Mathematical Foundations HW 5 By 11:59pm, 12 Dec, 2015
|
|
- Mariah Bruce
- 3 years ago
- Views:
Transcription
1 1 Probability Axioms Let A,B,C be three arbitrary events. Find the probability of exactly one of these events occuring. Sample space S: {ABC, AB, AC, BC, A, B, C, }, and S = 8. P(A or B or C) = 3 8. note: other reasonable answers are accepted. If P (A) > 0, P (B) > 0, and P (A) < P (A B), show that P (B) < P (B A) Given P (A) > 0, P (B) > 0, P (A) < P (A B) = P (A B) P (B) P (A) P (B) < P (A B) P (B) < P (A B) P (A) = P (B A) 2 Simple Counting Cards are dealt, one at a time, from a standard 52-card deck. 1. If the first 2 cards are both spades, what is the probability that the next 3 cards are also spades? 2. If the first 3 cards are all spades, what is the probability that the next 2 cards are also spades? 3. If the first 4 cards are all spades, what is the probability that the next card is also a spade? P = = P = =
2 3. P = 9 48 Five cards are drawn from a standard 52-card playing deck. What is the probability that all 5 cards will be of the same suit? There are ( 52) ( 13 ) 5 = combinations of drawing five cards from a full deck, and 5 = 1287 of drawing 5 cards in one of 4 suits. Therefore, P = = If two balanced dices are rolled, what the is the probability that the difference between the two numbers that appear will be less than 3? There are 6 6 = 36 possible results of rolling two balanced dices, and 24 combinations of two numbers with the difference less than 3. Therefore, 3 Independence P = = 2 3 Suppose that A and B are mutually exclusive events, with P (A) > 0 and P (B) < 1. Are A and B independent? Prove your answer. P (A B) = 0 since A and B are mutually exclusive. P (A B) = P (A B) P (B) = 0 Suppose A and B are independent, P (A B) = P (A) P (B) = 0. Since P (A) > 0 and P (B) < 1, P (B) = 0. Consider P (B A) = P (B) = 0, and P (A B) is undefined with P (B) = 0. Thus, A and B are independent. 2
3 Suppose that A B and that P (A) > 0 and P (B) > 0. Are A and B independent? Prove your answer. Since A B, P (B A) = 1. P (A B) = P (B A)P (A) = P (A) Suppose A and B are independent, P (A B) = P (A) P (B), we have P (B) = 1. Consider P (A B) = P (A) and P (B A) = P (B) = 1, we have A and B are independent only if P (B) = 1. Suppose that a balanced coin is independently tossed two times. Define the following events: A: Head appears on the first toss. B: Head appears on the second toss C: Both tosses yield the same outcome Are A, B, and C mutually independent? P (A) = P (B) = 1 2 and P (C) = = 1 2. P (A B C) = P (A) P (B) P (C). Thus, A, B, and C are not mutually independent. 4 Combinatorics, Bayes If 2n teams are to be assigned to games 1, 2,..., n, in how many ways can the teams be assigned to the games? Here we assume that a game consists of 2 different team and A plays with B is same as B plays with A. First make an order of all teams and assign every two without duplicate to one team in order. There are (2n)! combinations. For every game, we don t need to care the order of 2 teams, thus, divide the number of permutations by 2 for each team. Thus, there are (2n)! 2 n combinations. 3
4 There is a box with two fair (equal probability of each side) coins in it. One coin has heads on both sides, the other one has heads and tails like a regular coin. You pick a coin randomly from the box and without looking at it, spin it and observe heads on the top. What is the probability that the other side is also heads? Consider three events, A 1 : Pick the coin with heads on both sides. A 2 : Pick the coin that has head and tail. H: Head apprears. P (A 1 ) = P (A 2 ) = 1 2 P (H A 1 ) = 1 2, P (H A 2) = 1 P (A 1 H) = P (A 1 H) P (H) = P (A 1 )P (H A 1 ) P (A 1 )P (H A 1 )+P (A 2 )P (H A 2 ) = 2 3 If n letters are placed at random in n envelopes, what is the probability that exactly n 1 letters will be placed in the correct envelopes? Since it is impossible to have exactly n 1 letters in the correct envelopes and remaind 1 in the wrong place, thus, its pobability is 0. Question 4: If A and B are mutually exclusive events and P (B) > 0, show that P (A A B) = P (A) P (A)+P (B). P (A A B) = P (A (A B)) P (A B) Since A and B are mutually exclusive, A (A B) = (A A) (A B) = A = A P (A B) = P (A) + P (B) Thus, P (A A B) = P (A) P (A) + P (B) 4
