O R 4,720, 1 R 5... United States talent (19) (11 Patent Number; 4,720,183 Dilworth (45) Date of Patent: Jan. 19, 1988

Size: px
Start display at page:

Download "O R 4,720, 1 R 5... United States talent (19) (11 Patent Number; 4,720,183 Dilworth (45) Date of Patent: Jan. 19, 1988"

Transcription

1 O R 4,720, 1 R United States talent (19) (11 Patent Number; 4,720,183 Dilworth (45) Date of Patent: Jan. 19, EXTREME wrde ANGLEEYEPIECE WITH (56) References Cited - MN MALABERRATIONS. U.S. PATENT DOCUMENTs 3,384,434 5/1968 Scidmore et al /410 (75. Inventor: Donald C. Dilworth, Medford, Mass. 4,286,844 9/1981 Nagler /40 w Primary Examiner-John K. Corbin (73) Assignee: Optical Systems Design, Inc., East Assistant Examiner-Rebecca D. Gass Booth Bay, Me. Attorney, Agent, or Firm-Wolf, Greenfield & Sacks (21) Appl. No.: 833,963 (7) ABSTRACT A wide-angle eyepiece designed to cover a field of view of 90' with substantially perfect correction of spherical (22 Filed: Feb. 27, 1986 aberration, coma, astigmatism, field curvature, chro-, matic aberration, and spherical aberration of the exit (51) Int. Cl:"... G02B 25/00 pupil....." 52 U.S.C / ) Field of Search...is now ow 350/410 2 Claims, 6 Drawing Figures AX R8 RS R7. R 4. N RO arol z is 7 W. %ry 7, A A W LV LVI

2 U.S. Patent Jan. 19, 1988 Sheet 1 of 3 4,720, AR4 er M A... n-2,. AEANW, less WAY, agaia's stressensoresentenes rosauga. Xenocin S y 7-27S.W W. FRACTIONAL FEO S T 1.O - AOOOOOO -2.OOOOOOOOOOOO OOOO 4, LONGITUDINAL ABERRATION, DIOPTERS D EYE PIECE fig. 1A

3 U.S. Patent 4,720,183

4

5 1. EXTREME wide ANGLE EYEPIECE with MNMA LABERRATIONS BACKGROUND OF THE INVENTION This invention relates to eyepieces suitable for use with either astronomical or terrestrial telescopes, and more particularly to eyepieces having an extremely wide field of view with essentially perfect correction of all monochromatic and chromatic aberrations. In the ideal case, an eyepiece should present to the eye of the observer a virtual image focused at a conve nient distance (typically at a distance of one meter) with uniform sharpness of the image over the entire field of view. In addition, all of the ray bundles from objects in various parts of the field should, in the absence of the observer's eye, cross at a single point on the optical axis, said point being the exit pupil of the system. In addition, for maximum utilization of the observer's eye, the ap parent field should be about 90' in extent. In the prior art, these goals have substantially failed to be met for a variety of reasons. In eyepieces consist ing wholly of lens rements located between the focal plane of the telescope and the observer, such as U.S. Pat. No. 3,384,434, the field of view is severely limited, in practical cases to about 60' to 70', by the large amount of astigmatism inherent in those designs. In the case of U.S. Pat. No. 4,286,844, where a negative lens group is located on the far side of the focal plane from the observer, the astigmatism is better corrected and the design is capable of covering a field of about 90'-butin this case there is such a large amount of spherical aber ration of the exit pupil that, for many applications, espe cially for daytime use when the iris of the user's eye is more constricted than at nighttime, it is impossible for light from all parts of the field of view to enter the user's eye at the same time. What the user sees is a wide field, portions of which are completely black while other portions are illuminated. As the user moves his or her eye from side-to-side, different portions of the field become alternately darkened and illuminated-but at no time is the whole field visible at once. This defect is known as the "kidneybean' effect, because the missing, darkened portions of the field are delimited by a bound ary of roughly the shape of a kidney bean. SUMMARY OF THE INVENTION Accordingly, it is the object of the present invention to provide an extreme wide-angle eyepiece with negli gable astigmatism, curvature of field, spherical aberra tion, coma, chromatic aberration, and spherical aberra tion of the exit pupil, thereby providing the user with an essentially perfect, wide-angle field of view. It is a further object of this invention to provide an eyepiece which may be used at a relative aperture down to F/4. It is still another object of the invention to provide an eyepiece covering a field of view of 90', with an eye relief that is equal to or greater than the focal length. It is still another object of the invention to provide an eyepiece that is corrected to such an extent that the monochromatic image, at a relative aperture of F/7, has no more than about a quarter-wave of optical path dif ference (OPD) error at a wavelength of mi crometers over a field of view of approximately 90'. It is a further object of the invention to provide an eyepiece that is corrected for field aberrations to such 4,720,183. s O s an extent that the sagittal and tangential field curves cross at no less than three different points in the field. It is still another object of the invention to provide an eyepiece that, in one embodiment, has an amount of coma intentionally introduced to compensate for the amount of that aberration found in the common form of astronomical telescope consisting of a single paraboloi dal primary mirror and optionally a flat folding mirror. According to this invention, a wide-angle eyepiece is provided consisting of seven lenses, I, II, III, IV, V, VI, and VII, and a field stop Plocated between lenses IV and V, wherein lens I is a bi-concave lens, lens II is a meniscus lens with the strongest curve adjacent lens III, lens III is a bi-concave lens, lens IV is a meniscus lens with the strongest curve adjacent lens V, lens V is a lens with a convex surface adjacent lens VI and a surface adjacent lens IV within the range of slightly positive to slightly negative, lens VI is bi-convex lens, and lens VII is a doublet comprising a bi-convex lens and a bi concave lens with the bi-convex lens adjacent lens VI. Features and advantages of the invention will become apparent from the foregoing and from the following specification of preferred embodiments of the invention. BRIEF DESCRIPTION OF THE DRAWINGs FIG. 1 is a schematic longitudinal section view (scale factor 1.000X) showing one arrangement of lens ele ments according to the present invention. FIG.1a is a plot of tangential and sagittal field curva tures over a total field of about 90 for the lens arrange ment shown in FIG. 1. FIG.2 is a schematic longitudinal section view (scale eyepiece according to the present invention. FIG.2a is a plot of the tangential and sagital field curvatures over a total field of about 85 for the second embodiment shown in FIG.2. This embodiment is in tended to compensate for the coma of a paraboloidal primary mirror. FIG. 3 is a schematic longitudinal section view (scale factor 1.000X) showing an example of the prior art as regards pupil aberration correction. This example is. from U.S. Pat. No. 4,286,844. FIG. 3a is a plot of the tangential and sagittal field curvatures over a total of about 90' for the prior-artlens arrangement shown in FIG. 3. DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT In FIG. 1, looking from left to right or from the objective lens to the viewer, lens LI is a bi-concave singlet having its surface of greater curvature adjacent lens LII. Lens LII is a positive meniscussinglet having its strongest curve adjacent lens LIII. Lens LIII is an other bi-concave negative singlet, having its surface of greater curvature adjacent lens LII. Lens LIV is an other positive meniscus singlet having its strongest curve adjacent lens LV. Lens LV is a lens with a con vex surface adjacent lens LVI and a surface adjacent lens LIV which is nearly flat, and could be designed to be either slightly positive in curvature or slightly nega tive. Lens LVI is a bi-convex positive singlet, having its surface of greater curvature adjacent lens LV. Lens LVII is a cemented doublet consisting of a bi-convex positive lens and a bi-concave negative lens with the bi-convex lens adjacent lens LVI. The eyepiece has an internal focus, where a field stop P should be placed. The exit pupil of the system, shown at E, corresponds to

