IRF6645 DirectFET Power MOSFET

Similar documents
IRF6646 DirectFET Power MOSFET

IRF6612PbF IRF661TRPbF

IRF6633 DirectFET Power MOSFET

IRF6655PbF IRF6655TRPbF

IRF6614PbF IRF6614TRPbF DirectFET Power MOSFET

IRF6609. HEXFET Power MOSFET V DSS R DS(on) max Qg. 20V GS = 10V 46nC GS = 4.5V

mj I AR Avalanche Currentg 7.6

IRF6691PbF IRF6691TRPbF

30V GS = 10V 48nC GS = 4.5V

IRF6665PbF IRF6665TRPbF

IRF6668PbF IRF6668TRPbF

V DSS V GS R DS(on) Q g tot Q gd Q gs2 Q rr Q oss V gs(th)

IRFS4227PbF IRFSL4227PbF

IRF6602/IRF6602TR1 HEXFET Power MOSFET

IRF6710S2TRPbF IRF6710S2TR1PbF

V DSS R DS(on) max Qg (typ.) 30V GS = 10V 57nC

V DSS V GS R DS(on) R DS(on) Q g tot Q gd Q gs2 Q rr Q oss V gs(th)

V DSS R DS(on) max Qg. 30V 4.8m: 15nC

IRF6618PbF IRF6618TRPbF

V DSS R DS(on) max Qg

Approved (Not Released) V DSS R DS(on) max Qg. 30V 3.5mΩ 36nC

IRF6641TRPbF DIGITAL AUDIO MOSFET. Key Parameters V DS 200 V R DS(ON) V GS = 10V 51 m Qg typ. 34 nc R G(int) typ. 1.0

mj I AR Avalanche Currentc 22 Linear Derating Factor

G D S. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 6.7

IRLR8729PbF IRLU8729PbF HEXFET Power MOSFET

IRF9910PbF HEXFET Power MOSFET R DS(on) max

V DSS R DS(on) max I D. 20V GS = 10V 8.9A. 71 P A = 25 C Power Dissipation 2.0 P A = 70 C Power Dissipation Linear Derating Factor

HEXFET Power MOSFET V DS -20 V V GS max ±12 V. Top View. Orderable part number Package Type Standard Pack. IRLTS2242TRPbF TSOP-6 Tape and Reel 3000

IRLB8721PbF. V DSS R DS(on) max Qg (typ.) 30V GS = 10V 7.6nC. HEXFET Power MOSFET. Applications. Benefits. Absolute Maximum Ratings

IRLMS1503PbF. HEXFET Power MOSFET V DSS = 30V. R DS(on) = 0.10Ω. 1. Top View

IRF6706S2TRPbF IRF6706S2TR1PbF DirectFET Power MOSFET

V DSS R DS(on) max Qg (typ.) 60V GS = 10V 24nC

SMPS MOSFET. V DSS R DS(on) max I D

Applications DSS 150V RDS(on) typ. 12m max. 15m Benefits 85A Absolute Maximum Ratings Symbol Parameter Max. Units

IRLR8726PbF IRLU8726PbF

IRFR3709ZPbF IRFU3709ZPbF

IRLR8721PbF IRLU8721PbF

V DSS R DS(on) max Qg 30V GS = 10V 5.4nC

IRLR3717 IRLU3717 HEXFET Power MOSFET

IRFB3607PbF IRFS3607PbF IRFSL3607PbF

IRF6623PbF IRF6623TRPbF

V DSS R DS(on) max Qg 30V GS = 10V 44nC

IRF7821PbF. HEXFET Power MOSFET

IRF6717MPbF IRF6717MTRPbF DirectFET Power MOSFET

V DSS V GS R DS(on) R DS(on) Q g tot Q gd Q gs2 Q rr Q oss V gs(th)

SMPS MOSFET. Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case )

SMPS MOSFET. V DSS R DS(on) max I D

IRF3709ZCS IRF3709ZCL

IRF6608. Absolute Maximum Ratings Max. Thermal Resistance. HEXFET Power MOSFET V DSS R DS(on) max Qg. 30V GS = 10V 16nC GS = 4.

IRFI4212H-117P. Description. Key Parameters g V DS 100 V R DS(ON) 10V 58 m: Q g typ. 12 nc Q sw typ. 6.9 nc R G(int) typ. 3.