5 5 Conditional Probability We have two dice (of 6 faces). Let the outcomes of the dice be X,Y and let A = X+Y, B = max(x,y). Find the conditional probability of A, given that B is even. There are 21 possible combinations for B being even. P (A = 1 B is even) = 0, P (A = 2 B is even) = 0, P (A = 3 B is even) = 2 21 P (A = 4 B is even) = 1 21, P (A = 5 B is even) = 2 21, P (A = 6 B is even) = 2 21 P (A = 7 B is even) = 4 21, P (A = 8 B is even) = 3 21, P (A = 9 B is even) = 2 21 P (A = 10 B is even) = 2 2, P (A = 11 B is even) = 21 21, P (A = 12 B is even) = 1 21 Suppose that a fair coin is tossed independently n times. Determine the probability of obtaining exactly n-1 heads, given (a) that at least n-2 heads are obtained and (b) that heads are obtained on the first n-2 tosses. Consider three events: A: obtain exactly n-1 heads. B: obtain at least n-2 heads. C: heads are obtained on the first n-2 tosses. (a) P (B) = P (A) = ( n ) n 1 2 n ( n n )( n n)( n 1 2 n n 2 ) P (A B) = P (B A) P (A) P (B) = P (A) P (B) = 2n n 2 + n + 2 (b) Given the first n-2 tosses are all heads, then we need only 1 head in the rest of tosses. 5
6 Therefore, P (A C) = = 1 2 Three palyers A,B,C take turns tossing a fair coin. Suppose that A tosses first, B tosses second and C tosses third. This cycle is repeated indefinitely until someone wins by being the first player to obtain a head. Determine the probability that each of three players will win. If all loss in one cycle, the game will continue, and the probability is ( 1 2 )3 = 1 8. P (A wins) = P (B wins) = ( 1 8 )n 1 2 = 4 7 n=0 ( 1 8 )n = 2 7 n=0 P (C wins) = 1 P (A wins) P (B wins) = 1 7 6
4.3 Rules of Probability
4.3 Rules of Probability If a probability distribution is not uniform, to find the probability of a given event, add up the probabilities of all the individual outcomes that make up the event. Example:
Math 1313 Section 6.2 Definition of Probability
Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability
3 The multiplication rule/miscellaneous counting problems
Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1. Suppose P (A) = 0.4, P (B) = 0.5. (a) If A and B are independent, what is P (A B)? What is P (A B)? (b) If A and B are disjoint,
4.1 Sample Spaces and Events
4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Statistics Homework Ch 5 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability
Section 6.1 #16. Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?
Section 6.1 #16 What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? page 1 Section 6.1 #38 Two events E 1 and E 2 are called independent if p(e 1
3 The multiplication rule/miscellaneous counting problems
Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1 Suppose P (A 0, P (B 05 (a If A and B are independent, what is P (A B? What is P (A B? (b If A and B are disjoint, what is
Chapter 1. Probability
Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.
STAT 430/510 Probability Lecture 3: Space and Event; Sample Spaces with Equally Likely Outcomes
STAT 430/510 Probability Lecture 3: Space and Event; Sample Spaces with Equally Likely Outcomes Pengyuan (Penelope) Wang May 25, 2011 Review We have discussed counting techniques in Chapter 1. (Principle
PROBABILITY. 1. Introduction. Candidates should able to:
PROBABILITY Candidates should able to: evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events (e.g for the total score when two fair dice are thrown), or by calculation
Chapter 1. Probability
Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.
November 6, Chapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance November 6, 2013 Last Time Crystallographic notation Groups Crystallographic notation The first symbol is always a p, which indicates that the pattern
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even
RANDOM EXPERIMENTS AND EVENTS
Random Experiments and Events 18 RANDOM EXPERIMENTS AND EVENTS In day-to-day life we see that before commencement of a cricket match two captains go for a toss. Tossing of a coin is an activity and getting
Probability and Statistics. Copyright Cengage Learning. All rights reserved.
