# Chapter 6: Probability and Simulation. The study of randomness

Size: px
Start display at page:

Download "Chapter 6: Probability and Simulation. The study of randomness"

Transcription

1 Chapter 6: Probability and Simulation The study of randomness

2 Introduction Probability is the study of chance. 6.1 focuses on simulation since actual observations are often not feasible. When we produce data by random sampling or randomized comparative experiments laws of probability answer the question what would happen if we did this many times? Probability is the basis of inference

3 6.1 Simulation The experiment consists of spinning the spinner three times and recording the numbers as they occur (e.g. 123). We want to determine the proportion of times that at least one digit occurs in its correct position. (we will use a calculator instead). Guess the proportion of times at least one digit will occur in its proper place.

4 Get your calculators out!! Enter the command randint(1,3,3) Continue to press enter to generate more three-digit numbers Record the result in a table At least one digit in the correct position None of the digits in the correct position

5 The more repetitions, the closer a result s occurrence will get to it s true likelihood. Independence: When the result of one trial (coin toss, dice roll) has no effect or influence on the next toss.

6 Coin Toss

7 Simulation Steps 1. State the problem or describe the random phenomenon Ex: Toss a coin 10 times, what is the likelihood of a run of at least 3 consecutive heads or 3 consecutive tails? 2. State the Assumptions (there are 2) A head or a tail is equally likely to occur on each toss Tosses are independent of each other 3. Assign digits to represent outcomes (want efficiency) In a random # table, even and odd digits occur with the same long-term relative frequency (50%) One digit simulates one toss of the coin Odd digits represent heads; even digits represent tails Successive digits in the table simulate independent tosses 4. Simulate many repetitions Looking at 10 consecutive digits in Table B simulates one repetition. Read many groups of 1- digits from the table to simulate many rep

8 Be sure to keep track of whether or not the event we want (a run of at least 3 heads or at least 3 tails) occurs on each repetitions Here are the first 3 repetitions starting at line 101 in Table B. Digits: H/T: HHTTH HHTHT THHHT TTHHH HTTTH HTHHH Run of 3: YES YES YES 22 repetitions were done for a total of of them did have a run of 3 or more Heads or tails. 5. State your conclusions We estimate the probability of a run of size 3 by the proportion 23/25 =.92 *Of course 25 reps are not enough to be confident that our estimate is accurate so we can tell a computer to do thousands of repetitions (or TRIALS) for us. A long simulation finds that the true probability is.86

9 Assigning digits Some ways more efficient than others. Example: Choose a person at random from a group of which 70% are employed. One digit simulates one person: 0, 1, 2, 3, 4, 5, 6 = employed 7, 8, 9 = not employed employed and not employed could also have worked, but is less efficient b/c requires twice as many digits and ten times as many numbers. Example 2: Choose one person at random from a group of which 73% employed Now = employed, = not employed Example 3: Choose one person at random from a group of which 50% are employed, 20% are unemployed, and 30% are not in the labor force: 0-4 = employed, 5-6 = unemployed, 7-9 = not in labor force.

10 Frozen Yogurt Sales example Orders of frozen yogurt flavors (based on sales) have the following relative frequencies: 38% chocolate, 42% vanilla, 20% strawberry. We want to simulate customers entering the store and ordering yogurt. How would you simulate 1- frozen yogurt sales based on recent history using table?

11 Randomizing with Calculator Block of 5 random digits from table Rolling a die 7 times 10 numbers from 00-99

12

13 You read in a book on poker that the probability of being dealt three of a kind in a five-card poker hand is 1/50. Explain in simple language what this means. If the hands were dealt many times, about 2% (1out of 50) hands will contain a three of a kind.

