Haptic Interface Technologies

Size: px
Start display at page:

Download "Haptic Interface Technologies"

Transcription

1 Haptic Interface Technologies 02/14/2010 EECE596: Copyright since 1999, 5/01/2018 EECE596: Copyright since 1999, Sidney Fels Sidney Fels

2 Haptics: Overview Haptics: Introduction tactile proprioception Tactile Interface Technologies Force Feedback Technologies

3 Haptics: Introduction Sense of touch and kinesthesia tactile sensing proprioception Somatosensory system Bidirectional sense environment temperature, vibration, weight, etc. manipulate environment push, pull, pinch, hit, rotate, etc.

4 Haptics: Tactile Sensing Can sense: texture/vibration temperature of object or environment slip detection surface compliance elasticity viscosity electrical/thermal conductivity vibration (other than for texture) initial contact detection gauging force required for manipulation

5 Haptics: Tactile I/F Critical for performance in many tasks Massimino and Sheridan, 1993 tracking (Patrick, Sheridan and Massimino, 1990) target pointing (Akamatsu, 1994) degraded visual condition (Massimino and Sheridan, 1993) See Lederman s work for many experiments looking at attributes of tactile sensing Considered to be critical for virtual environments needed for immersion and sense of reality

6 Haptics: Tactile Sensing Four main sense organs Meissner s Corpuscles surface curvature, velocity, local shape, flutter, slip poor spatial resoln 43% Pacinian Corpuscles vibration, slip, acceleration Hz response frequency range 13% Markel s Disks skin curvature, local shape, pressure 25% Ruffini Endings skin stretch, local force 19%

7 Haptics: Tactile Sensing Skin properties: finger pad (Reynier and Hayward, 1993) spatial resolution, 0.15mm; two-point discrimination 1-3mm smooth glass feature, 2µm for single dot, 0.06µm for grating, 0.85µm for straight lines line orientation detection, 8.7mm separation (sequential); 13.1mm separation (simultaneous) 5.5msec separation of two 1msec stimulti increase stimuli duration -> reduce threshold Other results available for different properties strain, texture properties, temperature, etc. check Burdea and Coiffet (1994)

8 Haptics: Tactile Actuators

9 Haptics: Tactile Displays (commercial) CyberTouch (Virtual Technolgies) little vibrators on fingers 0-200Hz $14,000 US TouchMaster (Exos) voice coils on fingers Hz Tactool System (Xtensory) - sold as kits pins driven by shape memory alloys impulse sensation (30g) vibration (20Hz) $1,500 Displace Temp. Sensing System (CM Research) thimble thermoelectric heat pump (Peltier effect) $10,000

10 Haptics: Peltier Effect P - Bismuth N - Telluride

11 Haptics: CyberTouch

12 Haptics: Tactile Displays (commercial) Intelligent Systems Solutions air bladders + pnematics not available anymore Braille Displays Freedom of Speech (85-8 dot cells) Games Playstation controller fishing, driving, baseball

13 Haptics: Tactile Displays (research) Reading aids Sherrick, 1984; Shimizu, 1986; Barfield and Furness, 1995 tools for studying haptics Cholewiak and Sherrick, 1981; Schneider, 1988, Lederman, 1999 tools for rehabilitation Wise et al., 1990 tools for teleoperation

14 Haptics: Tactile Displays (research) Disney - TeslaTouch

15 Haptics: Tactile Displays (research) Armstrong Labortatory 5x6 array tactile stimulator, SMA wires solenoid attached to Phantom Harvard (Howe) 4x6 array of pins driven by SMA actuators 2.1mm spacing, 3mm height, 62msec rise/fall time, BW 6-7Hz studied palpation, shape display (single row) + force feedback display 3 subjects, 60 trials, tumor finding task, 4mm cylinder inside foam rubber error <1mm in 50%; <3mm in 95%; no shape info > 13mm

16 Haptics: Tactile Displays (research) voice coils + force feedback device (teleoperation) investigated 3 types of tasks detection of vibration is fundamental goal worn ball bearning vibration feedback helps discrimination vibrations indicate state of task piercing plastic membrane vibration feedback reduces force exerted and increases response time vibration not important to task peg-in-hole task no effect, but subjective improvement

17 Haptics: Tactile Displays (research) Hokkaido (Ino) displays for shearing, pressure and temperature Shear display table mounted pneumatic driver Temp. display

18 Haptics: Tactile Displays (research) MIT - Touch Lab (Srinivasan) linear and planar graspers used for psychophysical experiments use with Phantom libraries available for compliance, viscosity, mass, shape, texture, friction, walls and corners created force shading for creating feel of smoothly curved surfaces what about contact sounds?

19 Haptics: Tactile Displays (research) Karlsruhe Research Centre (Germany) three 24 needle print heads needles vibrated at 600Hz to simulate contact pressure actuated by sensors attached to forceps Many others: Queens, (Lederman) - spinning disks Sandia Labs, 2x3 array of electromagnetic actuators TiNi Alloy Comp., 5x6 array of tactor pins U of Salford, UK, vibration with piezo-electric actuator, Peltier effect heat-pump for temp., pneumatic bladders for contact force, glove mounted

20 Haptics: Kinesthetic Interfaces Awareness of position and movement and forces on body parts Force feedback has been shown to be important Teleoperation Hill and Salisbury, 1976; Hanaford, 1989 and Howe, 1992 Molecular docking Ouh-Young, Beard and Brooks, 1989 Grasping tasks Gomez, Burdea and Langrana, 1995 (reduced error and learning time by 50%)

21 Haptics: Kinesthetic Interfaces Where is it useful? Virtual reality/augmented reality medicine surgery diagnosis scientific visualization data manipulation interactive art situations where auditory and visual feedback are limited aids to disabled peripheral tasks 3D manipulation

22 Haptics: Kinesthetic Interfaces Basic idea: 1. Measure movement and forces exerted by user (fingers, hand, arm, body) 2. Calculate effect of forces on manipulated objects and resulting forces on user virtual or real objects 3. Present forces to the user s fingers, wrist, arms etc. as appropriate

23 Haptics: Kinesthetic Interfaces Devices are either earth grounded off-the-body exoskeletons

24 Haptics: Kinesthetic Technologies

25 Haptics: Kinesthetic Technologies Other technologies magnetic levitation tendons???

26 Haptics: Human Kinesthetic Properties In addition to cells mentioned we have: Golgi endings in joint ligaments joint torque Ruffini type endings in joint capsules capsule stretch Golgi tendon organs muscle tension muscle spindle organs muscle stretch and rate of change probably most important for kinesthetic sense nothing known for weight or effort inside central nervous system

