Wallace Hall Academy Physics Department. Waves. Pupil Notes Name:

Size: px
Start display at page:

Download "Wallace Hall Academy Physics Department. Waves. Pupil Notes Name:"

Transcription

1 Wallace Hall Academy Physics Department Waves Pupil Notes Name:

2 Learning intentions for this unit? Be able to state that waves transfer energy. Be able to describe the difference between longitudinal and transverse waves and give examples of each. Be able to perform calculations using the d=vt formula for waves. Be able to calculate frequency, period, wavelength or amplitude of a wave from a trace of the wave. Be able to perform calculations using the f=n/t formula. Be able to perform calculations using the v=fλ formula. Be able to perform calculations using the T=1/f formula. Be able to describe what diffraction is. Be able to state the parts of the EM spectrum (in order) and a source, detector and application of each. Be able to state that the energy of EM radiation increases as frequency increases. Be able to state that all types of EM radiation travel at the speed of light which is ms 1. Be able to draw labelled diagrams demonstrating the law of reflection. Be able to draw labelled diagrams demonstrating the law of refraction. Be able to explain refraction in terms of wave speed. Be able to describe how eye defects can be corrected. 2

3 WAVE PROPERTIES In the box below make a list of all of the different types of waves that you know about. Types of waves All waves transfer energy. Different types of waves have things in common and things that are different but the one thing that all waves have in common is that they transfer energy. Waves can be grouped into one of two types, longitudinal or transverse. Longitudinal waves In a longitudinal wave the vibration of particles is in the same direction as the direction the wave is travelling in. Sound is the most common example of a longitudinal wave. Transverse waves In a transverse wave the particles vibrate at right angles to the direction the wave is travelling in. Light and all other electromagnetic waves (such as radio waves) are transverse waves. 3

4 Wave Speed The speed of an object or a wave can be worked out from the following equation: d = v = t = Example A water wave travels a distance of 20 m in 4 s. Calculate the speed of the wave. Practice Problems 1. A water wave travels at a speed of 3 ms -1 for a distance of 15 m. Calculate how long this will take. 2. A Mexican wave travels a distance of 120 m round a stadium in a time of 6 s. Calculate how fast the wave was moving. 4

5 Experiment measuring the speed of sound You will measure the speed of sound outside by creating a sound wave and reflecting it off the PE department. Aim: To measure the speed of sound Diagram: Method: Results: Distance to PE block = Distance the sound wave travelled = Time (s) Average time = Speed of sound calculation 5

6 Conclusion: Evaluation: (What improvements could be made to the experiment?) Wavelength The wavelength of a wave is simply the length of one wave. It can be found by measuring the distance from peak to peak, trough to trough or between corresponding zero crossings. Wavelength is measured in metres (m) and it has the symbol λ (lambda). Amplitude The amplitude of the wave is the height of the wave from the middle point of the wave. The units of amplitude vary depending on the type of wave. For instance; for water waves the amplitude is measured in metres, for electrical waves the amplitude is measured in volts and for sound waves amplitude is measured in decibels. 6

7 Practice Problems For the following wave traces determine: The number of waves shown The wavelength of the wave The amplitude of the wave Number = Wavelength = Amplitude = Number = 6m Wavelength = Amplitude = 15m Number = Wavelength = Amplitude = Number = 10mm Wavelength = Amplitude = 24m 7

8 Frequency Frequency is a measure of the number of waves passing a point per second. The frequency of a wave can be worked out from the following equation: f = n = t = Example 1 A wave has a frequency of 3 Hz. Calculate how many waves will pass in 6 s? Example 2 A wave has a frequency of 12 Hz. Calculate how long it will take for 3 waves to pass? 8

9 Practice Problems 1. If 10 waves pass a point in 2s, what is the frequency of the waves? 2. A boy counts 24 water waves hitting a beach in 4 minutes. Calculate the frequency of the waves? 3. A swimmer at a pool measures the frequency of waves in the water to be 3 Hz. Calculate how long it will take for 27 waves to pass him? 9

10 Period The period of a wave is the time taken for one wave to pass a particular point. The period of a wave can be worked out from the following equation: T = f = 1= Example 1 A wave has a frequency of 3 Hz. Calculate its period. Example 2 A wave has a period of 0.2 s. Calculate its frequency. 10

11 Practice Problems 1. A wave has a frequency of 20 Hz. Calculate its period. 2. A wave has a period of 4 s. Calculate its frequency. 3. A wave has a period of 25 s. Calculate its frequency. 11

12 The Wave Equation There is a second way to calculate the speed of waves. Instead of using the distance, speed and time formula we can instead use the fact that the speed of a wave is equal to the frequency of a wave multiplied by its wavelength. This formula appears on the formula sheet and is given below: v = f = = Example A sound wave travelling at 340ms 1 has a frequency of 256Hz. Calculate its wavelength. Practice Problems 1. The frequency of sound waves coming from a loudspeaker is 170Hz and their wavelength is 2m. Calculate the speed they travel at. 12

13 2. Water waves of frequency 4Hz and wavelength 50cm travel towards a ship. Calculate the speed they travel at. 3. If the speed of sound in air is 340ms -1, calculate the wavelength of sound waves with a frequency of 512Hz. 4. Water waves travel towards a lifeboat at a speed of 2.5ms -1 with a wavelength of 0.5m. Calculate their frequency. 5. A water wave takes 1.5s to travel 6m. If the frequency of the wave is 2Hz, calculate the wavelength of the wave. 13

14 Diffraction Diffraction is what happens when waves bend round an object. Diffraction is a property of all waves, it is also a unique property of waves. Diffraction of sound waves is why sounds can be heard around a corner. The amount of diffraction depends on wavelength. The longer the wavelength, the greater the diffraction. You cannot see around a corner because light waves have a much shorter wavelength than sound waves and so are not diffracted round the corner. Radio and T.V. waves also diffract around objects. The amount they diffract depends on their wavelength. Radio waves have a longer wavelength than TV waves and therefore diffract more. In hilly areas it is much easier to receive radio signals than TV signals because of this. Mobile phones use microwaves which have an even shorter wavelength than TV signals, this is why it is very difficult to get reception in hilly areas. 14