14 6.2 Probability Models Proportion of heads to tails in a few tosses will be erratic but after thousands of tosses will approach the expected.5 probability

15 Probability models have two parts: A list of possible outcomes A probability for each outcome.

16 Sample Space To specify S we must state what constitutes an individual outcome, then which outcomes can occur (can be simple or complex) Ex: coin tossing, S = {H, T} Ex: US Census: If we draw a random sample of 50,000 US households, as the survey does, the S contains all 50,000

17 Rolling two dice At a casino- 36 possible outcomes when we roll 2 dice and record the up-faces in order (first die, second die) Gamblers care only about number of dots face up so the sample space for that is: S = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

18 Techniques for finding outcomes 1. Tree diagram For tossing a coin then rolling a die

19 2. Multiplication Principle 2x6 = 12 for same example 3. Organized list: H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6

20 With/without replacement If you take a card from a deck of 52, don t put it back, then draw your 2 nd card etc., that s without replacement. Ex: how many different 3 digit numbers can you make: 10x9x8 = 720 If you take a card, write it down, put it back, draw 2 nd card etc., that s with replacement. Ex: 10x10x10 = 1000

21 Probability Rules 1. Any probability is a number between 0 and 1 2. The sum of the probabilities of all possible outcomes = 1 3. If 2 events have no outcomes in common (they can t occur together), the probability that one OR the other occurs is the sum of their individual probabilities Ex: If one event occurs in 40% of all trials, another event happens in 25% of all trials, the 2 can never occur together, then one or the other occurs on 65% of all trials 4. The probability that an event doesn t occur is 1 minus the probability that it does occur Ex: If an event happens in 70% of all trials, it fails to occur in the other 30%

22 Venn diagrams help! Ex: Probability of rolling a 5? B/c P(roll a 5 with 2 die) = P(1,4) + P(3,2) + P(2,3) + P(4,1) = 1/36 + 1/36 + 1/36 + 1/36 = 1/9 or.111

23 Independence & the Multiplication Rule To find the probability for BOTH events A and B occurring Example: Suppose you plan to toss a coin twice, and want to find the probability of rolling a head on both tosses. A = first toss is a head, B = second toss is a head. So (1/2)(1/2) = ¼. We expect to flip 2 heads on 25% of all trials. The more times we repeat this, the closer our average probability will get to 25%. The multiplication rule applies only to independent events; can t use it if events are not independent!

24 Independent or not? Coin toss I: Coin has no memory and coin tossers cannot influence fall of coin Drawing from deck of cards NI: First pick, probability of red is 26/52 or.5. Once we see the first card is red, the probability of a red card in the 2 nd pick is now 25/51 =.49 Taking an IQ test twice in succession NI

25 More applications of Probability Rules If two events A and B are independent, then their complements are also independent. Ex: 75% of voters in a district are Republicans. If an interviewer chooses 2 voters at random, the probability that the first is a Republican and the 2 nd is not a republican is.75 x.25 =.1875

26 6.3 General Probability Rules

27 Addition Rule for Disjoint events

28 General Addition rule for Unions of 2 events

29 Example: Deb and Matt are waiting anxiously to hear if they ve been promoted. Deb guesses her probability of getting promoted is.7 and Matt s is.5, and both of them being promoted is.3. The probability that at least one is promoted = which is.9. The probability neither is promoted is.1. The simultaneous occurrence of 2 events (called a joint event, such as deb and matt getting promoted) is called a joint probability.

30 Conditional Probability The probability that we assign to an event can change if we know some other event has occurred. P(A B): Probability that event A will happen under the condition that event B has occurred. Ex: Probability of drawing an ace is 4/52 or 1/13. If your are dealt 4 cards and one of them is an ace, probability of getting an ace on the 5 th card dealt is 3/48 or 1/16 (conditional probability- getting an Ace given that one was dealt in the first 4).

31 In words, this says that for both of 2 events to occur, first one must occur, and then, given that the first event has occurred, the second must occur.