27 Haptics: Human Kinesthetic Properties Somatosensory system is not symmetric force control and perceptual bandwidths differ (Brooks, 1990) deliver forces at 5-10Hz receiving position and force signals >20-30Hz JND for force sensing is about 7% rigid body to 415 N/cm force production: 16.5N distal finger to 192.3N shoulder joint output resoln : high at finger tip, low at shoulder

28 Haptics: Human Grasp Properties Some force outputs for different types of grasps Jacobus et al, 1992

29 Haptics: Human Grasp Properties Current technologies generally change way they work based on grasp types several ways to categorize grasps Schlesinger (1919) cylindrical, finger-tip, hook, palmar, spherical, lateral Napier (1956) distinguish between power and precision grasp MacKenzie (1990s) prehensile vs non-prehensile

30 Haptics: Human Grasp Properties Cutkosky and Howe, 1990

31 Haptics: Force-feedback Issues Should keep grasping/reflected forces to less than 15% of max (Wiker, 1989) comfort and fatigue issues I.e., index finger 7N, middle 6N, ring 4.5N

32 Haptics: Issues for Creating FF/B Devices 1. Sampling data from user lag, update rates etc. 2. Computing forces S/W libraries needed like graphics libraries 3. Presenting forces calculating control parameters in real-time 1000Hz update Impedance control (force) vs. Compliance control (position) overcome inertia

33 Haptics: Force-F/B Devices (comm) Phantom (SensAble Devices, Massey) thimble on finger single point force feedback only motors and cables and good engineering can use more than one at a time (if you have $$$)

34 Haptics: Force-F/B Devices (comm) Impulse Engine (Immersion Corp.) 5 dof 2 dof pivot insertion translation rotation of tool open-close motion of instrument servo-motor actuators laproscopic and endoscopic simulation

35 Haptics: Force-F/B Devices (comm) Laproscopic Impulse Engine

36 Haptics: Force-F/B Devices (comm) CyberGrasp (Virtual Technologies) motor actuated tendons attached to fingers 1 dof/finger used to be flappers on end for contact force mounted on CyberGlove

37 Cyberforce Exoskelton arm forces Tendons grasp forces

38 Haptics: Force-F/B Devices (comm) Exos 4 dof Force Feedback Master surgical simulator hand and arm Force Exoskeleton

39 Haptics: Force-F/B Devices (comm) SaFiRE (Exos) exoskeleton for hand applies forces to thumb, index finger and wrist 8 dof: 3 dof to thumb, 3 dof to index, 2 dof to wrist links grounded to forearm supply 3D Cartesian forces to fingertips and palm DC motors used with wires and gears

40 Haptics: Force-F/B Devices (comm) Hand Exoskeleton Haptic Display (Exos) based on SaFiRE hand exoskeleton 1 dof to thumb, 2 dof to index slip display on thumb and index boom mounted; 2 dof position sensing, 1 dof vertical FF/B

41 Haptics: Force-F/B Devices (comm) Per-Force Handcontroller and Finger Forcer Option (Cybernet Sys. Corp) 6 dof force feedback joystick finger force feedback added to top of joystick thimbles attached to finger tips

42 Haptics: Force-F/B Devices (comm) Haptic Master (Iwata in Tsukuba) 3D force and torque three sets of pantograph links

43 Haptics: Force-F/B Devices (comm) Interactor (Aura)

44 Haptics: Force-F/B Devices (research) Many issues remain to be solved for force feedback devices commercial FF/B displays only scratch the surface Extensive research on how to use these displays not a lot of practical uses yet Most research effort to develop FF/B displays has come from teleoperation applies to virtual environments other effort from psychophysical testing labs effort to explore application of FF/B displays done in well funded labs

45 Haptics: Force-F/B Devices (research) Ino, Hokkaido elbow joint force feedback metal hydride actuator temperature changes in alloy controls pressure of hydrogen gas pressure converted into propulsion 300g, cylinder is mm, 6g of hydride lift 10kg to 50mm with vel. of 9mm/sec noise free, no sudden impact force similar compliance to elbow joint report good results (obviously) probably not good for hand probably work for knee and other large joints

46 Haptics: Force-F/B Devices (research) MIT (Salisbury) continuing with Phantom changing tip creating software haptic rendering - calculating and generating forces still point interaction contact forces contact persistence impedance some curvature, texture and friction want general purpose s/w libraries to allow for haptic rendering Interval was working on some of this as well

47 Haptics: Force-F/B Devices (research) Institut des Systemes Intelligents et de Robotique, Université Pierre et Marie Curie (Hayward previously McGill) 9 dof Stylus - tendon driven single point Pantograph 2 dof translation - 10cm X 10cm FF/B mouse found acceleration best for shock and hard contacts for effective performance need wide frequency response high accuracy in presenting forces mechanical impedance controllable over wide range dynamic response up to Hz

48 Haptics: Force-F/B Devices (research) Pantograph Stylus

49 Haptics: Force-F/B Devices (research) Northwestern University (Colgate) 4 dof Force Reflecting Manipulandum translation + rotation in horizontal plane high impedance control stiff springs and hard walls no singularities in the work space study physics based simulation for haptic interfaces

50 Haptics: Force-F/B Devices (research) Rutgers (Burdea) Rutgers Master uses pneumatic microcylinders positioned in palm ends attached to tips of 3 fingers and thumb Experiment 1: manipulate ball without deforming it compared visual f/b (ball, bar graph and mono/stereo) audio f/b force f/b Results FF/B most significant non-redundant modality FF/B + audio best redundant combo.