6 3 the place where the observer's eye is to be located. In FIG. 2, the general arrangement is similar to that of FIG. 1, except that lens LIII is somewhat thicker and the design specifications have been modified so as to introduce the compensating coma discussed above. The focal lengths of the individual eyepiece lens elements are as follows: the focal length of lens LI is between minus two and minus four times the total eye piece focal length; the focal length of lens LII is be tween two and four times the eyepiece focal length; the focal length of lens LIII is between minus 1.5 and minus 2.5 times the eyepiece focal length; the focal length of lens LIV is between five and ten times the eyepiece focal length; the focal length of lens LV is between four and eight times the eyepiece focal length; the focal length of lens LVI is between three and five times the eyepiece focal length; the focal length of the positive member of lens LVII is between 1.5 and 2.5 times the eyepiece focal length; and the focal length of the nega tive member of lens LVII is between minus 1.5 and minus three times the eyepiece focal length. The eyepiece has an internal field stop that lies be tween elements LIV and LV, at a position which, if projected perpendicularly toward the optical axis, would intersect the latter at a point about one-seventh of the distance from surface R7 to surface R8. 4,720, More specifically, the lens data for a FIG. 1 embodi ment eyepiece with a mm. focal length and a field of view of 90' are shown in Table I wherein lens radii of curvature, thicknesses, and axial separation distances are given in millimeters, n is the refractive index of a lens element, and v is the Abbe number for a lens element. TABLE I Axial Thickness Lens Separation Lens Radii d" p" f W R is LI d = R2 = s R3 at LII d. ( R4 = d2 = = RS sat LII ( R6 = d3 s S = R7s" LIV ( R8 s d4 at 10.7S ' s R9 as W is 12.4 L ( R10s: d5 is , s R1 is LVI d6 = ( R2 = = 0.41 R13 as d7 at LVI R14 a d8 as R5 s s An eyepiece having the lens data set forth in Table I has a field corrected so that the sagittal and tangential field curves cross at three different off-axis field points, as shown in FIG. 1a. The resulting residual OPD errors are less than about wave for a wavelength of micrometers over a field of view of 90' at a relative speed of F/7, and the eyepiece exhibits excellent perfor mance at speeds as fast as F/4. The spherical aberration of the pupil is corrected (as shown at location "E" in FIG. 1) to such an extent that the observer can easily view the entire field of view with a single placement of his or her eye. The eye relief, given as length 17, is about 16.4 mm., which exceeds the focal length of the eyepiece. The lens data for a FIG.2 embodiment with a focal length of mm. and an 85' field of view, designed to compensate for the coma of a paraboloidal primary mirror, are shown in Table II. The lens parameters are defined the same as those in Table I. TABLE II Axial Lens... Thickness Separation Lens Radii 'd'' p" W RI LI d's R2 s = R3s II d2s ' L ( R4 = as 14, 1468 RSs

7 4,720, TABLE II-continued Axial Thickness Lens Separation Lens Radii d" ir W LII R6s d3a; :33.8S 13 at Rs at LIV (EE d : R9 se -540,000 LV ds. a = 0.41 (E S90 R11 a LVI ( R oooo " s, 0.41 R3 s d7 is LVII R4s R15s is l d8 = = It is to be noticed in reference to FIG. 2 and FIG.2a 25 o that this embodiment is also extremely well corrected Asia Lens for field aberrations and for pupil aberrations. a The I sagit sagt Lens Radii.. Thickness d' tion'' Separa tal and tangential field curves cross at three discrete R= n W spherical aberration, thus completely eliminating the 30 R2s "kidney-bean' effect. The eye relief of this embodi- 1 at ment, given as length 17, exceeds the focal length of the R3s field angles, and the exit pupil is essentially free from Li d1 = S9.7 eyepiece. to Li ( d2= It is also to be noticed in reference to FIGS. 1 and 2 R4 = that the diameter of the beam emerging from the eye- 35 piece at the widest field angle exceeds the diameter RS-23, emerging from the on-axis object. This condition is Lili ( d desirable in wide-angle eyepieces because it leads to a R6s reduction in apparent visual field distortion. In the case 3s of the prior-art eyepiece shown in FIG. 3, taken from 40 R7= U.S. Pat. No. 4,286,844 where the internal focal plane is liv{ d4-10, ,32 located at D and the exit pupil at E, the widest-angle R8s beam is smaller in diameter than the on-axis beam, and 14s. 0.4 the distortion in that eyepiece is considerable. LV ( R , The lens elements need not be made of expensive or 45 R10=-50,5861 v-vy. M-- special glasses but rather are made from common, ordi- 15s nary optical glass. 24,826 Having thus described the invention, it is to be under- v ( Rll-t: stood that the specifications and drawings are to be R12s interpreted as illustrative and not in a limiting sense =0.41 What is claimed is: R13= A wide-angle eyepiece comprising seven lenses, I, LVII. R4 = d7= SS.42 II, III, IV, V, VI, and VII, and a field stop P located d8=1, between lenses IV and V, wherein lens I is a bi-concave RS lens, lens II is a meniscus lens with the strongest curve 55 is, adjacent lens III, lens III is a bi-concave lens, lens IV is a meniscus lens with the strongest curve adjacent lens V, lens V is a lens with a convex surface adjacent lens 2. A wide-angle eyepiece comprising seven lenses, I, VI and a surface adjacent lens IV within the range of II, III, IV, V, VI, and VII, and a field stop P. located slightly positive to slightly negative, lens VI is a bi-con 60 between lens IV and V, wherein lens I is a bi-concave vex lens, and lens VII is a doublet comprising a bi-con lens, lens II is a meniscus lens with the strongest curve vex lens and a bi-concave lens with the bi-convex lens adjacent lens VI, said lenses having parameters substan-- tially as set forth in the following table wherein lens curvatures, lens thicknesses, and lens separation dis tances are given in millimeters, n is the index of refrac 65 tion of a lens element, and v is the Abbe number of a lens element: adjacent lens III, lens III is a bi-concave lens, lens IV is a meniscus lens with the strongest curve adjacent lens V, lens V is a lens with a convex surface adjacent lens VI and a surface adjacent lens IV within the range of slightly positive to slightly negative, lens VI is a bi-con vex lens, and lens VII is a doublet comprising a bi-con vex lens and a bi-concave lens with the bi-convex lens