32 Remember: B is the event whose probability we are computing and A represents the info we are given.

33 Extended Multiplication rules The union of a collection of events is the event that ANY of them occur The Intersection of any collection of events is the event that ALL of them occur

34 Example Only 5% of male high school basketball, baseball, and football players go on to play at the college level. Of these only 1.7% enter major league professional sports. About 40% of the athletes who compete in college and then reach the pros have a career of more than 3 years. Define these events: A = competes in college B = competes pro C = pro career longer than 3 years P(A) =.05 P(B A) =.017 P(C A and B) =.400 What is the probability a HS athlete will have a pro career more than 3 years? The probability we want is therefore P(A and B and C) = P(A)P(B A)P(C A and B) =.05 x.017 x.40 = So, only 3 of every 10,000 high school athletes can expect to compete in college and have a pro career of more than 3 years.

35 Extended tree diagram + chat room example 47% of 18 to 29 age chat online, 21% of 30 to 49 and 7% of 50+ Also, need to know that 29% of all internet users are (event A1), 47% are 30 to 49 (A2) and the remaining 24% are 50 and over (A3). What is the probability that a randomly chosen user of the internet participates in chat rooms (event C)? Tree diagram- probability written on each segment is the conditional probability of an internet user following that segment, given that he or she has reached the node from which it branches. (final outcome is adding all the chatting probabilities which =.2518)

36

37 Bayes Rule Another question we might ask- what percent of adult chat room participants are age 18 to 29? P(A1 C) = P(A1 and C) / P(C) =.1363/.2518 =.5413 *since 29% of internet users are 18-29, knowing that someone chats increases the probability that they are young! Formula sans tree diagram: P(C) = P(A1)P(C A1) + P(A2)P(C A2) + P(A3)P(C A3)

38 6.3 Need to Know summary(print) Complement of an event A contains all outcomes not in A Union (A U B) of events A and B = all outcomes in A, in B, or in both A and B Intersection(A^B) contains all outcomes that are in both A and B, but not in A alone or B alone. General Addition Rule: P(AUB) = P(A) + P(B) P(A^B) Multiplication Rule: P(A^B) = P(A)P(B A) Conditional Probability P(B A) of an event B, given that event A has occurred: P(B A) = P(A^B)/P(A) when P(A) > 0 If A and B are disjoint (mutually exclusive) then P(A^B) = 0 and P(AUB) = P(A) + P(B) A and B are independent when P(B A) = P(B) Venn diagram or tree diagrams useful for organization.

### Chapter 6: Probability and Simulation. The study of randomness

Chapter 6: Probability and Simulation The study of randomness 6.1 Randomness Probability describes the pattern of chance outcomes. Probability is the basis of inference Meaning, the pattern of chance outcomes

### Probability Models. Section 6.2

Probability Models Section 6.2 The Language of Probability What is random? Empirical means that it is based on observation rather than theorizing. Probability describes what happens in MANY trials. Example

### Such a description is the basis for a probability model. Here is the basic vocabulary we use.

5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these

### Probability. Ms. Weinstein Probability & Statistics

Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random

### Lecture 6 Probability

Lecture 6 Probability Example: When you toss a coin, there are only two possible outcomes, heads and tails. What if we toss a coin two times? Figure below shows the results of tossing a coin 5000 times

### Def: The intersection of A and B is the set of all elements common to both set A and set B

Def: Sample Space the set of all possible outcomes Def: Element an item in the set Ex: The number "3" is an element of the "rolling a die" sample space Main concept write in Interactive Notebook Intersection:

### Chapter 6 -- Probability Review Questions

Chapter 6 -- Probability Review Questions Addition Rule: or union or & and (in the same problem) P( A B ) = P( A) + P( B) P( A B) *** If the events A and B are mutually exclusive (disjoint), then P ( A

### Week 3 Classical Probability, Part I

Week 3 Classical Probability, Part I Week 3 Objectives Proper understanding of common statistical practices such as confidence intervals and hypothesis testing requires some familiarity with probability

### November 6, Chapter 8: Probability: The Mathematics of Chance

Chapter 8: Probability: The Mathematics of Chance November 6, 2013 Last Time Crystallographic notation Groups Crystallographic notation The first symbol is always a p, which indicates that the pattern

### A Probability Work Sheet

A Probability Work Sheet October 19, 2006 Introduction: Rolling a Die Suppose Geoff is given a fair six-sided die, which he rolls. What are the chances he rolls a six? In order to solve this problem, we

### Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11

Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value

### Grade 6 Math Circles Fall Oct 14/15 Probability

1 Faculty of Mathematics Waterloo, Ontario Centre for Education in Mathematics and Computing Grade 6 Math Circles Fall 2014 - Oct 14/15 Probability Probability is the likelihood of an event occurring.