51 Haptics: Force-F/B Devices (research) U. of North Carolina (Brooks) Argonne Remote Manipulator (ARM) 6 dof large workspace device hand grip display, joint action at shoulder and outward used mostly for molecular docking

52 Haptics: Force-F/B Devices (research) Others: Suzuki Motor Corp: SPICE 6 dof, mechanical + motors Tokyo Inst. Of Tech single point FF/B strings and motors

53 Haptics: Force-F/B Devices (research) CCRMA (Gillespie) piano/keyboard key feedback simulate touch of different keyboards 7 keys, DC motor driven, dynamic simulation of key action UBC (Salcudean) maglev joystick force feedback motor controlled pantograph with additional dof UBC (Maclean) 1 dof rotary devices Cobots (Peshkin and Colgate) COBOTS use mechanical constraints to set up forces

54 Haptics: Cobots

55 Haptics: Summary Need good haptic interfaces for: immersive VR 3D direct manipulation i/f effective teleoperation mediated communication Very active area of research

56 Haptics: Summary Current status of Tactile displays limited area (finger tip) don t scale up large physical dimensions - not practical no software models + psychophysical info available + devices capable of meeting resolution and B/W reqd. in specific domains + >20-30Hz BW + pin displays are close to human resolution + vibration available at wide range of frequencies not high enough for skillful manipulation + temperature displays have sufficient resolution

57 Haptics: Summary Force feedback displays generally application specific generally small workspace encumbering most use servo motor actuation stability problems backdrivability friction Specs for good force feedback force resolution: 12 bits, position resolution: in passive friction less than 1% of max. force minimum sampling rate: 2000Hz latency <1msec Phantom is closest to meeting all of these for single point

58 Haptics: Summary Still can t represent solid, immovable wall or rigid objects instability at solid edge add viscosity to whole environment reduce stiffness - everything is a sponge More problems sensor accuracy latency of computer actuator performance difference between actuator and sensor placement mechanical transmission difficulties non-linear system due to dynamics of user characteristics safety software models lacking more psychophysical testing needed

59 Haptics: Summary Currently no general purpose haptic interfaces no practical applications in common use Future: robotic graphics? New actuators? Non-linear, deformable manipulators

Proprioception & force sensing

Proprioception & force sensing Proprioception & force sensing Roope Raisamo Tampere Unit for Computer-Human Interaction (TAUCHI) School of Information Sciences University of Tampere, Finland Based on material by Jussi Rantala, Jukka

More information

FORCE FEEDBACK. Roope Raisamo

FORCE FEEDBACK. Roope Raisamo FORCE FEEDBACK Roope Raisamo Multimodal Interaction Research Group Tampere Unit for Computer Human Interaction Department of Computer Sciences University of Tampere, Finland Outline Force feedback interfaces

More information

PROPRIOCEPTION AND FORCE FEEDBACK

PROPRIOCEPTION AND FORCE FEEDBACK PROPRIOCEPTION AND FORCE FEEDBACK Roope Raisamo and Jukka Raisamo Multimodal Interaction Research Group Tampere Unit for Computer Human Interaction Department of Computer Sciences University of Tampere,

More information

Haptic interaction. Ruth Aylett

Haptic interaction. Ruth Aylett Haptic interaction Ruth Aylett Contents Haptic definition Haptic model Haptic devices Measuring forces Haptic Technologies Haptics refers to manual interactions with environments, such as sensorial exploration

More information

Lecture 7: Human haptics

Lecture 7: Human haptics ME 327: Design and Control of Haptic Systems Winter 2018 Lecture 7: Human haptics Allison M. Okamura Stanford University types of haptic sensing kinesthesia/ proprioception/ force cutaneous/ tactile Related

More information

Haptic interaction. Ruth Aylett

Haptic interaction. Ruth Aylett Haptic interaction Ruth Aylett Contents Haptic definition Haptic model Haptic devices Measuring forces Haptic Technologies Haptics refers to manual interactions with environments, such as sensorial exploration

More information

2. Introduction to Computer Haptics

2. Introduction to Computer Haptics 2. Introduction to Computer Haptics Seungmoon Choi, Ph.D. Assistant Professor Dept. of Computer Science and Engineering POSTECH Outline Basics of Force-Feedback Haptic Interfaces Introduction to Computer

More information

Force feedback interfaces & applications

Force feedback interfaces & applications Force feedback interfaces & applications Roope Raisamo Tampere Unit for Computer-Human Interaction (TAUCHI) School of Information Sciences University of Tampere, Finland Based on material by Jukka Raisamo,

More information

Peter Berkelman. ACHI/DigitalWorld

Peter Berkelman. ACHI/DigitalWorld Magnetic Levitation Haptic Peter Berkelman ACHI/DigitalWorld February 25, 2013 Outline: Haptics - Force Feedback Sample devices: Phantoms, Novint Falcon, Force Dimension Inertia, friction, hysteresis/backlash

More information

Haptic Perception & Human Response to Vibrations

Haptic Perception & Human Response to Vibrations Sensing HAPTICS Manipulation Haptic Perception & Human Response to Vibrations Tactile Kinesthetic (position / force) Outline: 1. Neural Coding of Touch Primitives 2. Functions of Peripheral Receptors B

More information

Chapter 2 Introduction to Haptics 2.1 Definition of Haptics

Chapter 2 Introduction to Haptics 2.1 Definition of Haptics Chapter 2 Introduction to Haptics 2.1 Definition of Haptics The word haptic originates from the Greek verb hapto to touch and therefore refers to the ability to touch and manipulate objects. The haptic

More information

Invited Chapter in Automation, Miniature Robotics and Sensors for Non-Destructive Testing and Evaluation, Y. Bar-Cohen Editor, April 99

Invited Chapter in Automation, Miniature Robotics and Sensors for Non-Destructive Testing and Evaluation, Y. Bar-Cohen Editor, April 99 10.2 HAPTIC INTERFACES Yoseph Bar-Cohen Jet Propulsion Laboratory, Caltech, 4800 Oak Grove Dr., Pasadena, CA 90740 818-354-2610, fax 818-393-4057, yosi@jpl.nasa.gov Constantinos Mavroidis, and Charles

More information

TACTILE SENSING & FEEDBACK

TACTILE SENSING & FEEDBACK TACTILE SENSING & FEEDBACK Jukka Raisamo Multimodal Interaction Research Group Tampere Unit for Computer-Human Interaction Department of Computer Sciences University of Tampere, Finland Contents Tactile

More information

Lecture 1: Introduction to haptics and Kinesthetic haptic devices

Lecture 1: Introduction to haptics and Kinesthetic haptic devices ME 327: Design and Control of Haptic Systems Winter 2018 Lecture 1: Introduction to haptics and Kinesthetic haptic devices Allison M. Okamura Stanford University today s objectives introduce you to the

More information

CONTACT FORCE PERCEPTION WITH AN UNGROUNDED HAPTIC INTERFACE

CONTACT FORCE PERCEPTION WITH AN UNGROUNDED HAPTIC INTERFACE 99 ASME IMECE th Annual Symposium on Haptic Interfaces, Dallas, TX, Nov. -. CONTACT FORCE PERCEPTION WITH AN UNGROUNDED HAPTIC INTERFACE Christopher Richard crichard@cdr.stanford.edu Mark R. Cutkosky Center