15 increasing wavelength increasing frequency THE ELECTROMAGNETIC SPECTRUM Visible Light Light is a transverse wave and like all waves it can be described as having peaks, troughs, frequency, wavelength and amplitude. Just like all other waves it transfers energy. As well as visible light there is also light all around us which is invisible.. We call the whole family of light waves (the ones we can see and the ones we can t) the Electromagnetic Spectrum and the waves Electromagnetic Waves (EM). The Electromagnetic Spectrum All EM waves are transverse waves. All EM waves travel at the speed of light (300,000,000 ms 1 or ms 1 ). All EM waves have different frequencies and wavelengths depending on what part of the electromagnetic spectrum they belong to. The seven parts of the Electromagnetic Spectrum are shown below. Create a mnemonic to remember the order. G Gamma X X-Rays U Ultraviolet (UV) V Visible I Infra-red (IR) M Microwaves R Radio & TV Violet 15 Red

16 You will now select one of the seven sections of the electromagnetic spectrum and prepare a presentation to be given to the rest of the class. While others are completing their presentations you should complete the table below. Section of EM spectrum Gamma Source Detector Use X-Rays Ultraviolet Visible Infra-red Microwaves Radio & TV 16

17 Frequency and Energy Although the amplitude of an electromagnetic wave is related to the energy of the wave this is not the whole story. In Physics we refer to the amplitude of light as its intensity. However the energy of electromagnetic wave is not only dependent on its intensity. You are probably aware that high frequency EM waves, such as gamma rays, are far more energetic (and dangerous) than low frequency EM waves, such as radio waves, even though they might have the same intensity. This is because the energy of an electromagnetic wave does not travel as a continuous stream but in packets or bundles. We call these packets of energy photons. The energy of a photon is proportional to the frequency of the light. Waves with higher frequencies have higher photon energy (gamma). Waves with lower frequencies have lower photon energy (radio & TV). Practice Problems 1. If it takes light 8 minutes to travel from the Sun to the Earth, calculate how far away the Sun is from Earth. 2. Calculate the frequency of red light which has a wavelength of 700nm. 3. Calculate the wavelength of green light which has a frequency of Hz. 17

18 LIGHT Reflection You will already know that light reflects from shiny surfaces. Complete the diagram below showing the path of the ray of light as it reflects from the mirror. Label the normal, both angles and both rays of light. mirror Remember the angles of incidence and reflection are always measured relative to the normal. Reflection is also used in curved reflectors. This is how the satellite dishes on the side of houses collect TV signals and how satellites in orbit around the Earth send and receive signals. Complete the diagram below to show how a curved reflector works. Curved reflectors are used to increase the strength of signals which are received by gathering lots of rays and reflecting them towards an aerial. The bigger the curved reflector is, the stronger the signal. They can also be used to transmit a signal in one direction towards a receiver by gathering lots of rays and reflecting them outwards as parallel rays. 18

19 Refraction Refraction is when light changes speed when going from one material to another. Refraction also usually results in light changing direction when going from one material to another. Complete the diagram below showing the path of the ray of light as it passes through the glass block. Label the normal, all angles and all rays of light. glass Remember the angles of incidence and refraction are always measured relative to the normal. Complete the diagram below showing the path of the ray of light as it passes through the glass block. Label the normal, all angles and all rays of light. glass You will notice that the white light splits up into different colours. This splitting is called dispersion. When going from air to a more dense material light refracts the normal. When going from a more dense material to air light refracts the normal. 19

20 Total internal reflection Complete the two diagrams below showing the path of the ray of light as it passes through the glass block. Label the normal, both angles and both rays of light. As you can see depending on what the size of the incident angle is the light will either refract or reflect. When the angle of incidence is small the light will refract. When the angle of incidence is big the light will reflect. There is an incident angle in between refraction and reflection occurring where the ray refracts at 90 0 to the normal. This incident angle is called the critical angle. At all incident angles below the critical angle light is At all incident angles above the critical angle light is 20

21 When light is reflected within glass it is a special type of reflection called total internal reflection. Total internal reflection is how light travels down an optical fibre. Lenses There are two basic types of lenses which are shown below. Complete both diagrams showing the path of the parallel rays of light through them and name both lenses. You should also label the focal length and focal point on the convex lens. Type of lens: Type of lens: 21

22 The eye Lenses have a variety of uses in everyday life. You will have a small convex lens on the camera on your smartphone and they are used in telescope and binoculars but the most common use is in spectacles to correct eye defects. Your eye contains a variety of different parts as shown opposite. The two important parts for this part of the course are the lens and the retina. The convex lens in your eye focusses rays of light onto the retina. Complete the diagram below to show this. People who are short sighted or long sighted wear glasses to correct these eye defects. Short sighted cannot see far away objects clearly and rays focus short of the retina. Corrected with a concave lens. Long sighted cannot see nearby objects clearly and rays focus long of the retina. Corrected with a convex lens. 22

23 Prefixes Physics deals with the very big (space) and with the very small (atoms) so it is often useful to use prefixes when describing values involved in equations. Subscript What does it mean? What do I do? Giga - G times bigger x 10 9 Mega - M times bigger x 10 6 kilo - k times bigger x 10 3 milli - m times smaller x 10-3 micro times smaller x 10-6 nano - n times smaller x 10-9 Example Susie completes a 3.4 km journey in her car. How many m is this? Practice problems 1. John measures a piece of wood to be 3 mm thick. Calculate how many m this is. 2. Jack measures a voltage to be 6.2 MV. Calculate how many V this is. 3. The wavelength of red light is 633 nm. Calculate how many m this is. 23

