carl Zeiss LSM 510 META Confocal Microscope

Training Guide for Carl Zeiss LSM 510 META Confocal Microscope Training Guide for Carl Zeiss LSM 510 META Confocal Microscope AIM 4.2 Optical Imaging & Vital Microscopy Core Baylor College of Medicine (2017) Power ON Routine 1 2 Turn ON Components and System/PC switches

More information

Digital Camera Technologies for Scientific Bio-Imaging. Part 2: Sampling and Signal

Digital Camera Technologies for Scientific Bio-Imaging. Part 2: Sampling and Signal Digital Camera Technologies for Scientific Bio-Imaging. Part 2: Sampling and Signal Yashvinder Sabharwal, 1 James Joubert 2 and Deepak Sharma 2 1. Solexis Advisors LLC, Austin, TX, USA 2. Photometrics

More information

Bi Imaging. Multicolor Imaging: The Important Question of Co-Localization. Anna Smallcombe Bio-Rad Laboratories, Hemel Hempstead, UK

Bi Imaging. Multicolor Imaging: The Important Question of Co-Localization. Anna Smallcombe Bio-Rad Laboratories, Hemel Hempstead, UK Multicolor Imaging: The Important Question of Co-Localization Anna Smallcombe Bio-Rad Laboratories, Hemel Hempstead, UK The use of specific fluorescent probes, combined with confocal or multiphoton microscopy

More information

Training Guide for Carl Zeiss LSM 5 LIVE Confocal Microscope

Training Guide for Carl Zeiss LSM 5 LIVE Confocal Microscope Training Guide for Carl Zeiss LSM 5 LIVE Confocal Microscope AIM 4.2 Optical Imaging & Vital Microscopy Core Baylor College of Medicine (2017) Power ON Routine 1 2 Verify that main power switches on the

More information

Imaging Expertise in Custom and OEM Product Development. In-House Design and Manufacturing Capabilities

Imaging Expertise in Custom and OEM Product Development. In-House Design and Manufacturing Capabilities Thorlabs Imaging group is a world-wide team dedicated to the development of Optical Coherence Tomography,, and. The group is comprised of highly skilled engineers with expertise in optical systems design,

More information

Supporting Information 1. Experimental

Supporting Information 1. Experimental Supporting Information 1. Experimental The position markers were fabricated by electron-beam lithography. To improve the nanoparticle distribution when depositing aqueous Ag nanoparticles onto the window,

More information

Things to check before start-up.

Things to check before start-up. Byeong Cha Page 1 11/24/2009 Manual for Leica SP2 Confocal Microscope Enter you name, the date, the time, and the account number in the user log book. Things to check before start-up. Make sure that your

More information

:... resolution is about 1.4 μm, assumed an excitation wavelength of 633 nm and a numerical aperture of 0.65 at 633 nm.

:... resolution is about 1.4 μm, assumed an excitation wavelength of 633 nm and a numerical aperture of 0.65 at 633 nm. PAGE 30 & 2008 2007 PRODUCT CATALOG Confocal Microscopy - CFM fundamentals :... Over the years, confocal microscopy has become the method of choice for obtaining clear, three-dimensional optical images

More information

IR Antibunching Measurements with id201 InGaAs Gated SPAD Detectors

IR Antibunching Measurements with id201 InGaAs Gated SPAD Detectors IR Antibunching Measurements with id201 GaAs Gated SPAD Detectors Abstract. Antibunching measurements with GaAs SPAD detectors are faced with the problems of high background count rate, afterpulsing, and

More information

Diskovery Spinning Disk Guide

Diskovery Spinning Disk Guide Diskovery Spinning Disk Guide qbi.microscopy@uq.edu.au Getting started The microscope and its peripherals (Fig. 1a) should always be turned on, but if they are not, turn them on in the following way: 1.