### Raise your hand if you rode a bus within the past month. Record the number of raised hands.

166 CHAPTER 3 PROBABILITY TOPICS Raise your hand if you rode a bus within the past month. Record the number of raised hands. Raise your hand if you answered "yes" to BOTH of the first two questions. Record

### Math 1313 Section 6.2 Definition of Probability

Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability

### Unit 11 Probability. Round 1 Round 2 Round 3 Round 4

Study Notes 11.1 Intro to Probability Unit 11 Probability Many events can t be predicted with total certainty. The best thing we can do is say how likely they are to happen, using the idea of probability.

### Bell Work. Warm-Up Exercises. Two six-sided dice are rolled. Find the probability of each sum or 7

Warm-Up Exercises Two six-sided dice are rolled. Find the probability of each sum. 1. 7 Bell Work 2. 5 or 7 3. You toss a coin 3 times. What is the probability of getting 3 heads? Warm-Up Notes Exercises

### Probability and Randomness. Day 1

Probability and Randomness Day 1 Randomness and Probability The mathematics of chance is called. The probability of any outcome of a chance process is a number between that describes the proportion of

### "Well, statistically speaking, you are for more likely to have an accident at an intersection, so I just make sure that I spend less time there.

6.2 Probability Models There was a statistician who, when driving his car, would always accelerate hard before coming to an intersection, whiz straight through it, and slow down again once he was beyond

### Statistics Intermediate Probability

Session 6 oscardavid.barrerarodriguez@sciencespo.fr April 3, 2018 and Sampling from a Population Outline 1 The Monty Hall Paradox Some Concepts: Event Algebra Axioms and Things About that are True Counting

### Section Introduction to Sets

Section 1.1 - Introduction to Sets Definition: A set is a well-defined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase

### Section 6.5 Conditional Probability

Section 6.5 Conditional Probability Example 1: An urn contains 5 green marbles and 7 black marbles. Two marbles are drawn in succession and without replacement from the urn. a) What is the probability

### Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Before we can move from descriptive statistics to inferential statistics, we need to have some understanding of probability: Ch4: Probability and Counting Rules

### CHAPTERS 14 & 15 PROBABILITY STAT 203

CHAPTERS 14 & 15 PROBABILITY STAT 203 Where this fits in 2 Up to now, we ve mostly discussed how to handle data (descriptive statistics) and how to collect data. Regression has been the only form of statistical

### Mathematical Foundations HW 5 By 11:59pm, 12 Dec, 2015

1 Probability Axioms Let A,B,C be three arbitrary events. Find the probability of exactly one of these events occuring. Sample space S: {ABC, AB, AC, BC, A, B, C, }, and S = 8. P(A or B or C) = 3 8. note:

### Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 4 Probability and Counting Rules 2 Objectives Determine sample spaces and find the probability of an event using classical probability or empirical

### Chapter 5 - Elementary Probability Theory

Chapter 5 - Elementary Probability Theory Historical Background Much of the early work in probability concerned games and gambling. One of the first to apply probability to matters other than gambling

### Business Statistics. Chapter 4 Using Probability and Probability Distributions QMIS 120. Dr. Mohammad Zainal

Department of Quantitative Methods & Information Systems Business Statistics Chapter 4 Using Probability and Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter,

### PROBABILITY. 1. Introduction. Candidates should able to:

PROBABILITY Candidates should able to: evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events (e.g for the total score when two fair dice are thrown), or by calculation

### , -the of all of a probability experiment. consists of outcomes. (b) List the elements of the event consisting of a number that is greater than 4.