Probability and Statistics Copyright Cengage Learning. All rights reserved. 14.2 Probability Copyright Cengage Learning. All rights reserved. Objectives What Is Probability? Calculating Probability by
CSC/MATA67 Tutorial, Week 12
CSC/MATA67 Tutorial, Week 12 November 23, 2017 1 More counting problems A class consists of 15 students of whom 5 are prefects. Q: How many committees of 8 can be formed if each consists of a) exactly
Chapter 3: Elements of Chance: Probability Methods
Chapter 3: Elements of Chance: Methods Department of Mathematics Izmir University of Economics Week 3-4 2014-2015 Introduction In this chapter we will focus on the definitions of random experiment, outcome,
8.2 Union, Intersection, and Complement of Events; Odds
8.2 Union, Intersection, and Complement of Events; Odds Since we defined an event as a subset of a sample space it is natural to consider set operations like union, intersection or complement in the context
A Probability Work Sheet
A Probability Work Sheet October 19, 2006 Introduction: Rolling a Die Suppose Geoff is given a fair six-sided die, which he rolls. What are the chances he rolls a six? In order to solve this problem, we
Conditional Probability Worksheet
Conditional Probability Worksheet P( A and B) P(A B) = P( B) Exercises 3-6, compute the conditional probabilities P( AB) and P( B A ) 3. P A = 0.7, P B = 0.4, P A B = 0.25 4. P A = 0.45, P B = 0.8, P A
Key Concepts. Theoretical Probability. Terminology. Lesson 11-1
Key Concepts Theoretical Probability Lesson - Objective Teach students the terminology used in probability theory, and how to make calculations pertaining to experiments where all outcomes are equally
Probability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37
Probability MAT230 Discrete Mathematics Fall 2018 MAT230 (Discrete Math) Probability Fall 2018 1 / 37 Outline 1 Discrete Probability 2 Sum and Product Rules for Probability 3 Expected Value MAT230 (Discrete
Probability and Randomness. Day 1
Probability and Randomness Day 1 Randomness and Probability The mathematics of chance is called. The probability of any outcome of a chance process is a number between that describes the proportion of
Simple Probability. Arthur White. 28th September 2016
Simple Probability Arthur White 28th September 2016 Probabilities are a mathematical way to describe an uncertain outcome. For eample, suppose a physicist disintegrates 10,000 atoms of an element A, and
7.1 Experiments, Sample Spaces, and Events
7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment
Chapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance Free-Response 1. A spinner with regions numbered 1 to 4 is spun and a coin is tossed. Both the number spun and whether the coin lands heads or tails is
Intermediate Math Circles November 1, 2017 Probability I
Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.
Contents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting - Permutation and Combination 39
CHAPTER 2 PROBABILITY Contents 2.1 Basic Concepts of Probability 38 2.2 Probability of an Event 39 2.3 Methods of Assigning Probabilities 39 2.4 Principle of Counting - Permutation and Combination 39 2.5
#2. A coin is tossed 40 times and lands on heads 21 times. What is the experimental probability of the coin landing on tails?
1 Pre-AP Geometry Chapter 14 Test Review Standards/Goals: A.1.f.: I can find the probability of a simple event. F.1.c.: I can use area to solve problems involving geometric probability. S.CP.1: I can define
If a regular six-sided die is rolled, the possible outcomes can be listed as {1, 2, 3, 4, 5, 6} there are 6 outcomes.
Section 11.1: The Counting Principle 1. Combinatorics is the study of counting the different outcomes of some task. For example If a coin is flipped, the side facing upward will be a head or a tail the
The Teachers Circle Mar. 20, 2012 HOW TO GAMBLE IF YOU MUST (I ll bet you $5 that if you give me $10, I ll give you $20.)
The Teachers Circle Mar. 2, 22 HOW TO GAMBLE IF YOU MUST (I ll bet you $ that if you give me $, I ll give you $2.) Instructor: Paul Zeitz (zeitzp@usfca.edu) Basic Laws and Definitions of Probability If
Fall (b) Find the event, E, that a number less than 3 is rolled. (c) Find the event, F, that a green marble is selected.