More information

¾ B-TECH (IT) ¾ B-TECH (IT)

¾ B-TECH (IT) ¾ B-TECH (IT) HAPTIC TECHNOLOGY V.R.Siddhartha Engineering College Vijayawada. Presented by Sudheer Kumar.S CH.Sreekanth ¾ B-TECH (IT) ¾ B-TECH (IT) Email:samudralasudheer@yahoo.com Email:shri_136@yahoo.co.in Introduction

More information

Haptic, vestibular and other physical input/output devices

Haptic, vestibular and other physical input/output devices Human Touch Sensing - recap Haptic, vestibular and other physical input/output devices SGN-5406 Virtual Reality Autumn 2007 ismo.rakkolainen@tut.fi The human sensitive areas for touch: Hand, face Many

More information

Aural and Haptic Displays

Aural and Haptic Displays Teil 5: Aural and Haptic Displays Virtuelle Realität Wintersemester 2007/08 Prof. Bernhard Jung Overview Aural Displays Haptic Displays Further information: The Haptics Community Web Site: http://haptic.mech.northwestern.edu/

More information

Haptic User Interfaces Fall Contents TACTILE SENSING & FEEDBACK. Tactile sensing. Tactile sensing. Mechanoreceptors 2/3. Mechanoreceptors 1/3

Haptic User Interfaces Fall Contents TACTILE SENSING & FEEDBACK. Tactile sensing. Tactile sensing. Mechanoreceptors 2/3. Mechanoreceptors 1/3 Contents TACTILE SENSING & FEEDBACK Jukka Raisamo Multimodal Interaction Research Group Tampere Unit for Computer Human Interaction Department of Computer Sciences University of Tampere, Finland Tactile

More information

Touch & Haptics. Touch & High Information Transfer Rate. Modern Haptics. Human. Haptics

Touch & Haptics. Touch & High Information Transfer Rate. Modern Haptics. Human. Haptics Touch & Haptics Touch & High Information Transfer Rate Blind and deaf people have been using touch to substitute vision or hearing for a very long time, and successfully. OPTACON Hong Z Tan Purdue University

More information

Touching and Walking: Issues in Haptic Interface

Touching and Walking: Issues in Haptic Interface Touching and Walking: Issues in Haptic Interface Hiroo Iwata 1 1 Institute of Engineering Mechanics and Systems, University of Tsukuba, 80, Tsukuba, 305-8573 Japan iwata@kz.tsukuba.ac.jp Abstract. This

More information

Output Devices - Non-Visual

Output Devices - Non-Visual IMGD 5100: Immersive HCI Output Devices - Non-Visual Robert W. Lindeman Associate Professor Department of Computer Science Worcester Polytechnic Institute gogo@wpi.edu Overview Here we are concerned with

More information

Development and Testing of a Telemanipulation System with Arm and Hand Motion

Development and Testing of a Telemanipulation System with Arm and Hand Motion Development and Testing of a Telemanipulation System with Arm and Hand Motion Michael L. Turner, Ryan P. Findley, Weston B. Griffin, Mark R. Cutkosky and Daniel H. Gomez Dexterous Manipulation Laboratory

More information

can easily be integrated with electronics for signal processing, etc. by fabricating

can easily be integrated with electronics for signal processing, etc. by fabricating Glossary Active touch The process where objects are dynamically explored by a finger or hand as in object contour following. Adaptive thresholding A procedure in which a stimulus is interactively increased

More information

Haptics and the User Interface

Haptics and the User Interface Haptics and the User Interface based on slides from Karon MacLean, original slides available at: http://www.cs.ubc.ca/~maclean/publics/ what is haptic? from Greek haptesthai : to touch Haptic User Interfaces

More information

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática. Output Devices - II

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática. Output Devices - II Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática Output Devices - II Realidade Virtual e Aumentada 2017/2018 Beatriz Sousa Santos The human senses need specialized interfaces

More information

Abstract. Introduction. Threee Enabling Observations

Abstract. Introduction. Threee Enabling Observations The PHANTOM Haptic Interface: A Device for Probing Virtual Objects Thomas H. Massie and J. K. Salisbury. Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment

More information

Shape Memory Alloy Actuator Controller Design for Tactile Displays

Shape Memory Alloy Actuator Controller Design for Tactile Displays 34th IEEE Conference on Decision and Control New Orleans, Dec. 3-5, 995 Shape Memory Alloy Actuator Controller Design for Tactile Displays Robert D. Howe, Dimitrios A. Kontarinis, and William J. Peine

More information

A guided tour in haptic audio visual environments and applications. Mohamad Eid, Mauricio Orozco and Abdulmotaleb El Saddik*

A guided tour in haptic audio visual environments and applications. Mohamad Eid, Mauricio Orozco and Abdulmotaleb El Saddik* Int. J. Advanced Media and Communication, Vol. 1, No. 3, 2007 265 A guided tour in haptic audio visual environments and applications Mohamad Eid, Mauricio Orozco and Abdulmotaleb El Saddik* Multimedia

More information

Berkshire Encyclopedia of Human-Computer Interaction, W. Bainbridge, Ed., Berkshire Publishing Group, 2004, pp Haptics

Berkshire Encyclopedia of Human-Computer Interaction, W. Bainbridge, Ed., Berkshire Publishing Group, 2004, pp Haptics Berkshire Encyclopedia of Human-Computer Interaction, W. Bainbridge, Ed., Berkshire Publishing Group, 2004, pp. 311-316. Haptics Ralph Hollis Carnegie Mellon University Haptic interaction with the world

More information

HAPTIC DEVICES FOR DESKTOP VIRTUAL PROTOTYPING APPLICATIONS

HAPTIC DEVICES FOR DESKTOP VIRTUAL PROTOTYPING APPLICATIONS The 3rd International Conference on Computational Mechanics and Virtual Engineering COMEC 2009 29 30 OCTOBER 2009, Brasov, Romania HAPTIC DEVICES FOR DESKTOP VIRTUAL PROTOTYPING APPLICATIONS A. Fratu 1,

More information

Beyond Visual: Shape, Haptics and Actuation in 3D UI

Beyond Visual: Shape, Haptics and Actuation in 3D UI Beyond Visual: Shape, Haptics and Actuation in 3D UI Ivan Poupyrev Welcome, Introduction, & Roadmap 3D UIs 101 3D UIs 201 User Studies and 3D UIs Guidelines for Developing 3D UIs Video Games: 3D UIs for