24 Scientific notation As well as using prefixes it may also be useful to use scientific notation to describe very big or very small numbers. Numbers with a positive power of 10 are very large and numbers with a negative power of 10 are very small. Standard form Scientific notation x x x x 10-5 Example The speed of light is ms -1. Convert this into scientific notation. Practice problems 1. Convert into scientific notation. 2. Convert 7.4 x 10 3 into standard form. 3. Convert 3.64 x 10-7 into standard form. 24

The knowledge and understanding for this unit is given below:

The knowledge and understanding for this unit is given below: WAVES AND OPTICS The knowledge and understanding for this unit is given below: Waves 1. State that a wave transfers energy. 2. Describe a method of measuring the speed of sound in air, using the relationship

More information

Life Science Chapter 2 Study Guide

Life Science Chapter 2 Study Guide Key concepts and definitions Waves and the Electromagnetic Spectrum Wave Energy Medium Mechanical waves Amplitude Wavelength Frequency Speed Properties of Waves (pages 40-41) Trough Crest Hertz Electromagnetic

More information

Section 1: Sound. Sound and Light Section 1

Section 1: Sound. Sound and Light Section 1 Sound and Light Section 1 Section 1: Sound Preview Key Ideas Bellringer Properties of Sound Sound Intensity and Decibel Level Musical Instruments Hearing and the Ear The Ear Ultrasound and Sonar Sound

More information

National 3 Physics Waves and Radiation. 1. Wave Properties

National 3 Physics Waves and Radiation. 1. Wave Properties 1. Wave Properties What is a wave? Waves are a way of transporting energy from one place to another. They do this through some form of vibration. We see waves all the time, for example, ripples on a pond

More information

Science 8 Unit 2 Pack:

Science 8 Unit 2 Pack: Science 8 Unit 2 Pack: Name Page 0 Section 4.1 : The Properties of Waves Pages By the end of section 4.1 you should be able to understand the following: Waves are disturbances that transmit energy from

More information

Intermediate 2 Waves & Optics Past Paper questions

Intermediate 2 Waves & Optics Past Paper questions Intermediate 2 Waves & Optics Past Paper questions 2000-2010 2000 Q29. A converging lens has a focal length of 30 mm. (a) Calculate the power of this lens. (i) In the diagram below, which is drawn to scale,

More information

High frequency sounds, beyond the range of human hearing, are called ultrasound.

High frequency sounds, beyond the range of human hearing, are called ultrasound. Mr Downie 2014 1 Sound Waves To produce a sound the particles in an object must vibrate. This means that sound can travel through solids, liquids and gases. Sound cannot travel through a vacuum as it contains

More information

Waves. A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter

Waves. A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter Waves and Optics Waves A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter Waves Some waves do not need a medium

More information

Science Focus 8. Light and Optical Systems. Pop Quiz Master (5 questions) for each Topic A C B D C C B C C A D B C A B B C C A C A C D B A C B B C D

Science Focus 8. Light and Optical Systems. Pop Quiz Master (5 questions) for each Topic A C B D C C B C C A D B C A B B C C A C A C D B A C B B C D Science Focus 8 Pop Quiz Master (5 questions) for each Topic Light and Optical Systems Answer Key Science Focus 8 Questions Topics 1. 2. 3. 4. 5. Topic 1 - What is Light? A C B D C Topic 2 Reflection C

More information

Unit 1.5 Waves. The number waves per second. 1 Hz is 1waves per second. If there are 40 waves in 10 seconds then the frequency is 4 Hz.

Unit 1.5 Waves. The number waves per second. 1 Hz is 1waves per second. If there are 40 waves in 10 seconds then the frequency is 4 Hz. Unit 1.5 Waves Basic information Transverse: The oscillations of the particles are at right angles (90 ) to the direction of travel (propagation) of the wave. Examples: All electromagnetic waves (Light,

More information

Waves Mechanical vs. Electromagnetic Mechanical Electromagnetic Transverse vs. Longitudinal Behavior of Light

Waves Mechanical vs. Electromagnetic Mechanical Electromagnetic Transverse vs. Longitudinal Behavior of Light PSC1341 Chapter 4 Waves Chapter 4: Wave Motion A.. The Behavior of Light B. The E-M spectrum C. Equations D. Reflection, Refraction, Lenses and Diffraction E. Constructive Interference, Destructive Interference

More information

Topic 1 - What is Light? 1. Radiation is the type of energy transfer which does not require... A matter B heat C waves D light

Topic 1 - What is Light? 1. Radiation is the type of energy transfer which does not require... A matter B heat C waves D light Grade 8 Unit 1 Test Student Class Topic 1 - What is Light? 1. Radiation is the type of energy transfer which does not require... A matter B heat C waves D light 2. Light-producing technologies, such as

More information

4.6 Waves Waves in air, fluids and solids Transverse and longitudinal waves

4.6 Waves Waves in air, fluids and solids Transverse and longitudinal waves 4.6 Waves Wave behaviour is common in both natural and man-made systems. Waves carry energy from one place to another and can also carry information. Designing comfortable and safe structures such as bridges,

More information

4.6.1 Waves in air, fluids and solids Transverse and longitudinal waves Properties of waves

4.6.1 Waves in air, fluids and solids Transverse and longitudinal waves Properties of waves 4.6 Waves Wave behaviour is common in both natural and man-made systems. Waves carry energy from one place to another and can also carry information. Designing comfortable and safe structures such as bridges,

More information

Name: Date: Waves and Electromagnetic Spectrum, Sound Waves, and Light Waves Study Guide For Final

Name: Date: Waves and Electromagnetic Spectrum, Sound Waves, and Light Waves Study Guide For Final Name: Date: Waves and Electromagnetic Spectrum, Sound Waves, and Light Waves Study Guide For Final Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A disturbance

More information

Physical Science Test Form A Test 5: Waves. Matching. 1. diffraction

Physical Science Test Form A Test 5: Waves. Matching. 1. diffraction Physical Science Test Form A Test 5: Waves Matching. 1. diffraction 2. intensity 3. interference 4. mechanical wave 5. medium 6. pitch 7. reflection 8. refraction 9. translucent 10. transverse wave A.