8 4,720, adjacent lens VI, said lenses having parameters substan- tion of a lens element, and v is the Abbe number of a tially as set forth in the following table wherein lens lens element: Thickness Separation Lens Radii d "1" is n w RIs L disc.3, , R2 as 39, = R3 as LII ( R ''' s. 4,11468 RS = I sc 4. a LII ( R6 = " at R7 a V 4 = , 60. LIV ( RS = v ( R as RO = = VI 6 as L ( R as 0.4 R3 = at ,62041, LVI R14. a R15 at d8s curvatures, lens thicknesses, and lens separation dis tances are given in millimeters, n is the index of refrac

don, G.B. U.S. P. DOCUMENTS spaced by an air gap from the collecting lens. The widths of

don, G.B. U.S. P. DOCUMENTS spaced by an air gap from the collecting lens. The widths of United States Patent (19) Wartmann III US005708532A 11 Patent Number: 5,708,532 45 Date of Patent: Jan. 13, 1998 (54) DOUBLE-SIDED TELECENTRC 573790 11/1977 U.S.S.R... 359/663 MEASUREMENT OBJECTIVE 1 248

More information

(12) Patent Application Publication (10) Pub. No.: US 2002/ A1

(12) Patent Application Publication (10) Pub. No.: US 2002/ A1 (19) United States US 20020O24744A1 (12) Patent Application Publication (10) Pub. No. US 2002/0024744 A1 Kasahara (43) Pub. Date Feb. 28, 2002 (54) MICROSCOPE OBJECTIVE LENS (76) Inventor Takashi Kasahara,

More information

SW Š. United States Patent (19. Mercado. Mar. 19, 1991 SVS2 ANI-III ,000,548. WAC SaSas. (11) Patent Number: (45) Date of Patent:

SW Š. United States Patent (19. Mercado. Mar. 19, 1991 SVS2 ANI-III ,000,548. WAC SaSas. (11) Patent Number: (45) Date of Patent: United States Patent (19. Mercado (11) Patent Number: (45) Date of Patent: Mar. 19, 1991 (54) MICROSCOPE OBJECTIVE 75 Inventor: Romeo I. Mercado, San Jose, Calif. (73) Assignee: Lockheed Missiles & Space

More information

United States Statutory Invention Registration (19) Feb. 28, 1996 JP Japan (51) Int. Cl... GO2B 21/ U.S. Cl...

United States Statutory Invention Registration (19) Feb. 28, 1996 JP Japan (51) Int. Cl... GO2B 21/ U.S. Cl... USOO4(OO1763B2 United States Statutory Invention Registration (19) Mizusawa 54) MICROSCOPE OBJECTIVE LENS 75 Inventor: Masayuki Mizusawa, Yokohama, Japan 73 Assignee: Nikon Corporation, Tokyo, Japan 21

More information

4,162,827. United Stat to XR 49162,827. U.S. PATENT DOCUMENTS 1,293,086 2/1919 Graf /234. Jul. 31, Assignee:

4,162,827. United Stat to XR 49162,827. U.S. PATENT DOCUMENTS 1,293,086 2/1919 Graf /234. Jul. 31, Assignee: 3S() a 483 SR XR 49162,827 United Stat to 11 de- Jul. 31, 1979 54 WIDE ANGLE OBJECTIVE FOR OPHTHALMOSCOPIC INSTRUMENT Yuji Ito, Chigasaki, Japan Canon Kabushiki Kaisha, Tokyo, Japan Appl. No.: 802,877

More information

United States Patent (19) Hirakawa

United States Patent (19) Hirakawa United States Patent (19) Hirakawa US005233474A 11 Patent Number: (45) Date of Patent: 5,233,474 Aug. 3, 1993 (54) WIDE-ANGLE LENS SYSTEM (75) Inventor: Jun Hirakawa, Tokyo, Japan 73) Assignee: Asahi Kogaku

More information

(12) United States Patent (10) Patent No.: US 8,437,091 B2

(12) United States Patent (10) Patent No.: US 8,437,091 B2 USOO8437091B2 (12) United States Patent (10) Patent No.: US 8,437,091 B2 Hsu et al. (45) Date of Patent: May 7, 2013 (54) WIDE VIEWING ANGLE OPTICAL LENS (58) Field of Classification Search... 359/642,

More information

United States Patent 19) 11 Patent Number: 5,442,436 Lawson (45) Date of Patent: Aug. 15, 1995

United States Patent 19) 11 Patent Number: 5,442,436 Lawson (45) Date of Patent: Aug. 15, 1995 I () US005442436A United States Patent 19) 11 Patent Number: Lawson (45) Date of Patent: Aug. 15, 1995 54 REFLECTIVE COLLIMATOR 4,109,304 8/1978 Khvalovsky et al.... 362/259 4,196,461 4/1980 Geary......