More information

Haptic Sensing and Perception for Telerobotic Manipulation

Haptic Sensing and Perception for Telerobotic Manipulation Haptic Sensing and Perception for Telerobotic Manipulation Emil M. Petriu, Dr. Eng., P.Eng., FIEEE Professor School of Information Technology and Engineering University of Ottawa Ottawa, ON., K1N 6N5 Canada

More information

Tool-Based Haptic Interaction with Dynamic Physical Simulations using Lorentz Magnetic Levitation. Outline:

Tool-Based Haptic Interaction with Dynamic Physical Simulations using Lorentz Magnetic Levitation. Outline: Tool-Based Haptic Interaction with Dynamic Physical Simulations using Lorentz Magnetic Levitation Peter Berkelman Johns Hopkins University January 2000 1 Outline: Introduction: haptic interaction background,

More information

Touch. Touch & the somatic senses. Josh McDermott May 13,

Touch. Touch & the somatic senses. Josh McDermott May 13, The different sensory modalities register different kinds of energy from the environment. Touch Josh McDermott May 13, 2004 9.35 The sense of touch registers mechanical energy. Basic idea: we bump into

More information

Elements of Haptic Interfaces

Elements of Haptic Interfaces Elements of Haptic Interfaces Katherine J. Kuchenbecker Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania kuchenbe@seas.upenn.edu Course Notes for MEAM 625, University

More information

Discrimination of Virtual Haptic Textures Rendered with Different Update Rates

Discrimination of Virtual Haptic Textures Rendered with Different Update Rates Discrimination of Virtual Haptic Textures Rendered with Different Update Rates Seungmoon Choi and Hong Z. Tan Haptic Interface Research Laboratory Purdue University 465 Northwestern Avenue West Lafayette,

More information

Haptic Display of Contact Location

Haptic Display of Contact Location Haptic Display of Contact Location Katherine J. Kuchenbecker William R. Provancher Günter Niemeyer Mark R. Cutkosky Telerobotics Lab and Dexterous Manipulation Laboratory Stanford University, Stanford,

More information

Design of New Micro Actuator for Tactile Display

Design of New Micro Actuator for Tactile Display Proceedings of the 17th World Congress The International Federation of Automatic Control Design of New Micro Actuator for Tactile Display Tae-Heon Yang*, Sang Youn Kim**, and Dong-Soo Kwon*** * Department

More information

DESIGN OF A 2-FINGER HAND EXOSKELETON FOR VR GRASPING SIMULATION

DESIGN OF A 2-FINGER HAND EXOSKELETON FOR VR GRASPING SIMULATION DESIGN OF A 2-FINGER HAND EXOSKELETON FOR VR GRASPING SIMULATION Panagiotis Stergiopoulos Philippe Fuchs Claude Laurgeau Robotics Center-Ecole des Mines de Paris 60 bd St-Michel, 75272 Paris Cedex 06,

More information

Humanoid Hands. CHENG Gang Dec Rollin Justin Robot.mp4

Humanoid Hands. CHENG Gang Dec Rollin Justin Robot.mp4 Humanoid Hands CHENG Gang Dec. 2009 Rollin Justin Robot.mp4 Behind the Video Motivation of humanoid hand Serve the people whatever difficult Behind the Video Challenge to humanoid hand Dynamics How to

More information

A Pilot Study: Introduction of Time-domain Segment to Intensity-based Perception Model of High-frequency Vibration

A Pilot Study: Introduction of Time-domain Segment to Intensity-based Perception Model of High-frequency Vibration A Pilot Study: Introduction of Time-domain Segment to Intensity-based Perception Model of High-frequency Vibration Nan Cao, Hikaru Nagano, Masashi Konyo, Shogo Okamoto 2 and Satoshi Tadokoro Graduate School

More information

Whole-Hand Kinesthetic Feedback and Haptic Perception in Dextrous Virtual Manipulation

Whole-Hand Kinesthetic Feedback and Haptic Perception in Dextrous Virtual Manipulation 100 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART A: SYSTEMS AND HUMANS, VOL. 33, NO. 1, JANUARY 2003 Whole-Hand Kinesthetic Feedback and Haptic Perception in Dextrous Virtual Manipulation Costas

More information

Robot Sensors Introduction to Robotics Lecture Handout September 20, H. Harry Asada Massachusetts Institute of Technology

Robot Sensors Introduction to Robotics Lecture Handout September 20, H. Harry Asada Massachusetts Institute of Technology Robot Sensors 2.12 Introduction to Robotics Lecture Handout September 20, 2004 H. Harry Asada Massachusetts Institute of Technology Touch Sensor CCD Camera Vision System Ultrasonic Sensor Photo removed

More information

From Encoding Sound to Encoding Touch

From Encoding Sound to Encoding Touch From Encoding Sound to Encoding Touch Toktam Mahmoodi King s College London, UK http://www.ctr.kcl.ac.uk/toktam/index.htm ETSI STQ Workshop, May 2017 Immersing a person into the real environment with Very

More information

Using Real Objects for Interaction Tasks in Immersive Virtual Environments

Using Real Objects for Interaction Tasks in Immersive Virtual Environments Using Objects for Interaction Tasks in Immersive Virtual Environments Andy Boud, Dr. VR Solutions Pty. Ltd. andyb@vrsolutions.com.au Abstract. The use of immersive virtual environments for industrial applications

More information

Haptics ME7960, Sect. 007 Lect. 6: Device Design I

Haptics ME7960, Sect. 007 Lect. 6: Device Design I Haptics ME7960, Sect. 007 Lect. 6: Device Design I Spring 2009 Prof. William Provancher Prof. Jake Abbott University of Utah Salt Lake City, UT USA Today s Class Haptic Device Review (be sure to review

More information

Design and Controll of Haptic Glove with McKibben Pneumatic Muscle

Design and Controll of Haptic Glove with McKibben Pneumatic Muscle XXVIII. ASR '2003 Seminar, Instruments and Control, Ostrava, May 6, 2003 173 Design and Controll of Haptic Glove with McKibben Pneumatic Muscle KOPEČNÝ, Lukáš Ing., Department of Control and Instrumentation,

More information

Lecture 8: Tactile devices

Lecture 8: Tactile devices ME 327: Design and Control of Haptic Systems Winter 2018 Lecture 8: Tactile devices Allison M. Okamura Stanford University tactile haptic devices tactile feedback goal is to stimulate the skin in a programmable

More information

Nonholonomic Haptic Display

Nonholonomic Haptic Display Nonholonomic Haptic Display J. Edward Colgate Michael A. Peshkin Witaya Wannasuphoprasit Department of Mechanical Engineering Northwestern University Evanston, IL 60208-3111 Abstract Conventional approaches