More information

Physics. Waves and Radiation Homework Exercises. National 4 & 5. Clackmannanshire Physics Network 0914

Physics. Waves and Radiation Homework Exercises. National 4 & 5. Clackmannanshire Physics Network 0914 Physics National 4 & 5 Waves and Radiation ----- 0914 Summary Homework 1: Homework 2: Homework 3: Homework 4: Homework 5: Homework 6: Homework 7: Waves I -Wave definitions - Speed, distance, time calculations

More information

Block 3: Physics of Waves. Chapter 12: Sound. Relate pitch and loudness to frequency and amplitude Describe how sound travels

Block 3: Physics of Waves. Chapter 12: Sound. Relate pitch and loudness to frequency and amplitude Describe how sound travels Chapter 12: Sound Describe production of sounds Measure the speed of sound Relate pitch and loudness to frequency and amplitude Describe how sound travels Sound is a longitudinal (compression) wave Sound

More information

Page 2. Q1.The figure below shows an incomplete electromagnetic spectrum. A microwaves B C ultraviolet D gamma

Page 2. Q1.The figure below shows an incomplete electromagnetic spectrum. A microwaves B C ultraviolet D gamma Q1.The figure below shows an incomplete electromagnetic spectrum. A microwaves B C ultraviolet D gamma (a) What name is given to the group of waves at the position labelled A in the figure above? Tick

More information

Lens: Lenses are usually made of and have 2 curved surfaces. Draw figure 5.23 on Page 191. Label it clearly and use a ruler for the light rays.

Lens: Lenses are usually made of and have 2 curved surfaces. Draw figure 5.23 on Page 191. Label it clearly and use a ruler for the light rays. 5.3 Lenses We have seen lenses in our microscopes, cameras or eyeglasses. Lens: Lenses are usually made of and have 2 curved surfaces. Concave lens: A lens curved inward Thinner at the centre than at the

More information

Physics Learning Guide Name:

Physics Learning Guide Name: Physics Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have this

More information

Optics & Light. See What I m Talking About. Grade 8 - Science OPTICS - GRADE 8 SCIENCE 1

Optics & Light. See What I m Talking About. Grade 8 - Science OPTICS - GRADE 8 SCIENCE 1 Optics & Light See What I m Talking About Grade 8 - Science OPTICS - GRADE 8 SCIENCE 1 Overview In this cluster, students broaden their understanding of how light is produced, transmitted, and detected.

More information

1. Draw the Ray Diagram, name lens or mirror shown and determine the SALT for each picture

1. Draw the Ray Diagram, name lens or mirror shown and determine the SALT for each picture Honors Physics Chapter 22 and 23 Test Name: 1. Draw the Ray Diagram, name lens or mirror shown and determine the SALT for each picture 2. Type of Mirror above: i. SALT of image: S: A: L: T: b. Type of

More information

Draw and label this wave: - What do waves transfer? (They do this without transferring what?) What do all electromagnetic waves have in common?

Draw and label this wave: - What do waves transfer? (They do this without transferring what?) What do all electromagnetic waves have in common? What do waves transfer? Draw and label this wave: - (They do this without transferring what?) What do all electromagnetic waves have in common? Name the electromagnetic spectrum from shortest to longest

More information

Physics: Waves, Sound/Light, Electromagnetic Waves, Magnetism, Mains Electricity and the National Grid

Physics: Waves, Sound/Light, Electromagnetic Waves, Magnetism, Mains Electricity and the National Grid 6.7 Describe the method to measure the speed of sound in air and the speed of ripples on the water surface 7.5 Link the properties of EM waves to their practical application (triple 7.6 Apply knowledge

More information

Physics, P1 Energy for the Home

Physics, P1 Energy for the Home Radiotherapy uses gamma rays to kill cancer cells All waves move energy from place to place. Physics, P1 Energy for the Home Transverse Waves These are caused by shaking. Examples are (1) Waves in a string,

More information

OPTICS DIVISION B. School/#: Names:

OPTICS DIVISION B. School/#: Names: OPTICS DIVISION B School/#: Names: Directions: Fill in your response for each question in the space provided. All questions are worth two points. Multiple Choice (2 points each question) 1. Which of the

More information

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points WRITE ON SCANTRON WITH NUMBER 2 PENCIL DO NOT WRITE ON THIS TEST LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points Multiple Choice Identify the choice that best completes the statement or

More information

GraspIT Questions AQA GCSE Physics Waves

GraspIT Questions AQA GCSE Physics Waves A Waves in air, fluids and solids 1. The diagrams below show two types of wave produced on a slinky spring. A B a. Which one is a transverse wave? (1) Wave B b. What is the name of the other type of wave?

More information

11. What happens if two complementary colors are projected together at the correct intensities onto a white screen?

11. What happens if two complementary colors are projected together at the correct intensities onto a white screen? PreAP Physics Review Chapter 14 & 15 09 Name: Date: Period: _ Use the diagram to answer questions 1 13. The diagram represents three overlapping circles of equally intense light of different pure colors.