Fall 2018 Math 140 Week-in-Review #6 Exam 2 Review courtesy: Kendra Kilmer (covering Sections 3.1-3.4, 4.1-4.4) (Please note that this review is not all inclusive) 1. An experiment consists of rolling
4.1 What is Probability?
4.1 What is Probability? between 0 and 1 to indicate the likelihood of an event. We use event is to occur. 1 use three major methods: 1) Intuition 3) Equally Likely Outcomes Intuition - prediction based
INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2
INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 WARM UP Students in a mathematics class pick a card from a standard deck of 52 cards, record the suit, and return the card to the deck. The results
November 8, Chapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance November 8, 2013 Last Time Probability Models and Rules Discrete Probability Models Equally Likely Outcomes Crystallographic notation The first symbol
Total. STAT/MATH 394 A - Autumn Quarter Midterm. Name: Student ID Number: Directions. Complete all questions.
STAT/MATH 9 A - Autumn Quarter 015 - Midterm Name: Student ID Number: Problem 1 5 Total Points Directions. Complete all questions. You may use a scientific calculator during this examination; graphing
Probability Rules. 2) The probability, P, of any event ranges from which of the following?
Name: WORKSHEET : Date: Answer the following questions. 1) Probability of event E occurring is... P(E) = Number of ways to get E/Total number of outcomes possible in S, the sample space....if. 2) The probability,
Lenarz Math 102 Practice Exam # 3 Name: 1. A 10-sided die is rolled 100 times with the following results:
Lenarz Math 102 Practice Exam # 3 Name: 1. A 10-sided die is rolled 100 times with the following results: Outcome Frequency 1 8 2 8 3 12 4 7 5 15 8 7 8 8 13 9 9 10 12 (a) What is the experimental probability
Such a description is the basis for a probability model. Here is the basic vocabulary we use.
5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these
Section 7.1 Experiments, Sample Spaces, and Events
Section 7.1 Experiments, Sample Spaces, and Events Experiments An experiment is an activity with observable results. 1. Which of the follow are experiments? (a) Going into a room and turning on a light.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
More 9.-9.3 Practice Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Answer the question. ) In how many ways can you answer the questions on
Dependence. Math Circle. October 15, 2016
Dependence Math Circle October 15, 2016 1 Warm up games 1. Flip a coin and take it if the side of coin facing the table is a head. Otherwise, you will need to pay one. Will you play the game? Why? 2. If
ABC High School, Kathmandu, Nepal. Topic : Probability
BC High School, athmandu, Nepal Topic : Probability Grade 0 Teacher: Shyam Prasad charya. Objective of the Module: t the end of this lesson, students will be able to define and say formula of. define Mutually
Section 7.3 and 7.4 Probability of Independent Events
Section 7.3 and 7.4 Probability of Independent Events Grade 7 Review Two or more events are independent when one event does not affect the outcome of the other event(s). For example, flipping a coin and
MATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG
MATH DISCRETE MATHEMATICS INSTRUCTOR: P. WENG Counting and Probability Suggested Problems Basic Counting Skills, Inclusion-Exclusion, and Complement. (a An office building contains 7 floors and has 7 offices
Week 1: Probability models and counting
Week 1: Probability models and counting Part 1: Probability model Probability theory is the mathematical toolbox to describe phenomena or experiments where randomness occur. To have a probability model
Today s Topics. Next week: Conditional Probability
Today s Topics 2 Last time: Combinations Permutations Group Assignment TODAY: Probability! Sample Spaces and Event Spaces Axioms of Probability Lots of Examples Next week: Conditional Probability Sets
Contemporary Mathematics Math 1030 Sample Exam I Chapters Time Limit: 90 Minutes No Scratch Paper Calculator Allowed: Scientific
Contemporary Mathematics Math 1030 Sample Exam I Chapters 13-15 Time Limit: 90 Minutes No Scratch Paper Calculator Allowed: Scientific Name: The point value of each problem is in the left-hand margin.