More information

Feeding human senses through Immersion

Feeding human senses through Immersion Virtual Reality Feeding human senses through Immersion 1. How many human senses? 2. Overview of key human senses 3. Sensory stimulation through Immersion 4. Conclusion Th3.1 1. How many human senses? [TRV

More information

Design and Operation of a Force-Reflecting Magnetic Levitation Coarse-Fine Teleoperation System

Design and Operation of a Force-Reflecting Magnetic Levitation Coarse-Fine Teleoperation System IEEE International Conference on Robotics and Automation, (ICRA 4) New Orleans, USA, April 6 - May 1, 4, pp. 4147-41. Design and Operation of a Force-Reflecting Magnetic Levitation Coarse-Fine Teleoperation

More information

Flexible Active Touch Using 2.5D Display Generating Tactile and Force Sensations

Flexible Active Touch Using 2.5D Display Generating Tactile and Force Sensations This is the accepted version of the following article: ICIC Express Letters 6(12):2995-3000 January 2012, which has been published in final form at http://www.ijicic.org/el-6(12).htm Flexible Active Touch

More information

Multichannel vibrotactile display for sensory substitution during teleoperation

Multichannel vibrotactile display for sensory substitution during teleoperation 2001 SPIE International Symposium on Intelligent Systems and Advanced Manufacturing, Newton, MA, 28-31 October Multichannel vibrotactile display for sensory substitution during teleoperation Thomas Debus

More information

WEARABLE HAPTIC DISPLAY FOR IMMERSIVE VIRTUAL ENVIRONMENT

WEARABLE HAPTIC DISPLAY FOR IMMERSIVE VIRTUAL ENVIRONMENT WEARABLE HAPTIC DISPLAY FOR IMMERSIVE VIRTUAL ENVIRONMENT Yutaka TANAKA*, Hisayuki YAMAUCHI* *, Kenichi AMEMIYA*** * Department of Mechanical Engineering, Faculty of Engineering Hosei University Kajinocho,

More information

Virtual Reality & Physically-Based Simulation

Virtual Reality & Physically-Based Simulation Virtual Reality & Physically-Based Simulation Haptics G. Zachmann University of Bremen, Germany cgvr.cs.uni-bremen.de Some Technical Terms Haptics = sense of touch and force (greek haptesthai = berühren)

More information

Chapter 1 Introduction to Robotics

Chapter 1 Introduction to Robotics Chapter 1 Introduction to Robotics PS: Most of the pages of this presentation were obtained and adapted from various sources in the internet. 1 I. Definition of Robotics Definition (Robot Institute of

More information

CS277 - Experimental Haptics Lecture 2. Haptic Rendering

CS277 - Experimental Haptics Lecture 2. Haptic Rendering CS277 - Experimental Haptics Lecture 2 Haptic Rendering Outline Announcements Human haptic perception Anatomy of a visual-haptic simulation Virtual wall and potential field rendering A note on timing...

More information

Project FEELEX: Adding Haptic Surface to Graphics

Project FEELEX: Adding Haptic Surface to Graphics Project FEELEX: Adding Haptic Surface to Graphics Hiroo Iwata Hiroaki Yano Fumitaka Nakaizumi Ryo Kawamura Institute of Engineering Mechanics and Systems, University of Tsukuba Abstract This paper presents

More information

Phantom-Based Haptic Interaction

Phantom-Based Haptic Interaction Phantom-Based Haptic Interaction Aimee Potts University of Minnesota, Morris 801 Nevada Ave. Apt. 7 Morris, MN 56267 (320) 589-0170 pottsal@cda.mrs.umn.edu ABSTRACT Haptic interaction is a new field of

More information

Haptic Discrimination of Perturbing Fields and Object Boundaries

Haptic Discrimination of Perturbing Fields and Object Boundaries Haptic Discrimination of Perturbing Fields and Object Boundaries Vikram S. Chib Sensory Motor Performance Program, Laboratory for Intelligent Mechanical Systems, Biomedical Engineering, Northwestern Univ.

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 3, Issue 3, March 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A Study on SensAble

More information

Haptic Feedback in Laparoscopic and Robotic Surgery

Haptic Feedback in Laparoscopic and Robotic Surgery Haptic Feedback in Laparoscopic and Robotic Surgery Dr. Warren Grundfest Professor Bioengineering, Electrical Engineering & Surgery UCLA, Los Angeles, California Acknowledgment This Presentation & Research

More information

Project FEELEX: Adding Haptic Surface to Graphics

Project FEELEX: Adding Haptic Surface to Graphics Project FEELEX: Adding Haptic Surface to Graphics ABSTRACT Hiroo Iwata Hiroaki Yano Fumitaka Nakaizumi Ryo Kawamura Institute of Engineering Mechanics and Systems, University of Tsukuba This paper presents

More information

Haptic Rendering CPSC / Sonny Chan University of Calgary

Haptic Rendering CPSC / Sonny Chan University of Calgary Haptic Rendering CPSC 599.86 / 601.86 Sonny Chan University of Calgary Today s Outline Announcements Human haptic perception Anatomy of a visual-haptic simulation Virtual wall and potential field rendering

More information

ERGOS: Multi-degrees of Freedom and Versatile Force-Feedback Panoply

ERGOS: Multi-degrees of Freedom and Versatile Force-Feedback Panoply ERGOS: Multi-degrees of Freedom and Versatile Force-Feedback Panoply Jean-Loup Florens, Annie Luciani, Claude Cadoz, Nicolas Castagné ACROE-ICA, INPG, 46 Av. Félix Viallet 38000, Grenoble, France florens@imag.fr

More information

Multimodal Virtual Environments: MAGIC Toolkit and Visual-Haptic Interaction Paradigms. I-Chun Alexandra Hou

Multimodal Virtual Environments: MAGIC Toolkit and Visual-Haptic Interaction Paradigms. I-Chun Alexandra Hou Multimodal Virtual Environments: MAGIC Toolkit and Visual-Haptic Interaction Paradigms by I-Chun Alexandra Hou B.S., Mechanical Engineering (1995) Massachusetts Institute of Technology Submitted to the

More information

Evaluation of Five-finger Haptic Communication with Network Delay

Evaluation of Five-finger Haptic Communication with Network Delay Tactile Communication Haptic Communication Network Delay Evaluation of Five-finger Haptic Communication with Network Delay To realize tactile communication, we clarify some issues regarding how delay affects