More information

The topics in this unit are:

The topics in this unit are: The topics in this unit are: 1 Types of waves 2 Describing waves 3 Wave equation 4 Reflection of waves 5 Refraction 6 Diffraction 7 Light waves (reflection) 8 Total internal reflection 9 - Optical fibres

More information

ID: A. Optics Review Package Answer Section TRUE/FALSE

ID: A. Optics Review Package Answer Section TRUE/FALSE Optics Review Package Answer Section TRUE/FALSE 1. T 2. F Reflection occurs when light bounces off a surface Refraction is the bending of light as it travels from one medium to another. 3. T 4. F 5. T

More information

Light Energy. By: Genevieve Rickey 5th Grade Mrs. Branin 2016

Light Energy. By: Genevieve Rickey 5th Grade Mrs. Branin 2016 Light Energy By: Genevieve Rickey 5th Grade Mrs. Branin 2016 Everyone has probably turned on a light before, but have you ever thought about what light is? Light is a form of energy that is reflected from

More information

Light sources can be natural or artificial (man-made)

Light sources can be natural or artificial (man-made) Light The Sun is our major source of light Light sources can be natural or artificial (man-made) People and insects do not see the same type of light - people see visible light - insects see ultraviolet

More information

Fig On Fig. 6.1 label one set of the lines in the first order spectrum R, G and V to indicate which is red, green and violet.

Fig On Fig. 6.1 label one set of the lines in the first order spectrum R, G and V to indicate which is red, green and violet. 1 This question is about the light from low energy compact fluorescent lamps which are replacing filament lamps in the home. (a) The light from a compact fluorescent lamp is analysed by passing it through

More information

Optics Review (Chapters 11, 12, 13)

Optics Review (Chapters 11, 12, 13) Optics Review (Chapters 11, 12, 13) Complete the following questions in preparation for your test on FRIDAY. The notes that you need are in italics. Try to answer it on your own first, then check with

More information

II. Types of Waves A. Transverse waves 1. Can travel with or without matter (medium)

II. Types of Waves A. Transverse waves 1. Can travel with or without matter (medium) SOL: PS. 8 & 9 I. Waves A. Definitionà a disturbance that transfers energy through matter or space II. Types of Waves A. Transverse waves 1. Can travel with or without matter (medium) 2. Moves at rt. angles

More information

Make a Refractor Telescope

Make a Refractor Telescope Make a Refractor Telescope In this activity students will build, and observe with, simple refractory telescope providing an interactive introduction to light, lenses and refraction. LEARNING OBJECTIVES

More information

Wave Behavior and The electromagnetic Spectrum

Wave Behavior and The electromagnetic Spectrum Wave Behavior and The electromagnetic Spectrum What is Light? We call light Electromagnetic Radiation. Or EM for short It s composed of both an electrical wave and a magnetic wave. Wave or particle? Just

More information

Holy Cross High School. Medical Physics Homework

Holy Cross High School. Medical Physics Homework Holy Cross High School Medical Physics Homework Homework 1: Refraction 1. A pupil shone light through a rectangular block as shown 75 222 15 40 50 a) The light changes direction as it passes from air to

More information

Physics Unit 5 Waves Light & Sound

Physics Unit 5 Waves Light & Sound Physics Unit 5 Waves Light & Sound Wave A rhythmic disturbance that transfers energy through matter and/or a vacuum Material a wave travels through is called the medium 2 types of waves: 1. Transverse

More information

Instructions. To run the slideshow:

Instructions. To run the slideshow: Instructions To run the slideshow: Click: view full screen mode, or press Ctrl +L. Left click advances one slide, right click returns to previous slide. To exit the slideshow press the Esc key. Optical

More information

Wave & Electromagnetic Spectrum Notes

Wave & Electromagnetic Spectrum Notes Wave & Electromagnetic Spectrum Notes December 17, 2011 I.) Properties of Waves A) Wave: A periodic disturbance in a solid, liquid or gas as energy is transmitted through a medium ( Waves carry energy

More information

Marr College Physics S3 Physics Waves and Radiation Homework Exercises

Marr College Physics S3 Physics Waves and Radiation Homework Exercises Marr College Physics S3 Physics Waves and Radiation Homework Exercises Page 1 Exercise 1 wave characteristics 1. Copy and complete the following: With a _ wave, the particles vibrate at 90 to the direction

More information

Name: Date: Block: Light Unit Study Guide Matching Match the correct definition to each term. 1. Waves

Name: Date: Block: Light Unit Study Guide Matching Match the correct definition to each term. 1. Waves Name: Date: Block: Light Unit Study Guide Matching Match the correct definition to each term. 1. Waves 2. Medium 3. Mechanical waves 4. Longitudinal waves 5. Transverse waves 6. Frequency 7. Reflection

More information

PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS

PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS Electromagnetic Waves A. Electromagnetic waves S-23,24 1. speed of waves = 1/( o o ) ½ = 3 x 10 8 m/s = c 2. waves and frequency: the spectrum (a) radio red

More information

Waves. Electromagnetic & Mechanical Waves

Waves. Electromagnetic & Mechanical Waves Waves Electromagnetic & Mechanical Waves Wave Definition: A disturbance that transfers energy from place to place. Molecules pass energy to neighboring molecules who pass energy to neighboring molecules

More information

MODULE P6: THE WAVE MODEL OF RADIATION OVERVIEW

MODULE P6: THE WAVE MODEL OF RADIATION OVERVIEW OVERVIEW Wave behaviour explains a great many phenomena, both natural and artificial, for all waves have properties in common. The first topic introduces a basic vocabulary for describing waves. Reflections

More information

LIGHT. ENERGY FOR LIFE 2 Presented by- Ms.Priya

LIGHT. ENERGY FOR LIFE 2 Presented by- Ms.Priya LIGHT ENERGY FOR LIFE 2 Presented by- Ms.Priya VOCABULARY 1. Opaque 2. Transparent 3. Translucent 4. Refraction 5. Reflection 6. Ray 7. Image 8. Virtual image 9. Medium 10.Vacuum 11. Lens 12. Spectrum

More information

6-6 Waves Trilogy. 1.0 Figure 1 shows an incomplete electromagnetic spectrum. Figure 1. A microwaves B C ultraviolet D gamma

6-6 Waves Trilogy. 1.0 Figure 1 shows an incomplete electromagnetic spectrum. Figure 1. A microwaves B C ultraviolet D gamma 6-6 Waves Trilogy.0 Figure shows an incomplete electromagnetic spectrum. Figure A microwaves B C ultraviolet D gamma. Which position are X-rays found in? Tick one box. [ mark] A B C D.2 Which three waves