Probability Models. Section 6.2
Probability Models Section 6.2 The Language of Probability What is random? Empirical means that it is based on observation rather than theorizing. Probability describes what happens in MANY trials. Example
Grade 7/8 Math Circles February 25/26, Probability
Faculty of Mathematics Waterloo, Ontario N2L 3G1 Probability Grade 7/8 Math Circles February 25/26, 2014 Probability Centre for Education in Mathematics and Computing Probability is the study of how likely
Unit 9: Probability Assignments
Unit 9: Probability Assignments #1: Basic Probability In each of exercises 1 & 2, find the probability that the spinner shown would land on (a) red, (b) yellow, (c) blue. 1. 2. Y B B Y B R Y Y B R 3. Suppose
The study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability
The study of probability is concerned with the likelihood of events occurring Like combinatorics, the origins of probability theory can be traced back to the study of gambling games Still a popular branch
ECON 214 Elements of Statistics for Economists
ECON 214 Elements of Statistics for Economists Session 4 Probability Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh College of Education School of Continuing
Conditional Probability Worksheet
Conditional Probability Worksheet EXAMPLE 4. Drug Testing and Conditional Probability Suppose that a company claims it has a test that is 95% effective in determining whether an athlete is using a steroid.
1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building?
1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building? 2. A particular brand of shirt comes in 12 colors, has a male version and a female version,
Instructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include your name and student ID.
Math 3201 Unit 3 Probability Test 1 Unit Test Name: Part 1 Selected Response: Instructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include
Exam III Review Problems
c Kathryn Bollinger and Benjamin Aurispa, November 10, 2011 1 Exam III Review Problems Fall 2011 Note: Not every topic is covered in this review. Please also take a look at the previous Week-in-Reviews
CSC/MTH 231 Discrete Structures II Spring, Homework 5
CSC/MTH 231 Discrete Structures II Spring, 2010 Homework 5 Name 1. A six sided die D (with sides numbered 1, 2, 3, 4, 5, 6) is thrown once. a. What is the probability that a 3 is thrown? b. What is the
Math 14 Lecture Notes Ch. 3.3
3.3 Two Basic Rules of Probability If we want to know the probability of drawing a 2 on the first card and a 3 on the 2 nd card from a standard 52-card deck, the diagram would be very large and tedious
MATH 1115, Mathematics for Commerce WINTER 2011 Toby Kenney Homework Sheet 6 Model Solutions
MATH, Mathematics for Commerce WINTER 0 Toby Kenney Homework Sheet Model Solutions. A company has two machines for producing a product. The first machine produces defective products % of the time. The
Grade 6 Math Circles Fall Oct 14/15 Probability
1 Faculty of Mathematics Waterloo, Ontario Centre for Education in Mathematics and Computing Grade 6 Math Circles Fall 2014 - Oct 14/15 Probability Probability is the likelihood of an event occurring.
LC OL Probability. ARNMaths.weebly.com. As part of Leaving Certificate Ordinary Level Math you should be able to complete the following.
A Ryan LC OL Probability ARNMaths.weebly.com Learning Outcomes As part of Leaving Certificate Ordinary Level Math you should be able to complete the following. Counting List outcomes of an experiment Apply
STAT 155 Introductory Statistics. Lecture 11: Randomness and Probability Model
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STAT 155 Introductory Statistics Lecture 11: Randomness and Probability Model 10/5/06 Lecture 11 1 The Monty Hall Problem Let s Make A Deal: a game show
Find the probability of an event by using the definition of probability
LESSON 10-1 Probability Lesson Objectives Find the probability of an event by using the definition of probability Vocabulary experiment (p. 522) trial (p. 522) outcome (p. 522) sample space (p. 522) event
Chapter 6: Probability and Simulation. The study of randomness
Chapter 6: Probability and Simulation The study of randomness Introduction Probability is the study of chance. 6.1 focuses on simulation since actual observations are often not feasible. When we produce
STAT Statistics I Midterm Exam One. Good Luck!