More information

Selective Stimulation to Skin Receptors by Suction Pressure Control

Selective Stimulation to Skin Receptors by Suction Pressure Control Selective Stimulation to Skin Receptors by Suction Pressure Control Yasutoshi MAKINO 1 and Hiroyuki SHINODA 1 1 Department of Information Physics and Computing, Graduate School of Information Science and

More information

Here I present more details about the methods of the experiments which are. described in the main text, and describe two additional examinations which

Here I present more details about the methods of the experiments which are. described in the main text, and describe two additional examinations which Supplementary Note Here I present more details about the methods of the experiments which are described in the main text, and describe two additional examinations which assessed DF s proprioceptive performance

More information

Haptic Rendering and Volumetric Visualization with SenSitus

Haptic Rendering and Volumetric Visualization with SenSitus Haptic Rendering and Volumetric Visualization with SenSitus Stefan Birmanns, Ph.D. Department of Molecular Biology The Scripps Research Institute 10550 N. Torrey Pines Road, Mail TPC6 La Jolla, California,

More information

Applications of Haptics Technology in Advance Robotics

Applications of Haptics Technology in Advance Robotics Applications of Haptics Technology in Advance Robotics Vaibhav N. Fulkar vaibhav.fulkar@hotmail.com Mohit V. Shivramwar mohitshivramwar@gmail.com Anilesh A. Alkari anileshalkari123@gmail.com Abstract Haptic

More information

Methods for Haptic Feedback in Teleoperated Robotic Surgery

Methods for Haptic Feedback in Teleoperated Robotic Surgery Young Group 5 1 Methods for Haptic Feedback in Teleoperated Robotic Surgery Paper Review Jessie Young Group 5: Haptic Interface for Surgical Manipulator System March 12, 2012 Paper Selection: A. M. Okamura.

More information

5HDO 7LPH 6XUJLFDO 6LPXODWLRQ ZLWK +DSWLF 6HQVDWLRQ DV &ROODERUDWHG :RUNV EHWZHHQ -DSDQ DQG *HUPDQ\

5HDO 7LPH 6XUJLFDO 6LPXODWLRQ ZLWK +DSWLF 6HQVDWLRQ DV &ROODERUDWHG :RUNV EHWZHHQ -DSDQ DQG *HUPDQ\ nsuzuki@jikei.ac.jp 1016 N. Suzuki et al. 1). The system should provide a design for the user and determine surgical procedures based on 3D model reconstructed from the patient's data. 2). The system must

More information

Sensing self motion. Key points: Why robots need self-sensing Sensors for proprioception in biological systems in robot systems

Sensing self motion. Key points: Why robots need self-sensing Sensors for proprioception in biological systems in robot systems Sensing self motion Key points: Why robots need self-sensing Sensors for proprioception in biological systems in robot systems Position sensing Velocity and acceleration sensing Force sensing Vision based

More information

The Integument Laboratory

The Integument Laboratory Name Period Ms. Pfeil A# Activity: 1 Visualizing Changes in Skin Color Due to Continuous External Pressure Go to the supply area and obtain a small glass plate. Press the heel of your hand firmly against

More information

Effects of Longitudinal Skin Stretch on the Perception of Friction

Effects of Longitudinal Skin Stretch on the Perception of Friction In the Proceedings of the 2 nd World Haptics Conference, to be held in Tsukuba, Japan March 22 24, 2007 Effects of Longitudinal Skin Stretch on the Perception of Friction Nicholas D. Sylvester William

More information

Performance Issues in Collaborative Haptic Training

Performance Issues in Collaborative Haptic Training 27 IEEE International Conference on Robotics and Automation Roma, Italy, 1-14 April 27 FrA4.4 Performance Issues in Collaborative Haptic Training Behzad Khademian and Keyvan Hashtrudi-Zaad Abstract This

More information

Overview of current developments in haptic APIs

Overview of current developments in haptic APIs Central European Seminar on Computer Graphics for students, 2011 AUTHOR: Petr Kadleček SUPERVISOR: Petr Kmoch Overview of current developments in haptic APIs Presentation Haptics Haptic programming Haptic

More information

HAPTIC INTERFACE CONTROL DESIGN FOR PERFORMANCE AND STABILITY ROBUSTNESS. Taweedej Sirithanapipat. Dissertation. Submitted to the Faculty of the

HAPTIC INTERFACE CONTROL DESIGN FOR PERFORMANCE AND STABILITY ROBUSTNESS. Taweedej Sirithanapipat. Dissertation. Submitted to the Faculty of the HAPTIC INTERFACE CONTROL DESIGN FOR PERFORMANCE AND STABILITY ROBUSTNESS By Taweedej Sirithanapipat Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment

More information

Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery

Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery Claudio Pacchierotti Domenico Prattichizzo Katherine J. Kuchenbecker Motivation Despite its expected clinical

More information

3D User Interfaces. Using the Kinect and Beyond. John Murray. John Murray

3D User Interfaces. Using the Kinect and Beyond. John Murray. John Murray Using the Kinect and Beyond // Center for Games and Playable Media // http://games.soe.ucsc.edu John Murray John Murray Expressive Title Here (Arial) Intelligence Studio Introduction to Interfaces User

More information

Computer Haptics and Applications

Computer Haptics and Applications Computer Haptics and Applications EURON Summer School 2003 Cagatay Basdogan, Ph.D. College of Engineering Koc University, Istanbul, 80910 (http://network.ku.edu.tr/~cbasdogan) Resources: EURON Summer School

More information

VIRTUAL FIGURE PRESENTATION USING PRESSURE- SLIPPAGE-GENERATION TACTILE MOUSE

VIRTUAL FIGURE PRESENTATION USING PRESSURE- SLIPPAGE-GENERATION TACTILE MOUSE VIRTUAL FIGURE PRESENTATION USING PRESSURE- SLIPPAGE-GENERATION TACTILE MOUSE Yiru Zhou 1, Xuecheng Yin 1, and Masahiro Ohka 1 1 Graduate School of Information Science, Nagoya University Email: ohka@is.nagoya-u.ac.jp

More information

CHAPTER 2. RELATED WORK 9 similar study, Gillespie (1996) built a one-octave force-feedback piano keyboard to convey forces derived from this model to

CHAPTER 2. RELATED WORK 9 similar study, Gillespie (1996) built a one-octave force-feedback piano keyboard to convey forces derived from this model to Chapter 2 Related Work 2.1 Haptic Feedback in Music Controllers The enhancement of computer-based instrumentinterfaces with haptic feedback dates back to the late 1970s, when Claude Cadoz and his colleagues

More information

Psychophysical Characterization and Testbed Validation of a Wearable Vibrotactile Glove for Telemanipulation

Psychophysical Characterization and Testbed Validation of a Wearable Vibrotactile Glove for Telemanipulation Psychophysical Characterization and Testbed Validation of a Wearable Vibrotactile Glove for Telemanipulation Abstract This paper describes and evaluates a high-fidelity, low-cost haptic interface for teleoperation.