More information

Electromagnetic (Light) Waves Electromagnetic Waves

Electromagnetic (Light) Waves Electromagnetic Waves Physics R Date: Review Questions 1. An ocean wave traveling at 3 m/s has a wavelength of 1.6 meters. a. What is the frequency of the wave? b. What is the period of the wave? Electromagnetic (Light) Waves

More information

SCI-PS Light and Optics Pre Assessment Exam not valid for Paper Pencil Test Sessions

SCI-PS Light and Optics Pre Assessment Exam not valid for Paper Pencil Test Sessions SCI-PS Light and Optics Pre Assessment Exam not valid for Paper Pencil Test Sessions [Exam ID:1TL2E1 1 If the angle of incidence is 45, what is the angle of reflection? A 120 B 50 C 90 D 45 2 The wave

More information

Instructional Resources/Materials: Light vocabulary cards printed (class set) Enough for each student (See card sort below)

Instructional Resources/Materials: Light vocabulary cards printed (class set) Enough for each student (See card sort below) Grade Level/Course: Grade 7 Life Science Lesson/Unit Plan Name: Light Card Sort Rationale/Lesson Abstract: Light vocabulary building, students identify and share vocabulary meaning. Timeframe: 10 to 20

More information

UNIT 12 LIGHT and OPTICS

UNIT 12 LIGHT and OPTICS UNIT 12 LIGHT and OPTICS What is light? Light is simply a name for a range of electromagnetic radiation that can be detected by the human eye. What characteristic does light have? Light is electromagnetic

More information

Longitudinal and transverse waves Waves transfer energy from one place to another. There are two types of wave.

Longitudinal and transverse waves Waves transfer energy from one place to another. There are two types of wave. Wave Characteristics Longitudinal and transverse waves Waves transfer energy from one place to another. There are two types of wave. Transverse wave. Examples of a transverse wave are water waves and light.

More information

Vision 1. Physical Properties of Light. Overview of Topics. Light, Optics, & The Eye Chaudhuri, Chapter 8

Vision 1. Physical Properties of Light. Overview of Topics. Light, Optics, & The Eye Chaudhuri, Chapter 8 Vision 1 Light, Optics, & The Eye Chaudhuri, Chapter 8 1 1 Overview of Topics Physical Properties of Light Physical properties of light Interaction of light with objects Anatomy of the eye 2 3 Light A

More information

Q1. The diagram shows the oscilloscope traces of two different sounds P and Q. The oscilloscope setting is exactly the same in both cases.

Q1. The diagram shows the oscilloscope traces of two different sounds P and Q. The oscilloscope setting is exactly the same in both cases. Q1. The diagram shows the oscilloscope traces of two different sounds P and Q. The oscilloscope setting is exactly the same in both cases. P and Q sound different. Write down two differences in the way

More information

Light. In this unit: 1) Electromagnetic Spectrum 2) Properties of Light 3) Reflection 4) Colors 5) Refraction

Light. In this unit: 1) Electromagnetic Spectrum 2) Properties of Light 3) Reflection 4) Colors 5) Refraction Light In this unit: 1) Electromagnetic Spectrum 2) Properties of Light 3) Reflection 4) Colors 5) Refraction Part 1 Electromagnetic Spectrum and Visible Light Remember radio waves are long and gamma rays

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves What is an Electromagnetic Wave? An EM Wave is a disturbance that transfers energy through a field. A field is a area around an object where the object can apply a force on another

More information

Light, Lasers, and Holograms Teleclass Webinar!

Light, Lasers, and Holograms Teleclass Webinar! Welcome to the Supercharged Science Light, Lasers, and Holograms Teleclass Webinar! You can fill out this worksheet as we go along to get the most out of time together, or you can use it as a review exercise

More information

Learning Intentions: P3 Revision. Basically everything in the unit of Physics 3

Learning Intentions: P3 Revision. Basically everything in the unit of Physics 3 Learning Intentions: P3 Revision Basically everything in the unit of Physics 3 P3.1 Medical applications of physics Physics has many applications in the field of medicine. These include the uses of X-rays

More information

Physics for Kids. Science of Light. What is light made of?

Physics for Kids. Science of Light. What is light made of? Physics for Kids Science of Light What is light made of? This is not an easy question. Light has no mass and is not really considered matter. So does it even exist? Of course it does! We couldn't live

More information

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one 5.1.1 Oscillating Systems Waves Review hecklist 5.1.2 Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one Four pendulums are built as shown

More information

ELECTROMAGNETIC WAVES AND THE EM SPECTRUM MR. BANKS 8 TH GRADE SCIENCE

ELECTROMAGNETIC WAVES AND THE EM SPECTRUM MR. BANKS 8 TH GRADE SCIENCE ELECTROMAGNETIC WAVES AND THE EM SPECTRUM MR. BANKS 8 TH GRADE SCIENCE ELECTROMAGNETIC WAVES Do not need matter to transfer energy. Made by vibrating electric charges. When an electric charge vibrates,

More information

Name Class Date. Use the terms from the following list to complete the sentences below. Each term may be used only once. Some terms may not be used.