STAT 515 - Statistics I Midterm Exam One Name: Instruction: You can use a calculator that has no connection to the Internet. Books, notes, cellphones, and computers are NOT allowed in the test. There are
Classical Definition of Probability Relative Frequency Definition of Probability Some properties of Probability
PROBABILITY Recall that in a random experiment, the occurrence of an outcome has a chance factor and cannot be predicted with certainty. Since an event is a collection of outcomes, its occurrence cannot
Stat210 WorkSheet#2 Chapter#2
1. When rolling a die 5 times, the number of elements of the sample space equals.(ans.=7,776) 2. If an experiment consists of throwing a die and then drawing a letter at random from the English alphabet,
STOR 155 Introductory Statistics. Lecture 10: Randomness and Probability Model
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STOR 155 Introductory Statistics Lecture 10: Randomness and Probability Model 10/6/09 Lecture 10 1 The Monty Hall Problem Let s Make A Deal: a game show
Section Introduction to Sets
Section 1.1 - Introduction to Sets Definition: A set is a well-defined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase
Def: The intersection of A and B is the set of all elements common to both set A and set B
Def: Sample Space the set of all possible outcomes Def: Element an item in the set Ex: The number "3" is an element of the "rolling a die" sample space Main concept write in Interactive Notebook Intersection:
(a) Suppose you flip a coin and roll a die. Are the events obtain a head and roll a 5 dependent or independent events?
Unit 6 Probability Name: Date: Hour: Multiplication Rule of Probability By the end of this lesson, you will be able to Understand Independence Use the Multiplication Rule for independent events Independent
Probability. March 06, J. Boulton MDM 4U1. P(A) = n(a) n(s) Introductory Probability
Most people think they understand odds and probability. Do you? Decision 1: Pick a card Decision 2: Switch or don't Outcomes: Make a tree diagram Do you think you understand probability? Probability Write
2.5 Sample Spaces Having Equally Likely Outcomes
Sample Spaces Having Equally Likely Outcomes 3 Sample Spaces Having Equally Likely Outcomes Recall that we had a simple example (fair dice) before on equally-likely sample spaces Since they will appear
Basic Probability Ideas. Experiment - a situation involving chance or probability that leads to results called outcomes.
Basic Probability Ideas Experiment - a situation involving chance or probability that leads to results called outcomes. Random Experiment the process of observing the outcome of a chance event Simulation
NAME : Math 20. Midterm 1 July 14, Prof. Pantone
NAME : Math 20 Midterm 1 July 14, 2017 Prof. Pantone Instructions: This is a closed book exam and no notes are allowed. You are not to provide or receive help from any outside source during the exam except
Define and Diagram Outcomes (Subsets) of the Sample Space (Universal Set)
12.3 and 12.4 Notes Geometry 1 Diagramming the Sample Space using Venn Diagrams A sample space represents all things that could occur for a given event. In set theory language this would be known as the
Chapter 1: Sets and Probability
Chapter 1: Sets and Probability Section 1.3-1.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping
Probability of Independent and Dependent Events. CCM2 Unit 6: Probability
Probability of Independent and Dependent Events CCM2 Unit 6: Probability Independent and Dependent Events Independent Events: two events are said to be independent when one event has no affect on the probability
Chapter 16. Probability. For important terms and definitions refer NCERT text book. (6) NCERT text book page 386 question no.
Chapter 16 Probability For important terms and definitions refer NCERT text book. Type- I Concept : sample space (1)NCERT text book page 386 question no. 1 (*) (2) NCERT text book page 386 question no.
Developed by Rashmi Kathuria. She can be reached at
Developed by Rashmi Kathuria. She can be reached at . Photocopiable Activity 1: Step by step Topic Nature of task Content coverage Learning objectives Task Duration Arithmetic
Compound Probability. Set Theory. Basic Definitions
Compound Probability Set Theory A probability measure P is a function that maps subsets of the state space Ω to numbers in the interval [0, 1]. In order to study these functions, we need to know some basic
Math 3201 Unit 3: Probability Name:
Multiple Choice Math 3201 Unit 3: Probability Name: 1. Given the following probabilities, which event is most likely to occur? A. P(A) = 0.2 B. P(B) = C. P(C) = 0.3 D. P(D) = 2. Three events, A, B, and
Counting and Probability
Counting and Probability Lecture 42 Section 9.1 Robb T. Koether Hampden-Sydney College Wed, Apr 9, 2014 Robb T. Koether (Hampden-Sydney College) Counting and Probability Wed, Apr 9, 2014 1 / 17 1 Probability
CS 361: Probability & Statistics
February 7, 2018 CS 361: Probability & Statistics Independence & conditional probability Recall the definition for independence So we can suppose events are independent and compute probabilities Or we
Section Summary. Finite Probability Probabilities of Complements and Unions of Events Probabilistic Reasoning
Section 7.1 Section Summary Finite Probability Probabilities of Complements and Unions of Events Probabilistic Reasoning Probability of an Event Pierre-Simon Laplace (1749-1827) We first study Pierre-Simon
6.041/6.431 Spring 2009 Quiz 1 Wednesday, March 11, 7:30-9:30 PM.