More information

Research Article Haptic Stylus and Empirical Studies on Braille, Button, and Texture Display

Research Article Haptic Stylus and Empirical Studies on Braille, Button, and Texture Display Hindawi Publishing Corporation Journal of Biomedicine and Biotechnology Volume 2008, Article ID 369651, 11 pages doi:10.1155/2008/369651 Research Article Haptic Stylus and Empirical Studies on Braille,

More information

Design of Cylindrical Whole-hand Haptic Interface using Electrocutaneous Display

Design of Cylindrical Whole-hand Haptic Interface using Electrocutaneous Display Design of Cylindrical Whole-hand Haptic Interface using Electrocutaneous Display Hiroyuki Kajimoto 1,2 1 The University of Electro-Communications 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 Japan 2 Japan Science

More information

THE HUMAN POWER AMPLIFIER TECHNOLOGY APPLIED TO MATERIAL HANDLING

THE HUMAN POWER AMPLIFIER TECHNOLOGY APPLIED TO MATERIAL HANDLING THE HUMAN POWER AMPLIFIER TECHNOLOGY APPLIED TO MATERIAL HANDLING H. Kazerooni Mechanical Engineering Department Human Engineering Laboratory (HEL) University ofcajifomia, Berkeley, CA 94720-1740 USA E-Mail:

More information

Graphical User Interfaces for Blind Users: An Overview of Haptic Devices

Graphical User Interfaces for Blind Users: An Overview of Haptic Devices Graphical User Interfaces for Blind Users: An Overview of Haptic Devices Hasti Seifi, CPSC554m: Assignment 1 Abstract Graphical user interfaces greatly enhanced usability of computer systems over older

More information

tactile perception according to texts of Vincent Hayward, J.J Gibson. florian wille // tactile perception // // 1 of 15

tactile perception according to texts of Vincent Hayward, J.J Gibson. florian wille // tactile perception // // 1 of 15 tactile perception according to texts of Vincent Hayward, J.J Gibson. florian wille // tactile perception // 30.11.2009 // 1 of 15 tactile vs visual sense The two senses complement each other. Where as

More information

Robot Hands: Mechanics, Contact Constraints, and Design for Open-loop Performance

Robot Hands: Mechanics, Contact Constraints, and Design for Open-loop Performance Robot Hands: Mechanics, Contact Constraints, and Design for Open-loop Performance Aaron M. Dollar John J. Lee Associate Professor of Mechanical Engineering and Materials Science Aerial Robotics Yale GRAB

More information

Wireless Master-Slave Embedded Controller for a Teleoperated Anthropomorphic Robotic Arm with Gripping Force Sensing

Wireless Master-Slave Embedded Controller for a Teleoperated Anthropomorphic Robotic Arm with Gripping Force Sensing Wireless Master-Slave Embedded Controller for a Teleoperated Anthropomorphic Robotic Arm with Gripping Force Sensing Presented by: Benjamin B. Rhoades ECGR 6185 Adv. Embedded Systems January 16 th 2013

More information

Technologies. Philippe Fuchs Ecole des Mines, ParisTech, Paris, France. Virtual Reality: Concepts and. Guillaume Moreau.

Technologies. Philippe Fuchs Ecole des Mines, ParisTech, Paris, France. Virtual Reality: Concepts and. Guillaume Moreau. Virtual Reality: Concepts and Technologies Editors Philippe Fuchs Ecole des Mines, ParisTech, Paris, France Guillaume Moreau Ecole Centrale de Nantes, CERMA, Nantes, France Pascal Guitton INRIA, University

More information

Five-fingered Robot Hand using Ultrasonic Motors and Elastic Elements *

Five-fingered Robot Hand using Ultrasonic Motors and Elastic Elements * Proceedings of the 2005 IEEE International Conference on Robotics and Automation Barcelona, Spain, April 2005 Five-fingered Robot Hand using Ultrasonic Motors and Elastic Elements * Ikuo Yamano Department

More information

A Hybrid Actuation Approach for Haptic Devices

A Hybrid Actuation Approach for Haptic Devices A Hybrid Actuation Approach for Haptic Devices François Conti conti@ai.stanford.edu Oussama Khatib ok@ai.stanford.edu Charles Baur charles.baur@epfl.ch Robotics Laboratory Computer Science Department Stanford

More information

TECHNOLOGY for touching remote objects has typically

TECHNOLOGY for touching remote objects has typically 580 IEEE TRANSACTIONS ON HAPTICS, VOL. 10, NO. 4, OCTOBER-DECEMBER 2017 Wearable Haptic Systems for the Fingertip and the Hand: Taxonomy, Review, and Perspectives Claudio Pacchierotti, Member, IEEE, Stephen

More information

Eye-Hand Co-ordination with Force Feedback

Eye-Hand Co-ordination with Force Feedback Eye-Hand Co-ordination with Force Feedback Roland Arsenault and Colin Ware Faculty of Computer Science University of New Brunswick Fredericton, New Brunswick Canada E3B 5A3 Abstract The term Eye-hand co-ordination

More information

Wearable Haptic Display to Present Gravity Sensation

Wearable Haptic Display to Present Gravity Sensation Wearable Haptic Display to Present Gravity Sensation Preliminary Observations and Device Design Kouta Minamizawa*, Hiroyuki Kajimoto, Naoki Kawakami*, Susumu, Tachi* (*) The University of Tokyo, Japan

More information

Milind R. Shinde #1, V. N. Bhaiswar *2, B. G. Achmare #3 1 Student of MTECH CAD/CAM, Department of Mechanical Engineering, GHRCE Nagpur, MH, India

Milind R. Shinde #1, V. N. Bhaiswar *2, B. G. Achmare #3 1 Student of MTECH CAD/CAM, Department of Mechanical Engineering, GHRCE Nagpur, MH, India Design and simulation of robotic arm for loading and unloading of work piece on lathe machine by using workspace simulation software: A Review Milind R. Shinde #1, V. N. Bhaiswar *2, B. G. Achmare #3 1

More information