Name Class Date. Use the terms from the following list to complete the sentences below. Each term may be used only once. Some terms may not be used. Assessment Chapter Test B Light and Our World USING KEY TERMS Use the terms from the following list to complete the sentences below. Each term may be used only once. Some terms may not be used. concave

More information

Nelkin & Cooke Physics Notes Vers 1.0. Waves

Nelkin & Cooke Physics Notes Vers 1.0. Waves Waves Properties of Waves... 1 Longitudinal Waves... 1 Transverse Waves... 2 Calculations... 3 Sound - General... 4 Loudness and Pitch... 4 Sound - Human Hearing... 6 Ultrasound... 7 Sound - Ultrasound

More information

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve I am Watching YOU!! Human Retina Sharp Spot: Fovea Blind Spot: Optic Nerve Human Vision Optical Antennae: Rods & Cones Rods: Intensity Cones: Color Energy of Light 6 10 ev 10 ev 4 1 2eV 40eV KeV MeV Energy

More information

Chapter 23 Study Questions Name: Class:

Chapter 23 Study Questions Name: Class: Chapter 23 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When you look at yourself in a plane mirror, you

More information

sclera pupil What happens to light that enters the eye?

sclera pupil What happens to light that enters the eye? Human Vision Textbook pages 202 215 Before You Read Some people can see things clearly from a great distance. Other people can see things clearly only when they are nearby. Why might this be? Write your

More information

National 4. Waves and Radiation. Summary Notes. Name:

National 4. Waves and Radiation. Summary Notes. Name: National 4 Waves and Radiation Summary Notes Name: Mr Downie 2014 1 Sound Waves To produce a sound the particles in an object must vibrate. This means that sound can travel through solids, liquids and

More information

Reflection and Refraction of Light

Reflection and Refraction of Light Reflection and Refraction of Light Physics 102 28 March 2002 Lecture 6 28 Mar 2002 Physics 102 Lecture 6 1 Light waves and light rays Last time we showed: Time varying B fields E fields B fields to create

More information

Name: New Document 1. Class: Date: 188 minutes. Time: 188 marks. Marks: Comments:

Name: New Document 1. Class: Date: 188 minutes. Time: 188 marks. Marks: Comments: New Document Name: Class: Date: Time: 88 minutes Marks: 88 marks Comments: Q. A camera was used to take a photograph. The camera contains a convex (converging) lens. Complete the ray diagram to show how

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

P6 Quick Revision Questions

P6 Quick Revision Questions P6 Quick Revision Questions H = Higher tier only SS = Separate science only Question 1... of 50 Define wavelength Answer 1... of 50 The distance from a point on one wave to the equivalent point on the

More information

Section Electromagnetic Waves and the Electromagnetic Spectrum

Section Electromagnetic Waves and the Electromagnetic Spectrum Section 17.6 Electromagnetic Waves and the Electromagnetic Spectrum Electromagnetic Waves Can you name all the colors of the rainbow? Red, Orange, Yellow, Green, Blue, Indigo, Violet Electromagnetic Waves

More information

Light, Lasers, and Holograms Teleclass Webinar!

Light, Lasers, and Holograms Teleclass Webinar! Welcome to the Supercharged Science Light, Lasers, and Holograms Teleclass Webinar! You can fill out this worksheet as we go along to get the most out of time together, or you can use it as a review exercise

More information

A. Amplitude B. Frequency C. Wavelength

A. Amplitude B. Frequency C. Wavelength WAVES Frequency, wavelength, amplitude and electromagnetic spectrum STUDENT BOOK Ch. 4, pp. 92 99 1. For each group of two statements, circle the one that is correct. a) All waves transport energy from

More information

Use these words to complete the sentences about light: absorb different diffuse focus prism refraction same slower specula transmit

Use these words to complete the sentences about light: absorb different diffuse focus prism refraction same slower specula transmit Aims In the activity you will learn more about how we see, how light interacts with materials, and how we see colour. Task 1: Light Use these words to complete the sentences about light: absorb different

More information

DIN. A wave is traveling at 5,000 m/s. It has a wavelength of 10 centimeters. What is the wave s frequency? What is the period of the wave?

DIN. A wave is traveling at 5,000 m/s. It has a wavelength of 10 centimeters. What is the wave s frequency? What is the period of the wave? 3. Wave Speed (v=fλ) and Wave period (T=1/f) problems. DIN 1. EOC Review Problem: Two carts are moving on a horizontal frictionless surface. A 8 kilogram cart is moving to the right at 6 m/s. A second

More information

(A) 2f (B) 2 f (C) f ( D) 2 (E) 2

(A) 2f (B) 2 f (C) f ( D) 2 (E) 2 1. A small vibrating object S moves across the surface of a ripple tank producing the wave fronts shown above. The wave fronts move with speed v. The object is traveling in what direction and with what

More information

X rays X-ray properties Denser material = more absorption = looks lighter on the x-ray photo X-rays CT Scans circle cross-sectional images Tumours

X rays X-ray properties Denser material = more absorption = looks lighter on the x-ray photo X-rays CT Scans circle cross-sectional images Tumours X rays X-ray properties X-rays are part of the electromagnetic spectrum. X-rays have a wavelength of the same order of magnitude as the diameter of an atom. X-rays are ionising. Different materials absorb

More information

Name: Date Due: Waves. Physical Science Chapter 6

Name: Date Due: Waves. Physical Science Chapter 6 Date Due: Waves Physical Science Chapter 6 Waves 1. Define the following terms: a. periodic motion = b. cycle= c. period= d. mechanical wave= e. medium = f. transverse wave = g. longitudinal wave= h. surface

More information

PiXL Independence: GCSE Physics Student Booklet KS4. I. Level 1- Multiple Choice Quiz 20 credits. Level 3 - Science in The News 100 credits

PiXL Independence: GCSE Physics Student Booklet KS4. I. Level 1- Multiple Choice Quiz 20 credits. Level 3 - Science in The News 100 credits PiXL Independence: GCSE Physics Student Booklet KS4 Topic: Light and electromagnetic waves Contents: I. Level 1- Multiple Choice Quiz 20 credits II. III. IV. Level 2-5 questions, 5 sentences, 5 words 10

More information

Key Terms Review. Key Concept Review

Key Terms Review. Key Concept Review Pages 504 505 D Key Terms Review 1. 2. Students answers will vary but should include discussion of most of these concepts: wave model, wavelength, frequency, colour sources, moving charges, atomic and

More information

Term Info Picture. A wave that has both electric and magnetic fields. They travel through empty space (a vacuum).