More information

Advanced Optical Microscopy lecture. 03. December 2012 Kai Wicker

Advanced Optical Microscopy lecture. 03. December 2012 Kai Wicker Advanced Optical Microscopy lecture 03. December 2012 Kai Wicker Today: Optical transfer functions (OTF) and point spread functions (PSF) in incoherent imaging. 1. Quick revision: the incoherent wide-field

More information

microscopy A great online resource Molecular Expressions, a Microscope Primer Partha Roy

microscopy A great online resource Molecular Expressions, a Microscope Primer Partha Roy Fundamentals of optical microscopy A great online resource Molecular Expressions, a Microscope Primer http://micro.magnet.fsu.edu/primer/index.html Partha Roy 1 Why microscopy Topics Functions of a microscope

More information

CMI STANDARD OPERATING PROCEDURE. Fluoview 300 laser scanning confocal microscope

CMI STANDARD OPERATING PROCEDURE. Fluoview 300 laser scanning confocal microscope CMI STANDARD OPERATING PROCEDURE Fluoview 300 laser scanning confocal microscope CMI documentid:sop001 CONTACT INFORMATION: Peter Owens: 091 494036 (office) Peter.owens@nuigalway.ie Kerry Thompson: 091

More information

MULTIFOCAL MULTISPECTRAL DESCANNED DETECTION IN TPLSM

MULTIFOCAL MULTISPECTRAL DESCANNED DETECTION IN TPLSM MULTIFOCAL MULTISPECTRAL DESCANNED DETECTION IN TPLSM T. Bergmann a1, M. Tiemann a, J. Martini a,b, K. Tönsing a and D. Anselmetti a a Bielefeld University, Experimental Biophysics & Applied Nanoscience,

More information

LMT F14. Cut in Three Dimensions. The Rowiak Laser Microtome: 3-D Cutting and Imaging

LMT F14. Cut in Three Dimensions. The Rowiak Laser Microtome: 3-D Cutting and Imaging LMT F14 Cut in Three Dimensions The Rowiak Laser Microtome: 3-D Cutting and Imaging The Next Generation of Microtomes LMT F14 - Non-contact laser microtomy The Rowiak laser microtome LMT F14 is a multi-purpose

More information

Operation Guide for the Leica SP2 Confocal Microscope Bio-Imaging Facility Hunter College October 2009

Operation Guide for the Leica SP2 Confocal Microscope Bio-Imaging Facility Hunter College October 2009 Operation Guide for the Leica SP2 Confocal Microscope Bio-Imaging Facility Hunter College October 2009 Introduction of Fluoresence Confocal Microscopy The first confocal microscope was invented by Princeton

More information

Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION:

Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION: Theoretical Approach Why do we need ultra short technology?? INTRODUCTION: Generating ultrashort laser pulses that last a few femtoseconds is a highly active area of research that is finding applications

More information

Supplementary information, Figure S1A-S1H The thickness and the uniformity of the light sheet at different DOFs. By

Supplementary information, Figure S1A-S1H The thickness and the uniformity of the light sheet at different DOFs. By Supplementary information, Figure S1A-S1H The thickness and the uniformity of the light sheet at different DOFs. By imaging FITC-containing solution, the thickness of the light sheet generated by the P3A-DSLM

More information

The DCS-120 Confocal Scanning FLIM System

The DCS-120 Confocal Scanning FLIM System he DCS-120 Confocal Scanning FLIM System he bh DCS-120 confocal scanning FLIM system converts a conventional microscope into a high-performance fluorescence lifetime imaging system. he system is based

More information

SETTING UP OF A TOTAL INTERNAL REFLECTION FLUORESCENT MICROSCOPE (TIRFM) SYSTEM: A DETAILED OVERVIEW

SETTING UP OF A TOTAL INTERNAL REFLECTION FLUORESCENT MICROSCOPE (TIRFM) SYSTEM: A DETAILED OVERVIEW PK ISSN 0022-2941; CODEN JNSMAC Vol. 51, (2011) PP 31-45 SETTING UP OF A TOTAL INTERNAL REFLECTION FLUORESCENT MICROSCOPE (TIRFM) SYSTEM: A DETAILED OVERVIEW A. R. KHAN 1 *, S. AKHLAQ 1, M. N. B. ABID

More information

DCS-120. Confocal Scanning FLIM Systems. Based on bh s Multidimensional Megapixel FLIM Technology

DCS-120. Confocal Scanning FLIM Systems. Based on bh s Multidimensional Megapixel FLIM Technology Based on bh s Multidimensional Megapixel FLIM Technology Complete Laser Scanning FLIM Microscopes FLIM Upgrades for Existing Conventional Microscopes Multidimensional TCSPC technique High throughput dual-channel

More information

EUV microscopy - a user s perspective Dimitri Scholz EUV,

EUV microscopy - a user s perspective Dimitri Scholz EUV, EUV microscopy - a user s perspective Dimitri Scholz EUV, 09.11.2011 Imaging technologies: available at UCD now and in the next future Begin ab ovo - Simple approaches direct to the goal - Standard methods

More information