More information

350 a 439 SR x V y (2) slril V -2- OR 3,524,697 - the OS, 0. Aug. 18, 1970 MASAK SSH K ET AL 3,524,697 ACHROMATIC SUPER WIDE-ANGLE LENS

350 a 439 SR x V y (2) slril V -2- OR 3,524,697 - the OS, 0. Aug. 18, 1970 MASAK SSH K ET AL 3,524,697 ACHROMATIC SUPER WIDE-ANGLE LENS 350 a 439 SR x V y (2) slril V -2- OR - the OS, 0 Aug. 18, 1970 MASAK SSH K ET AL Filed April 23, 1968 2 Sleets-Sheet l F G. Li L-2-3-4-5L6 L7-8 l LiO d7de di-, d2 4. ) -- d2 d\ds iy INA dis r s 58 9 of

More information

Oct RETROFOCUS-TYPE WIDE-ANGLE CAMERA LENS Original Filed Dec. 24, 1969

Oct RETROFOCUS-TYPE WIDE-ANGLE CAMERA LENS Original Filed Dec. 24, 1969 3 on 460 - SR OR RE Oct. 30 773 RETROFOCUS-TYPE WIDE-ANGLE CAMERA LENS Original Filed Dec. 24, 1969 Re. Li L2 L3 F.G. n STOP -4. L6 \ ) - d d2 d6 d7 dio d5 da del d1 na 7 R rt a?g 10 r -7 L8 L9 \ 2, 5

More information

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1 (19) United States US 200801 06809A1 (12) Patent Application Publication (10) Pub. No.: US 2008/0106809 A1 HIRANO (43) Pub. Date: (54) WIDE-ANGLE LENS SYSTEM (75) Inventor: Hiroyuki HIRANO, Kanagawa (JP)

More information

United States Patent (19) Miller

United States Patent (19) Miller M5 f 85 OR 4 55 O 58 United States Patent (19) Miller (54) (76) FISH EYE LENS SYSTEM Inventor: Rolf Miller, Wienerstr. 3, 7888 Rheinfelden, Fed. Rep. of Germany 1 Appl. No.: 379,76 Filed: May 19, 198 (30)

More information

(12) United States Patent (10) Patent N0.: US 8,314,999 B1 Tsai (45) Date of Patent: Nov. 20, 2012

(12) United States Patent (10) Patent N0.: US 8,314,999 B1 Tsai (45) Date of Patent: Nov. 20, 2012 US0083 l4999bl (12) United States Patent (10) Patent N0.: US 8,314,999 B1 Tsai (45) Date of Patent: Nov. 20, 2012 (54) OPTICAL IMAGE LENS ASSEMBLY (58) Field Of Classi?cation Search..... 359/715, _ 359/771,

More information

(12) United States Patent (10) Patent No.: US 8.441,745 B2

(12) United States Patent (10) Patent No.: US 8.441,745 B2 USOO8441745B2 (12) United States Patent (10) Patent No.: US 8.441,745 B2 Tang et al. (45) Date of Patent: May 14, 2013 (54) OPTICAL LENS ASSEMBLY FOR IMAGE TAKING (56) References Cited U.S. PATENT DOCUMENTS

More information

(12) United States Patent

(12) United States Patent US009 158091B2 (12) United States Patent Park et al. (10) Patent No.: (45) Date of Patent: US 9,158,091 B2 Oct. 13, 2015 (54) (71) LENS MODULE Applicant: SAMSUNGELECTRO-MECHANICS CO.,LTD., Suwon (KR) (72)

More information

25 cm. 60 cm. 50 cm. 40 cm.

25 cm. 60 cm. 50 cm. 40 cm. Geometrical Optics 7. The image formed by a plane mirror is: (a) Real. (b) Virtual. (c) Erect and of equal size. (d) Laterally inverted. (e) B, c, and d. (f) A, b and c. 8. A real image is that: (a) Which

More information

78r9 for 1234,516. United States Patent (19) 2345 ro. 11) 4,266,860 (45) May 12, Hayashi. taining an excellent image-forming performance em

78r9 for 1234,516. United States Patent (19) 2345 ro. 11) 4,266,860 (45) May 12, Hayashi. taining an excellent image-forming performance em 5/12/8 OR war v Y 4, 266 860 United States Patent (19) Hayashi 54 WIDE ANGLE ZOOM LENS SYSTEM HAVING SHORTENED CLOSEUP FOCAL LENGTH (75) Inventor: Kiyoshi Hayashi, Yokohama, Japan 73) Assignee: Nippon

More information

J0 (45) Date of Patent: Jan. 22, (54) PHOTOGRAPHICLENS 7, 177,098 B2 * 2/2007 Arai ,715

J0 (45) Date of Patent: Jan. 22, (54) PHOTOGRAPHICLENS 7, 177,098 B2 * 2/2007 Arai ,715 (12) United States Patent USOO7321474B1 (10) Patent No.: US 7,321,474 B1 J0 (45) Date of Patent: Jan. 22, 2008 (54) PHOTOGRAPHICLENS 7, 177,098 B2 * 2/2007 Arai... 359,715 2005, 0105.194 A1* 5, 2005 Matsui

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 33 Geometric Optics Spring 2013 Semester Matthew Jones Aberrations We have continued to make approximations: Paraxial rays Spherical lenses Index of refraction

More information

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1 (19) United States US 20130279021A1 (12) Patent Application Publication (10) Pub. No.: US 2013/0279021 A1 CHEN et al. (43) Pub. Date: Oct. 24, 2013 (54) OPTICAL IMAGE LENS SYSTEM Publication Classification

More information

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson Astronomy 80 B: Light Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson Sensitive Countries LLNL field trip 2003 April 29 80B-Light 2 Topics for Today Optical illusion Reflections

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Muchel 54) OPTICAL SYSTEM OF WARIABLE FOCAL AND BACK-FOCAL LENGTH (75) Inventor: Franz Muchel, Königsbronn, Fed. Rep. of Germany 73 Assignee: Carl-Zeiss-Stiftung, Heidenheim on

More information

Laboratory experiment aberrations

Laboratory experiment aberrations Laboratory experiment aberrations Obligatory laboratory experiment on course in Optical design, SK2330/SK3330, KTH. Date Name Pass Objective This laboratory experiment is intended to demonstrate the most

More information

(12) United States Patent

(12) United States Patent (12) United States Patent JO et al. USOO6844989B1 (10) Patent No.: (45) Date of Patent: Jan. 18, 2005 (54) LENS SYSTEM INSTALLED IN MOBILE COMMUNICATION TERMINAL (75) Inventors: Yong-Joo Jo, Kyunggi-Do

More information

11 Patent Number: 5,331,470 Cook 45 Date of Patent: Jul. 19, ) Inventor: Lacy G. Cook, El Segundo, Calif. Assistant Examiner-James A.