4-1 Sample Spaces and Probability as a general concept can be defined as the chance of an event occurring. In addition to being used in games of chance, probability is used in the fields of,, and forecasting,

### smart board notes ch 6.notebook January 09, 2018

Chapter 6 AP Stat Simulations: Imitation of chance behavior based on a model that accurately reflects a situation Cards, dice, random number generator/table, etc When Performing a Simulation: 1. State

### Textbook: pp Chapter 2: Probability Concepts and Applications

1 Textbook: pp. 39-80 Chapter 2: Probability Concepts and Applications 2 Learning Objectives After completing this chapter, students will be able to: Understand the basic foundations of probability analysis.

### CHAPTER 9 - COUNTING PRINCIPLES AND PROBABILITY

CHAPTER 9 - COUNTING PRINCIPLES AND PROBABILITY Probability is the Probability is used in many real-world fields, such as insurance, medical research, law enforcement, and political science. Objectives:

### 4.3 Rules of Probability

4.3 Rules of Probability If a probability distribution is not uniform, to find the probability of a given event, add up the probabilities of all the individual outcomes that make up the event. Example:

### Chapter 1. Probability

Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

### 13-6 Probabilities of Mutually Exclusive Events

Determine whether the events are mutually exclusive or not mutually exclusive. Explain your reasoning. 1. drawing a card from a standard deck and getting a jack or a club The jack of clubs is an outcome

### Chapter 1. Probability

Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

### When a number cube is rolled once, the possible numbers that could show face up are

C3 Chapter 12 Understanding Probability Essential question: How can you describe the likelihood of an event? Example 1 Likelihood of an Event When a number cube is rolled once, the possible numbers that

### Define and Diagram Outcomes (Subsets) of the Sample Space (Universal Set)

12.3 and 12.4 Notes Geometry 1 Diagramming the Sample Space using Venn Diagrams A sample space represents all things that could occur for a given event. In set theory language this would be known as the

### Probability. The MEnTe Program Math Enrichment through Technology. Title V East Los Angeles College

Probability The MEnTe Program Math Enrichment through Technology Title V East Los Angeles College 2003 East Los Angeles College. All rights reserved. Topics Introduction Empirical Probability Theoretical

### Georgia Department of Education Georgia Standards of Excellence Framework GSE Geometry Unit 6

How Odd? Standards Addressed in this Task MGSE9-12.S.CP.1 Describe categories of events as subsets of a sample space using unions, intersections, or complements of other events (or, and, not). MGSE9-12.S.CP.7

### Algebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations

Algebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations Objective(s): Vocabulary: I. Fundamental Counting Principle: Two Events: Three or more Events: II. Permutation: (top of p. 684)

### Applications of Probability

Applications of Probability CK-12 Kaitlyn Spong Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

### AP Statistics Ch In-Class Practice (Probability)

AP Statistics Ch 14-15 In-Class Practice (Probability) #1a) A batter who had failed to get a hit in seven consecutive times at bat then hits a game-winning home run. When talking to reporters afterward,

### Probability. Probabilty Impossibe Unlikely Equally Likely Likely Certain

PROBABILITY Probability The likelihood or chance of an event occurring If an event is IMPOSSIBLE its probability is ZERO If an event is CERTAIN its probability is ONE So all probabilities lie between 0

### 4.1 Sample Spaces and Events

4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an

### heads 1/2 1/6 roll a die sum on 2 dice 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 1, 2, 3, 4, 5, 6 heads tails 3/36 = 1/12 toss a coin trial: an occurrence

trial: an occurrence roll a die toss a coin sum on 2 dice sample space: all the things that could happen in each trial 1, 2, 3, 4, 5, 6 heads tails 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 example of an outcome:

### [Independent Probability, Conditional Probability, Tree Diagrams]

Name: Year 1 Review 11-9 Topic: Probability Day 2 Use your formula booklet! Page 5 Lesson 11-8: Probability Day 1 [Independent Probability, Conditional Probability, Tree Diagrams] Read and Highlight Station

### The study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability

The study of probability is concerned with the likelihood of events occurring Like combinatorics, the origins of probability theory can be traced back to the study of gambling games Still a popular branch

### Intermediate Math Circles November 1, 2017 Probability I

Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.