Term Info Picture. A wave that has both electric and magnetic fields. They travel through empty space (a vacuum). Waves S8P4. Obtain, evaluate, and communicate information to support the claim that electromagnetic (light) waves behave differently than mechanical (sound) waves. A. Ask questions to develop explanations

More information

Fill in the blanks. Reading Skill: Compare and Contrast - questions 3, 17

Fill in the blanks. Reading Skill: Compare and Contrast - questions 3, 17 Light and Color Lesson 9 Fill in the blanks Reading Skill: Compare and Contrast - questions 3, 17 How Do You Get Color From White Light? 1 A(n) is a triangular piece of polished glass that refracts white

More information

P3 Essential Questions X Rays, CT Scans and Ultrasound

P3 Essential Questions X Rays, CT Scans and Ultrasound P3 Essential Questions X Rays, CT Scans and Ultrasound Ultrasound and X-rays are waves used in hospitals to create images of the inside of the human body. To produce the images below, the waves must enter

More information

Wallace Hall Academy Physics Department NATIONAL 5 PHYSICS. Waves and Radiation. Exam Questions

Wallace Hall Academy Physics Department NATIONAL 5 PHYSICS. Waves and Radiation. Exam Questions Wallace Hall Academy Physics Department NATIONAL 5 PHYSICS Waves and Radiation Exam Questions 1 Wave Parameters and Behaviour 1. The following diagram gives information about a wave. 2011 Int2 12 MC Which

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS 4.1 Describe the measurable properties of waves (velocity, frequency, wavelength, amplitude, period)

More information

L 32 Light and Optics [2] The rainbow. Why is it a rain BOW? Atmospheric scattering. Different colors are refracted (bent) by different amounts

L 32 Light and Optics [2] The rainbow. Why is it a rain BOW? Atmospheric scattering. Different colors are refracted (bent) by different amounts L 32 Light and Optics [2] Measurements of the speed of light The bending of light refraction Total internal reflection Dispersion Dispersion Rainbows Atmospheric scattering Blue sky and red sunsets Mirrors

More information

=, where f is focal length of a lens (positive for convex. Equations: Lens equation

=, where f is focal length of a lens (positive for convex. Equations: Lens equation Physics 1230 Light and Color : Exam #1 Your full name: Last First & middle General information: This exam will be worth 100 points. There are 10 multiple choice questions worth 5 points each (part 1 of

More information

Lenses. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved.

Lenses. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. PHYSICS NOTES ON A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. Types of There are two types of basic lenses. (1.)

More information

INTRODUCTION. 5. Electromagnetic Waves

INTRODUCTION. 5. Electromagnetic Waves INTRODUCTION An electric current produces a magnetic field, and a changing magnetic field produces an electric field Because of such a connection, we refer to the phenomena of electricity and magnetism

More information

Preview. Light and Reflection Section 1. Section 1 Characteristics of Light. Section 2 Flat Mirrors. Section 3 Curved Mirrors

Preview. Light and Reflection Section 1. Section 1 Characteristics of Light. Section 2 Flat Mirrors. Section 3 Curved Mirrors Light and Reflection Section 1 Preview Section 1 Characteristics of Light Section 2 Flat Mirrors Section 3 Curved Mirrors Section 4 Color and Polarization Light and Reflection Section 1 TEKS The student

More information

Lecture 26. PHY 112: Light, Color and Vision. Finalities. Final: Thursday May 19, 2:15 to 4:45 pm. Prof. Clark McGrew Physics D 134

Lecture 26. PHY 112: Light, Color and Vision. Finalities. Final: Thursday May 19, 2:15 to 4:45 pm. Prof. Clark McGrew Physics D 134 PHY 112: Light, Color and Vision Lecture 26 Prof. Clark McGrew Physics D 134 Finalities Final: Thursday May 19, 2:15 to 4:45 pm ESS 079 (this room) Lecture 26 PHY 112 Lecture 1 Introductory Chapters Chapters

More information

EM waves do not need a medium to travel through EM waves are transverse waves All EM waves travel at the speed of light = 3.

EM waves do not need a medium to travel through EM waves are transverse waves All EM waves travel at the speed of light = 3. EM waves do not need a medium to travel through EM waves are transverse waves All EM waves travel at the speed of light = 3.00 x 10 8 m/s So, if they all travel at the same speed, how are they different?

More information

Physics 1C. Lecture 24A. Finish Chapter 27: X-ray diffraction Start Chapter 24: EM waves. Average Quiz score = 6.8 out of 10.

Physics 1C. Lecture 24A. Finish Chapter 27: X-ray diffraction Start Chapter 24: EM waves. Average Quiz score = 6.8 out of 10. Physics 1C Lecture 24A Finish Chapter 27: X-ray diffraction Start Chapter 24: EM waves Average Quiz score = 6.8 out of 10 This is a B- Diffraction of X-rays by Crystals! X-rays are electromagnetic radiation

More information

frequency (Hertz)(Hz)

frequency (Hertz)(Hz) Part C Part B Part A Shedding Light on Electromagnetic Waves Name: 1. Fill in the diagram. The Electromagnetic 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 13 10 14 10 15 10 16 10 17 10 18 10 19

More information

Lecture 6 6 Color, Waves, and Dispersion Reading Assignment: Read Kipnis Chapter 7 Colors, Section I, II, III 6.1 Overview and History

Lecture 6 6 Color, Waves, and Dispersion Reading Assignment: Read Kipnis Chapter 7 Colors, Section I, II, III 6.1 Overview and History Lecture 6 6 Color, Waves, and Dispersion Reading Assignment: Read Kipnis Chapter 7 Colors, Section I, II, III 6.1 Overview and History In Lecture 5 we discussed the two different ways of talking about

More information

Light and Applications of Optics

Light and Applications of Optics UNIT 4 Light and Applications of Optics Topic 4.1: What is light and how is it produced? Topic 4.6: What are lenses and what are some of their applications? Topic 4.2 : How does light interact with objects

More information