11 Patent Number: 5,331,470 Cook 45 Date of Patent: Jul. 19, ) Inventor: Lacy G. Cook, El Segundo, Calif. Assistant Examiner-James A. United States Patent (19) IIIHIIII USOO33147OA 11 Patent Number: Cook 4 Date of Patent: Jul. 19, 1994 4 FAST FOLDED WIDE ANGLE LARGE,170,284 12/1992 Cook... 39/861 RE UNOBSCURED SYSTEM Primary Examiner-Edward

More information

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0103414 A1 Baik US 2015O103414A1 (43) Pub. Date: Apr. 16, 2015 (54) LENS MODULE (71) Applicant: SAMSUNGELECTRO-MECHANCS CO.,LTD.,

More information

(12) United States Patent

(12) United States Patent USOO9063318B2 (12) United States Patent Ishizaka (54) IMAGING LENS (71) Applicant: KANTATSU CO.,LTD., Yaita-shi, Tochigi (JP) (72) Inventor: Tohru Ishizaka, Sukagawa (JP) (73) Assignee: KANTATSU CO.,LTD.,

More information

(12) United States Patent (10) Patent No.: US 6,386,952 B1

(12) United States Patent (10) Patent No.: US 6,386,952 B1 USOO6386952B1 (12) United States Patent (10) Patent No.: US 6,386,952 B1 White (45) Date of Patent: May 14, 2002 (54) SINGLE STATION BLADE SHARPENING 2,692.457 A 10/1954 Bindszus METHOD AND APPARATUS 2,709,874

More information

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1 (19) United States US 20130070346A1 (12) Patent Application Publication (10) Pub. No.: US 2013/0070346A1 HSU et al. (43) Pub. Date: Mar. 21, 2013 (54) OPTICAL IMAGE CAPTURING LENS (52) U.S. Cl. ASSEMBLY

More information

United States Patent (19) Roulot

United States Patent (19) Roulot United States Patent (19) Roulot 54 LGHT SOURCE WITH ACOUSTO-OPTC OEFLECTOR AND AFOCAL LENS SYSTEM 76 Inventor: Maurice Roulot, 144 Boulevard de la Terrasse, 91400 Orsay, France (21) Appl. No.: 385,196

More information

(12) United States Patent

(12) United States Patent USOO8385006B2 (12) United States Patent Tsai et al. (54) (75) (73) (*) (21) (22) (65) (30) (51) (52) (58) PHOTOGRAPHING OPTICAL LENS ASSEMBLY Inventors: Tsung-Han Tsai, Taichung (TW); Hsin-Hsuan Huang,

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 207-04-20 Herbert Gross Summer term 207 www.iap.uni-jena.de 2 Preliminary Schedule - Lens Design I 207 06.04. Basics 2 3.04. Properties of optical

More information

Geometric optics & aberrations

Geometric optics & aberrations Geometric optics & aberrations Department of Astrophysical Sciences University AST 542 http://www.northerneye.co.uk/ Outline Introduction: Optics in astronomy Basics of geometric optics Paraxial approximation

More information

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1 US 201603061.41A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0306141 A1 CHEN et al. (43) Pub. Date: (54) OPTICAL LENS Publication Classification (71) Applicant: ABILITY

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0091458 A1 Asami et al. US 20070091458A1 (43) Pub. Date: Apr. 26, 2007 (54) WIDE-ANGLE IMAGING LENS (75) Inventors: Taro Asami,

More information

Applied Optics. , Physics Department (Room #36-401) , ,

Applied Optics. , Physics Department (Room #36-401) , , Applied Optics Professor, Physics Department (Room #36-401) 2290-0923, 019-539-0923, shsong@hanyang.ac.kr Office Hours Mondays 15:00-16:30, Wednesdays 15:00-16:30 TA (Ph.D. student, Room #36-415) 2290-0921,

More information

30 Lenses. Lenses change the paths of light.

30 Lenses. Lenses change the paths of light. Lenses change the paths of light. A light ray bends as it enters glass and bends again as it leaves. Light passing through glass of a certain shape can form an image that appears larger, smaller, closer,

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 205-04-8 Herbert Gross Summer term 206 www.iap.uni-jena.de 2 Preliminary Schedule 04.04. Basics 2.04. Properties of optical systrems I 3 8.04.

More information

Telecentric Imaging Object space telecentricity stop source: edmund optics The 5 classical Seidel Aberrations First order aberrations Spherical Aberration (~r 4 ) Origin: different focal lengths for different

More information

United States Patent (19) Powell

United States Patent (19) Powell United States Patent (19) Powell 54) LINEAR DEIVERGING LENS 75) Inventor: Ian Powell, Gloucester, Canada 73 Assignee: Canadian Patents and Development Limited, Ottawa, Canada 21 Appl. No.: 8,830 22 Filed:

More information

Performance Factors. Technical Assistance. Fundamental Optics

Performance Factors.   Technical Assistance. Fundamental Optics Performance Factors After paraxial formulas have been used to select values for component focal length(s) and diameter(s), the final step is to select actual lenses. As in any engineering problem, this

More information

'''S D2 I // EDaDa D7. Ra RoRo Ral DDD RR2R3RRRR. R. R. R3 R5RGR7 RB ROR2, R2, R6R28 VX DIAPHRAGM D26. United States Patent (19) Ikemori