### ECON 214 Elements of Statistics for Economists

ECON 214 Elements of Statistics for Economists Session 4 Probability Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh College of Education School of Continuing

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even

### Probability and Counting Techniques

Probability and Counting Techniques Diana Pell (Multiplication Principle) Suppose that a task consists of t choices performed consecutively. Suppose that choice 1 can be performed in m 1 ways; for each

### 7 5 Compound Events. March 23, Alg2 7.5B Notes on Monday.notebook

7 5 Compound Events At a juice bottling factory, quality control technicians randomly select bottles and mark them pass or fail. The manager randomly selects the results of 50 tests and organizes the data

### Probability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37

Probability MAT230 Discrete Mathematics Fall 2018 MAT230 (Discrete Math) Probability Fall 2018 1 / 37 Outline 1 Discrete Probability 2 Sum and Product Rules for Probability 3 Expected Value MAT230 (Discrete

### Key Concept Probability of Independent Events. Key Concept Probability of Mutually Exclusive Events. Key Concept Probability of Overlapping Events

15-4 Compound Probability TEKS FOCUS TEKS (1)(E) Apply independence in contextual problems. TEKS (1)(B) Use a problemsolving model that incorporates analyzing given information, formulating a plan or strategy,

### Probability as a general concept can be defined as the chance of an event occurring.

3. Probability In this chapter, you will learn about probability its meaning, how it is computed, and how to evaluate it in terms of the likelihood of an event actually happening. Probability as a general

### Math 3201 Unit 3: Probability Name:

Multiple Choice Math 3201 Unit 3: Probability Name: 1. Given the following probabilities, which event is most likely to occur? A. P(A) = 0.2 B. P(B) = C. P(C) = 0.3 D. P(D) = 2. Three events, A, B, and

### Unit 1 Day 1: Sample Spaces and Subsets. Define: Sample Space. Define: Intersection of two sets (A B) Define: Union of two sets (A B)

Unit 1 Day 1: Sample Spaces and Subsets Students will be able to (SWBAT) describe events as subsets of sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions,

### Probability - Chapter 4

Probability - Chapter 4 In this chapter, you will learn about probability its meaning, how it is computed, and how to evaluate it in terms of the likelihood of an event actually happening. A cynical person

### Module 4 Project Maths Development Team Draft (Version 2)

5 Week Modular Course in Statistics & Probability Strand 1 Module 4 Set Theory and Probability It is often said that the three basic rules of probability are: 1. Draw a picture 2. Draw a picture 3. Draw

### Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules

+ Chapter 5: Probability: What are the Chances? Section 5.2 + Two-Way Tables and Probability When finding probabilities involving two events, a two-way table can display the sample space in a way that

### A).4,.4,.2 B).4,.6,.4 C).3,.3,.3 D).5,.3, -.2 E) None of these are legitimate

AP Statistics Probabilities Test Part 1 Name: 1. A randomly selected student is asked to respond to yes, no, or maybe to the question, Do you intend to vote in the next election? The sample space is {yes,

### Mathematics 'A' level Module MS1: Statistics 1. Probability. The aims of this lesson are to enable you to. calculate and understand probability

Mathematics 'A' level Module MS1: Statistics 1 Lesson Three Aims The aims of this lesson are to enable you to calculate and understand probability apply the laws of probability in a variety of situations

### Grade 7/8 Math Circles February 25/26, Probability

Faculty of Mathematics Waterloo, Ontario N2L 3G1 Probability Grade 7/8 Math Circles February 25/26, 2014 Probability Centre for Education in Mathematics and Computing Probability is the study of how likely

### 4.3 Finding Probability Using Sets

4.3 Finding Probability Using ets When rolling a die with sides numbered from 1 to 20, if event A is the event that a number divisible by 5 is rolled: a) What is the sample space,? b) What is the event

### Intro to Probability

Intro to Probability Random Experiment A experiment is random if: 1) the outcome depends on chance. In other words, the outcome cannot be predicted with certainty (can t know 100%). 2) the set of all possible

### Probability. Dr. Zhang Fordham Univ.

Probability! Dr. Zhang Fordham Univ. 1 Probability: outline Introduction! Experiment, event, sample space! Probability of events! Calculate Probability! Through counting! Sum rule and general sum rule!