6.04/6.43 Spring 09 Quiz Wednesday, March, 7:30-9:30 PM. Name: Recitation Instructor: TA: Question Part Score Out of 0 3 all 40 2 a 5 b 5 c 6 d 6 3 a 5 b 6 c 6 d 6 e 6 f 6 g 0 6.04 Total 00 6.43 Total
Name: 1. Match the word with the definition (1 point each - no partial credit!)
Chapter 12 Exam Name: Answer the questions in the spaces provided. If you run out of room, show your work on a separate paper clearly numbered and attached to this exam. SHOW ALL YOUR WORK!!! Remember
I. WHAT IS PROBABILITY?
C HAPTER 3 PROAILITY Random Experiments I. WHAT IS PROAILITY? The weatherman on 10 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and
2 A fair coin is flipped 8 times. What is the probability of getting more heads than tails? A. 1 2 B E. NOTA
For all questions, answer E. "NOTA" means none of the above answers is correct. Calculator use NO calculators will be permitted on any test other than the Statistics topic test. The word "deck" refers
TEST A CHAPTER 11, PROBABILITY
TEST A CHAPTER 11, PROBABILITY 1. Two fair dice are rolled. Find the probability that the sum turning up is 9, given that the first die turns up an even number. 2. Two fair dice are rolled. Find the probability
Topic : ADDITION OF PROBABILITIES (MUTUALLY EXCLUSIVE EVENTS) TIME : 4 X 45 minutes
Worksheet 6 th Topic : ADDITION OF PROBABILITIES (MUTUALLY EXCLUSIVE EVENTS) TIME : 4 X 45 minutes STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of
Pan (7:30am) Juan (8:30am) Juan (9:30am) Allison (10:30am) Allison (11:30am) Mike L. (12:30pm) Mike C. (1:30pm) Grant (2:30pm)
STAT 225 FALL 2012 EXAM ONE NAME Your Section (circle one): Pan (7:30am) Juan (8:30am) Juan (9:30am) Allison (10:30am) Allison (11:30am) Mike L. (12:30pm) Mike C. (1:30pm) Grant (2:30pm) Grant (3:30pm)
Statistics Intermediate Probability
Session 6 oscardavid.barrerarodriguez@sciencespo.fr April 3, 2018 and Sampling from a Population Outline 1 The Monty Hall Paradox Some Concepts: Event Algebra Axioms and Things About that are True Counting
Data Collection Sheet
Data Collection Sheet Name: Date: 1 Step Race Car Game Play 5 games where player 1 moves on roles of 1, 2, and 3 and player 2 moves on roles of 4, 5, # of times Player1 wins: 3. What is the theoretical
Probability. Dr. Zhang Fordham Univ.
Probability! Dr. Zhang Fordham Univ. 1 Probability: outline Introduction! Experiment, event, sample space! Probability of events! Calculate Probability! Through counting! Sum rule and general sum rule!
Probability. Mutually Exclusive Events
Probability Mutually Exclusive Events Mutually Exclusive Outcomes Outcomes are mutually exclusive if they cannot happen at the same time. For example, when you toss a single coin either it will land on
Independent Events B R Y
. Independent Events Lesson Objectives Understand independent events. Use the multiplication rule and the addition rule of probability to solve problems with independent events. Vocabulary independent
This Probability Packet Belongs to:
This Probability Packet Belongs to: 1 2 Station #1: M & M s 1. What is the sample space of your bag of M&M s? 2. Find the theoretical probability of the M&M s in your bag. Then, place the candy back into
Discrete Structures for Computer Science
Discrete Structures for Computer Science William Garrison bill@cs.pitt.edu 6311 Sennott Square Lecture #23: Discrete Probability Based on materials developed by Dr. Adam Lee The study of probability is