'''S D2 I // EDaDa D7. Ra RoRo Ral DDD RR2R3RRRR. R. R. R3 R5RGR7 RB ROR2, R2, R6R28 VX DIAPHRAGM D26. United States Patent (19) Ikemori 6/28/85 OR 4 g 39 () 248 United States Patent (19) Ikemori (54) WIDE ANGLE ZOOM LENS (75) Inventor: Keiji Ikemori, Yokohama, Japan 73 Assignee: Canon Kabushiki Kaisha, Tokyo, Japan... " (21) Appl. No.:

More information

United States Patent (19)

United States Patent (19) 4 a c (, 42 R 6. A 7 United States Patent (19) Sprague et al. 11 (45) 4,428,647 Jan. 31, 1984 (54) MULTI-BEAM OPTICAL SYSTEM USING LENS ARRAY (75. Inventors: Robert A. Sprague, Saratoga; Donald R. Scifres,

More information

Aberrations of a lens

Aberrations of a lens Aberrations of a lens 1. What are aberrations? A lens made of a uniform glass with spherical surfaces cannot form perfect images. Spherical aberration is a prominent image defect for a point source on

More information

Laboratory 7: Properties of Lenses and Mirrors

Laboratory 7: Properties of Lenses and Mirrors Laboratory 7: Properties of Lenses and Mirrors Converging and Diverging Lens Focal Lengths: A converging lens is thicker at the center than at the periphery and light from an object at infinity passes

More information

(12) United States Patent

(12) United States Patent USOO9563 041B2 (12) United States Patent Kawaguchi et al. (10) Patent No.: (45) Date of Patent: US 9,563,041 B2 Feb. 7, 2017 (54) OPTICAL SYSTEM FOR AN INFRARED RAY (71) Applicant: Tamron Co., Ltd., Saitama-shi

More information

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu 1. Principles of image formation by mirrors (1a) When all length scales of objects, gaps, and holes are much larger than the wavelength

More information

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1 (19) United States US 20150286032A1 (12) Patent Application Publication (10) Pub. No.: US 2015/0286032 A1 Hsueh et al. (43) Pub. Date: Oct. 8, 2015 (54) OPTICAL LENS SYSTEM, IMAGING DEVICE (52) U.S. Cl.

More information

(12) United States Patent (10) Patent No.: US 8,953,257 B1

(12) United States Patent (10) Patent No.: US 8,953,257 B1 US00895.3257B1 (12) United States Patent (10) Patent No.: Chen (45) Date of Patent: Feb. 10, 2015 (54) IMAGE CAPTURING LENS SYSTEMAND (56) References Cited IMAGE CAPTURING DEVICE U.S. PATENT DOCUMENTS

More information

(12) United States Patent

(12) United States Patent USOO9146378B2 (12) United States Patent Chen et al. (54) IMAGE CAPTURING LENS ASSEMBLY, IMAGE CAPTURING DEVICE AND MOBILE TERMINAL (71) Applicant: LARGAN Precision Co., Ltd., Taichung (TW) (72) Inventors:

More information

AST Lab exercise: aberrations

AST Lab exercise: aberrations AST2210 - Lab exercise: aberrations 1 Introduction This lab exercise will take you through the most common types of aberrations. 2 Chromatic aberration Chromatic aberration causes lens to have dierent

More information

Lenses Design Basics. Introduction. RONAR-SMITH Laser Optics. Optics for Medical. System. Laser. Semiconductor Spectroscopy.

Lenses Design Basics. Introduction. RONAR-SMITH Laser Optics. Optics for Medical. System. Laser. Semiconductor Spectroscopy. Introduction Optics Application Lenses Design Basics a) Convex lenses Convex lenses are optical imaging components with positive focus length. After going through the convex lens, parallel beam of light

More information

(12) United States Patent (10) Patent No.: US 9.223,118 B2

(12) United States Patent (10) Patent No.: US 9.223,118 B2 USOO9223118B2 (12) United States Patent (10) Patent No.: US 9.223,118 B2 Mercado (45) Date of Patent: Dec. 29, 2015 (54) SMALL FORM FACTOR TELEPHOTO 7,502,181 B2 3/2009 Shinohara CAMERA 7,554,597 B2 6,

More information

Exam questions OPTI 517. Only a calculator and a single sheet of paper, 8 X11, with formulas will be allowed during the exam.

Exam questions OPTI 517. Only a calculator and a single sheet of paper, 8 X11, with formulas will be allowed during the exam. Exam questions OPTI 517 Only a calculator an a single sheet of paper, 8 X11, with formulas will be allowe uring the exam. 1) A single optical spherical surface oes not contribute spherical aberration.

More information

United States Patent 19 Reno

United States Patent 19 Reno United States Patent 19 Reno 11 Patent Number: 45 Date of Patent: May 28, 1985 (54) BEAM EXPANSION AND RELAY OPTICS FOR LASER DODE ARRAY 75 Inventor: Charles W. Reno, Cherry Hill, N.J. 73 Assignee: RCA

More information

TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lens Aberrations - 3 lectures Spherical aberrations Coma, astigmatism,

More information

COURSE NAME: PHOTOGRAPHY AND AUDIO VISUAL PRODUCTION (VOCATIONAL) FOR UNDER GRADUATE (FIRST YEAR)

COURSE NAME: PHOTOGRAPHY AND AUDIO VISUAL PRODUCTION (VOCATIONAL) FOR UNDER GRADUATE (FIRST YEAR) COURSE NAME: PHOTOGRAPHY AND AUDIO VISUAL PRODUCTION (VOCATIONAL) FOR UNDER GRADUATE (FIRST YEAR) PAPER TITLE: BASIC PHOTOGRAPHIC UNIT - 3 : SIMPLE LENS TOPIC: LENS PROPERTIES AND DEFECTS OBJECTIVES By

More information

CHAPTER 33 ABERRATION CURVES IN LENS DESIGN

CHAPTER 33 ABERRATION CURVES IN LENS DESIGN CHAPTER 33 ABERRATION CURVES IN LENS DESIGN Donald C. O Shea Georgia Institute of Technology Center for Optical Science and Engineering and School of Physics Atlanta, Georgia Michael E. Harrigan Eastman

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Image of Formation Images can result when light rays encounter flat or curved surfaces between two media. Images can be formed either by reflection or refraction due to these

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Mirrors and Lenses The development of mirrors and lenses aided the progress of science. It led to the microscopes and telescopes. Allowed the study of objects from microbes

More information

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1 US 2006O171041A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0171041 A1 Olmstead et al. (43) Pub. Date: Aug. 3, 2006 (54) EXTENDED DEPTH OF FIELD IMAGING (52) U.S. Cl....