### Basic Probability Ideas. Experiment - a situation involving chance or probability that leads to results called outcomes.

Basic Probability Ideas Experiment - a situation involving chance or probability that leads to results called outcomes. Random Experiment the process of observing the outcome of a chance event Simulation

### Chapter 3: PROBABILITY

Chapter 3 Math 3201 1 3.1 Exploring Probability: P(event) = Chapter 3: PROBABILITY number of outcomes favourable to the event total number of outcomes in the sample space An event is any collection of

### Lesson 4: Chapter 4 Sections 1-2

Lesson 4: Chapter 4 Sections 1-2 Caleb Moxley BSC Mathematics 14 September 15 4.1 Randomness What s randomness? 4.1 Randomness What s randomness? Definition (random) A phenomenon is random if individual

### LC OL Probability. ARNMaths.weebly.com. As part of Leaving Certificate Ordinary Level Math you should be able to complete the following.

A Ryan LC OL Probability ARNMaths.weebly.com Learning Outcomes As part of Leaving Certificate Ordinary Level Math you should be able to complete the following. Counting List outcomes of an experiment Apply

### ( ) Online MC Practice Quiz KEY Chapter 5: Probability: What Are The Chances?

Online MC Practice Quiz KEY Chapter 5: Probability: What Are The Chances? 1. Research on eating habits of families in a large city produced the following probabilities if a randomly selected household

### 10-4 Theoretical Probability

Problem of the Day A spinner is divided into 4 different colored sections. It is designed so that the probability of spinning red is twice the probability of spinning green, the probability of spinning

### Independent and Mutually Exclusive Events

Independent and Mutually Exclusive Events By: OpenStaxCollege Independent and mutually exclusive do not mean the same thing. Independent Events Two events are independent if the following are true: P(A

### STAT 155 Introductory Statistics. Lecture 11: Randomness and Probability Model

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STAT 155 Introductory Statistics Lecture 11: Randomness and Probability Model 10/5/06 Lecture 11 1 The Monty Hall Problem Let s Make A Deal: a game show

### 2. The figure shows the face of a spinner. The numbers are all equally likely to occur.

MYP IB Review 9 Probability Name: Date: 1. For a carnival game, a jar contains 20 blue marbles and 80 red marbles. 1. Children take turns randomly selecting a marble from the jar. If a blue marble is chosen,

### Probability: Terminology and Examples Spring January 1, / 22

Probability: Terminology and Examples 18.05 Spring 2014 January 1, 2017 1 / 22 Board Question Deck of 52 cards 13 ranks: 2, 3,..., 9, 10, J, Q, K, A 4 suits:,,,, Poker hands Consists of 5 cards A one-pair

### Probability of Independent Events. If A and B are independent events, then the probability that both A and B occur is: P(A and B) 5 P(A) p P(B)

10.5 a.1, a.5 TEKS Find Probabilities of Independent and Dependent Events Before You found probabilities of compound events. Now You will examine independent and dependent events. Why? So you can formulate

### STOR 155 Introductory Statistics. Lecture 10: Randomness and Probability Model

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STOR 155 Introductory Statistics Lecture 10: Randomness and Probability Model 10/6/09 Lecture 10 1 The Monty Hall Problem Let s Make A Deal: a game show

### 7.1 Experiments, Sample Spaces, and Events

7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment

### STAT Chapter 14 From Randomness to Probability

STAT 203 - Chapter 14 From Randomness to Probability This is the topic that started my love affair with statistics, although I should mention that we will only skim the surface of Probability. Let me tell

### Austin and Sara s Game

Austin and Sara s Game 1. Suppose Austin picks a random whole number from 1 to 5 twice and adds them together. And suppose Sara picks a random whole number from 1 to 10. High score wins. What would you

### Chapter 7 Homework Problems. 1. If a carefully made die is rolled once, it is reasonable to assign probability 1/6 to each of the six faces.