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to the

More information

US A. United States Patent (19) 11 Patent Number: 5,404,247 Cobb et al. 45) Date of Patent: Apr. 4, 1995

US A. United States Patent (19) 11 Patent Number: 5,404,247 Cobb et al. 45) Date of Patent: Apr. 4, 1995 d US005404247A United States Patent (19) 11 Patent Number: 5,404,247 Cobb et al. 45) Date of Patent: Apr. 4, 1995 54. TELECENTRIC AND ACHROMATIC 4,269,478 5/1981 Maeda et al.... 359/764 FTHETASCAN LENS

More information

OR 3728 Ol V RKKUVV ULLt. YA0 6 R 11 3,728,011

OR 3728 Ol V RKKUVV ULLt. YA0 6 R 11 3,728,011 350 a 458 SR OR 3728 Ol V RKKUVV ULLt. YA0 6 R 11 3,728,011 Mori 451 Apr. 17, 1973 (54) RETROFOCUS TYPE ULTRAWD Primary Examiner-John K. Corbin ANGLE LENS Attorney-Joseph M. Fitzpatricket al. E. T Kawasaki,

More information

Sequential Ray Tracing. Lecture 2

Sequential Ray Tracing. Lecture 2 Sequential Ray Tracing Lecture 2 Sequential Ray Tracing Rays are traced through a pre-defined sequence of surfaces while travelling from the object surface to the image surface. Rays hit each surface once

More information

Some lens design methods. Dave Shafer David Shafer Optical Design Fairfield, CT #

Some lens design methods. Dave Shafer David Shafer Optical Design Fairfield, CT # Some lens design methods Dave Shafer David Shafer Optical Design Fairfield, CT 06824 #203-259-1431 shaferlens@sbcglobal.net Where do we find our ideas about how to do optical design? You probably won t

More information

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1. Yamazaki et al. (43) Pub. Date: Mar. 6, 2014

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1. Yamazaki et al. (43) Pub. Date: Mar. 6, 2014 (19) United States US 20140063323A1 (12) Patent Application Publication (10) Pub. No.: US 2014/0063323 A1 Yamazaki et al. (43) Pub. Date: Mar. 6, 2014 (54) IMAGE PICKUP LENS AND IMAGE PICKUP (52) U.S.

More information

Ch 24. Geometric Optics

Ch 24. Geometric Optics text concept Ch 24. Geometric Optics Fig. 24 3 A point source of light P and its image P, in a plane mirror. Angle of incidence =angle of reflection. text. Fig. 24 4 The blue dashed line through object

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1. Penn et al. (43) Pub. Date: Aug. 7, 2003

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1. Penn et al. (43) Pub. Date: Aug. 7, 2003 US 2003O147052A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0147052 A1 Penn et al. (43) Pub. Date: (54) HIGH CONTRAST PROJECTION Related U.S. Application Data (60) Provisional

More information

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge). Chapter 30: Lenses Types of Lenses Piece of glass or transparent material that bends parallel rays of light so they cross and form an image Two types: Converging Diverging Converging Lenses Parallel rays

More information

Mirrors, Lenses &Imaging Systems

Mirrors, Lenses &Imaging Systems Mirrors, Lenses &Imaging Systems We describe the path of light as straight-line rays And light rays from a very distant point arrive parallel 145 Phys 24.1 Mirrors Standing away from a plane mirror shows

More information

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong Introduction to Geometrical Optics Milton Katz State University of New York VfeWorld Scientific «New Jersey London Sine Singapore Hong Kong TABLE OF CONTENTS PREFACE ACKNOWLEDGMENTS xiii xiv CHAPTER 1:

More information

Chapter 23. Light Geometric Optics

Chapter 23. Light Geometric Optics Chapter 23. Light Geometric Optics There are 3 basic ways to gather light and focus it to make an image. Pinhole - Simple geometry Mirror - Reflection Lens - Refraction Pinhole Camera Image Formation (the

More information

(12) United States Patent

(12) United States Patent USOO9726858B2 (12) United States Patent Huang (10) Patent No.: (45) Date of Patent: Aug. 8, 2017 (54) PHOTOGRAPHING OPTICAL LENS ASSEMBLY, IMAGE CAPTURING DEVICE AND ELECTRONIC DEVICE (71) Applicant: LARGAN

More information

Imaging Systems for Eyeglass-Based Display Devices

Imaging Systems for Eyeglass-Based Display Devices University of Central Florida UCF Patents Patent Imaging Systems for Eyeglass-Based Display Devices 6-28-2011 Jannick Rolland University of Central Florida Ozan Cakmakci University of Central Florida Find

More information

A new prime-focus corrector for paraboloid mirrors

A new prime-focus corrector for paraboloid mirrors 2013 THOSS Media & DOI 10.1515/aot-2012-0078 Adv. Opt. Techn. 2013; 2(1): 111 116 Research Article Andrew Rakich* and Norman J. Rumsey A new prime-focus corrector for paraboloid mirrors Abstract: A new

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

More information

Office europeen des Publication number : EUROPEAN PATENT APPLICATION

Office europeen des Publication number : EUROPEAN PATENT APPLICATION Office europeen des brevets @ Publication number : 0 465 1 36 A2 @ EUROPEAN PATENT APPLICATION @ Application number: 91305842.6 @ Int. CI.5 : G02B 26/10 (22) Date of filing : 27.06.91 ( ) Priority : 27.06.90

More information

Chapter 3. Introduction to Zemax. 3.1 Introduction. 3.2 Zemax

Chapter 3. Introduction to Zemax. 3.1 Introduction. 3.2 Zemax Chapter 3 Introduction to Zemax 3.1 Introduction Ray tracing is practical only for paraxial analysis. Computing aberrations and diffraction effects are time consuming. Optical Designers need some popular

More information

(12) United States Patent

(12) United States Patent USOO9606328B2 (12) United States Patent Chen (10) Patent No.: (45) Date of Patent: US 9,606,328 B2 Mar. 28, 2017 (54) PHOTOGRAPHING OPTICAL LENS ASSEMBLY, IMAGE CAPTURING UNIT AND ELECTRONIC DEVICE (71)

More information

United States Patent 19

United States Patent 19 United States Patent 19 Kohayakawa 54) OCULAR LENS MEASURINGAPPARATUS (75) Inventor: Yoshimi Kohayakawa, Yokohama, Japan 73 Assignee: Canon Kabushiki Kaisha, Tokyo, Japan (21) Appl. No.: 544,486 (22 Filed:

More information

PART 3: LENS FORM AND ANALYSIS PRACTICE TEST

PART 3: LENS FORM AND ANALYSIS PRACTICE TEST PART 3: LENS FORM AND ANALYSIS PRACTICE TEST 1. 2. To determine the power of a thin lens in air, it is necessary to consider: a. front curve and index of refraction b. back curve and index of refraction

More information

Converging and Diverging Surfaces. Lenses. Converging Surface

Converging and Diverging Surfaces. Lenses. Converging Surface Lenses Sandy Skoglund 2 Converging and Diverging s AIR Converging If the surface is convex, it is a converging surface in the sense that the parallel rays bend toward each other after passing through the

More information

Optimisation. Lecture 3

Optimisation. Lecture 3 Optimisation Lecture 3 Objectives: Lecture 3 At the end of this lecture you should: 1. Understand the use of Petzval curvature to balance lens components 2. Know how different aberrations depend on field

More information

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses Chapter 29/30 Refraction and Lenses Refraction Refraction the bending of waves as they pass from one medium into another. Caused by a change in the average speed of light. Analogy A car that drives off

More information

Techniques of Designing Eyepieces using ATMOS. Rick Blakley October 28, 2012

Techniques of Designing Eyepieces using ATMOS. Rick Blakley October 28, 2012 Techniques of Designing Eyepieces using ATMOS Rick Blakley uranoport@msn.com October 28, 2012 1 1) Introduction: Ray tracing eyepieces requires skills of the sort one must muster for tracing any design,

More information

OPAC 202 Optical Design and Inst.

OPAC 202 Optical Design and Inst. OPAC 202 Optical Design and Inst. Topic 9 Aberrations Department of http://www.gantep.edu.tr/~bingul/opac202 Optical & Acustical Engineering Gaziantep University Apr 2018 Sayfa 1 Introduction The influences

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

United States Patent (19)

United States Patent (19) - A - A /.. 5 CR 4 52 7 8 ft United States Patent (19) Fujioka et al. 11 Patent Number: 45 Date of Patent: Jul. 9, 1985 54 WIDE ANGLE ZOOM LENS 75 Inventors: Yoshisato Fujioka, Higashikurume; Atsushi Kawamura,

More information

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS Option C Imaging C Introduction to imaging Learning objectives In this section we discuss the formation of images by lenses and mirrors. We will learn how to construct images graphically as well as algebraically.

More information

University of Rochester Department of Physics and Astronomy Physics123, Spring Homework 5 - Solutions

University of Rochester Department of Physics and Astronomy Physics123, Spring Homework 5 - Solutions Problem 5. University of Rochester Department of Physics and Astronomy Physics23, Spring 202 Homework 5 - Solutions An optometrist finds that a farsighted person has a near point at 25 cm. a) If the eye

More information

Galilean. Keplerian. EYEPIECE DESIGN by Dick Suiter

Galilean. Keplerian. EYEPIECE DESIGN by Dick Suiter EYEPIECE DESIGN by Dick Suiter This article is about the design of eyepieces. By this, I don't mean intricate discussions about advantages of Nagler Types 3 vs. 4 or other such matters of interest only

More information

52 U.S. Cl /793,359/646, 359,717, E'E', 'E.R.E.E.P.E.E.

52 U.S. Cl /793,359/646, 359,717, E'E', 'E.R.E.E.P.E.E. USOO5909322A United States Patent (19) 11 Patent Number: 5,909,322 Bietry (45) Date of Patent: Jun. 1, 1999 54) MAGNIFIER LENS OTHER PUBLICATIONS 75 Inventor: Joseph R. Bietry, Rochester, N.Y. 73 Assignee:

More information

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2002 Final Exam Name: SID: CLOSED BOOK. FOUR 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Beam expansion standard concepts re-interpreted

Beam expansion standard concepts re-interpreted Beam expansion standard concepts re-interpreted Ulrike Fuchs (Ph.D.), Sven R. Kiontke asphericon GmbH Stockholmer Str. 9 07743 Jena, Germany Tel: +49-3641-3100500 Introduction Everyday work in an optics

More information

PHYSICS OPTICS. Mr Rishi Gopie

PHYSICS OPTICS. Mr Rishi Gopie OPTICS Mr Rishi Gopie Ray Optics II Images formed by lens maybe real or virtual and may have different characteristics and locations that depend on: i) The type of lens involved, whether converging or

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Seavey 11 Patent Number: 4,636,798 45 Date of Patent: Jan. 13, 1987 54 (75) 73 21) 22 51 52 (58) MICROWAVE LENS FOR BEAM BROADENING WITH ANTENNA FEEDS Inventor: Assignee: Appl.

More information

( 12 ) United States Patent

( 12 ) United States Patent ( 12 ) United States Patent Hsueh et al. ( 54 ) IMAGING LENS SYSTEM, IMAGE CAPTURING UNIT AND ELECTRONIC DEVICE ( 71 ) Applicant : LARGAN Precision Co., Ltd., Taichung ( TW ) ( 72 ) Inventors : Chun Che

More information

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term Lens Design II Lecture : Further topics 28--8 Herbert Gross Winter term 27 www.iap.uni-ena.de 2 Preliminary Schedule Lens Design II 27 6.. Aberrations and optimization Repetition 2 23.. Structural modifications

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Bettinger (54). SPECTACLE-MOUNTED OCULAR DISPLAY APPARATUS 76 Inventor: David S. Bettinger, 8030 Coventry, Grosse Ile, Mich. 48138 21 Appl. No.: 69,854 (22 Filed: Jul. 6, 1987

More information