Chapter 7 Homework Problems 1. If a carefully made die is rolled once, it is reasonable to assign probability 1/6 to each of the six faces. A. What is the probability of rolling a number less than 3. B.

### INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2

INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 WARM UP Students in a mathematics class pick a card from a standard deck of 52 cards, record the suit, and return the card to the deck. The results

### Contents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting - Permutation and Combination 39

CHAPTER 2 PROBABILITY Contents 2.1 Basic Concepts of Probability 38 2.2 Probability of an Event 39 2.3 Methods of Assigning Probabilities 39 2.4 Principle of Counting - Permutation and Combination 39 2.5

### 5.6. Independent Events. INVESTIGATE the Math. Reflecting

5.6 Independent Events YOU WILL NEED calculator EXPLORE The Fortin family has two children. Cam determines the probability that the family has two girls. Rushanna determines the probability that the family

### Math 4610, Problems to be Worked in Class

Math 4610, Problems to be Worked in Class Bring this handout to class always! You will need it. If you wish to use an expanded version of this handout with space to write solutions, you can download one

### Part 1: I can express probability as a fraction, decimal, and percent

Name: Pattern: Part 1: I can express probability as a fraction, decimal, and percent For #1 to #4, state the probability of each outcome. Write each answer as a) a fraction b) a decimal c) a percent Example:

### Unit 14 Probability. Target 3 Calculate the probability of independent and dependent events (compound) AND/THEN statements

Target 1 Calculate the probability of an event Unit 14 Probability Target 2 Calculate a sample space 14.2a Tree Diagrams, Factorials, and Permutations 14.2b Combinations Target 3 Calculate the probability

### Probability Concepts and Counting Rules

Probability Concepts and Counting Rules Chapter 4 McGraw-Hill/Irwin Dr. Ateq Ahmed Al-Ghamedi Department of Statistics P O Box 80203 King Abdulaziz University Jeddah 21589, Saudi Arabia ateq@kau.edu.sa

### Probability Rules. 2) The probability, P, of any event ranges from which of the following?

Name: WORKSHEET : Date: Answer the following questions. 1) Probability of event E occurring is... P(E) = Number of ways to get E/Total number of outcomes possible in S, the sample space....if. 2) The probability,

### Mutually Exclusive Events

Mutually Exclusive Events Suppose you are rolling a six-sided die. What is the probability that you roll an odd number and you roll a 2? Can these both occur at the same time? Why or why not? Mutually

### CHAPTER 2 PROBABILITY. 2.1 Sample Space. 2.2 Events

CHAPTER 2 PROBABILITY 2.1 Sample Space A probability model consists of the sample space and the way to assign probabilities. Sample space & sample point The sample space S, is the set of all possible outcomes

### Independent Events B R Y

. Independent Events Lesson Objectives Understand independent events. Use the multiplication rule and the addition rule of probability to solve problems with independent events. Vocabulary independent

### Day 5: Mutually Exclusive and Inclusive Events. Honors Math 2 Unit 6: Probability

Day 5: Mutually Exclusive and Inclusive Events Honors Math 2 Unit 6: Probability Warm-up on Notebook paper (NOT in notes) 1. A local restaurant is offering taco specials. You can choose 1, 2 or 3 tacos

### Section The Multiplication Principle and Permutations

Section 2.1 - The Multiplication Principle and Permutations Example 1: A yogurt shop has 4 flavors (chocolate, vanilla, strawberry, and blueberry) and three sizes (small, medium, and large). How many different

### Topic : ADDITION OF PROBABILITIES (MUTUALLY EXCLUSIVE EVENTS) TIME : 4 X 45 minutes

Worksheet 6 th Topic : ADDITION OF PROBABILITIES (MUTUALLY EXCLUSIVE EVENTS) TIME : 4 X 45 minutes STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of