V DSS R DS(on) max I D. 20V GS = 10V 20A. 160 P A = 25 C Power Dissipation 2.5 P A = 70 C Power Dissipation Linear Derating Factor

mj I AS Avalanche Currenth 13.4

Lower Conduction Losses Low Thermal Resistance to PCB ( 0.5 C/W)

V DSS R DS(on) max Qg. 560 P C = 25 C Maximum Power Dissipation g 140 P C = 100 C Maximum Power Dissipation g Linear Derating Factor

IRFR3704Z IRFU3704Z HEXFET Power MOSFET

IRL3714Z IRL3714ZS IRL3714ZL

IRFB4020PbF. Key Parameters V DS 200 V R DS(ON) 10V 80 m: Q g typ. 18 nc Q sw typ. 6.7 nc R G(int) typ. 3.2 Ω T J max 175 C

IRLMS1902. HEXFET Power MOSFET V DSS = 20V. R DS(on) = 0.10Ω Top View

IRFHM9331PbF. HEXFET Power MOSFET. V DS -30 V R DS(on) max mω. Q g (typical) 32 nc I D -11 A. Absolute Maximum Ratings

IRLMS1503. HEXFET Power MOSFET V DSS = 30V. R DS(on) = 0.10Ω. 1. Top View

T J = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V (BR)DSS DraintoSource Breakdown Voltage 24 V V (BR)DSS / T J

Lower Conduction Losses

V DSS R DS(on) max Qg (typ.) 40V GS = 10V 33nC. Parameter Typ. Max. Units Junction-to-Drain Lead g 20 C/W Junction-to-Ambient fg 50

5.0V 5.0V. 20µs PULSE WIDTH Tj = 25 C. Tj = 150 C. V DS, Drain-to-Source Voltage (V) T J = 150 C 1.5. V GS, Gate-to-Source Voltage (V)

-280 P C = 25 C Power Dissipation 170 Linear Derating Factor. W/ C V GS Gate-to-Source Voltage ± 20

V DSS R DS(on) max Qg. 30V 3.3m: 34nC

V DSS R DS(on) max I D. 30V GS = 10V 13A. 100 P A = 25 C Power Dissipation 2.5 P A = 70 C Power Dissipation Linear Derating Factor

Description Absolute Maximum Ratings Parameter Max. Units Thermal Resistance Parameter Typ. Max. Units

SMPS MOSFET HEXFET Power MOSFET. V DSS R DS(on) max I D. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor.

IRLS3036PbF IRLSL3036PbF HEXFET Power MOSFET

V DSS R DS(on) max Qg. 380 P C = 25 C Maximum Power Dissipation 89 P C = 100 C Maximum Power Dissipation Linear Derating Factor

SMPS MOSFET. V DSS R DS(on) max I D

TO-220AB IRFB4410. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 19

FASTIRFET IRFHE4250DPbF

IRFR3806PbF IRFU3806PbF

IRLS3034PbF IRLSL3034PbF

Description Absolute Maximum Ratings Parameter Max. Units Thermal Resistance Ratings Parameter Typ. Max. Units

AUTOMOTIVE MOSFET TO-220AB IRL1404Z. Absolute Maximum Ratings Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

SMPS MOSFET. V DSS R DS(on) max I D

IRFZ46ZPbF IRFZ46ZSPbF IRFZ46ZLPbF

IRFS3004-7PPbF HEXFET Power MOSFET

SMPS MOSFET TO-220AB IRL3713. Symbol Parameter Max V DS Drain-Source Voltage 30 V GS Gate-to-Source Voltage ± 20

Absolute Maximum Ratings Max. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRF3808S IRF3808L HEXFET Power MOSFET

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

SMPS MOSFET. V DSS R DS(on) max I D A I DM. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor. V/ns T J

V DSS R DS(on) max Qg 30V GS = 10V 20nC

HEXFET Power MOSFET for DC-DC Converters. Absolute Maximum Ratings Parameter Symbol IRF7828PbF Units Drain-Source Voltage V DS

IRFR1018EPbF IRFU1018EPbF

IRL8113 IRL8113S IRL8113L

I, Drain-to-Source Current (A) V GS, Gate-to-Source Voltage (V) I D, Drain-to-Source Current (A) I, Drain-to-Source Current (A)

IRFB3507PbF IRFS3507PbF IRFSL3507PbF

SMPS MOSFET. V DSS R DS(on) max I D

IRFS4127PbF IRFSL4127PbF

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

AUTOMOTIVE MOSFET. 30 Pulsed Drain Current c. I DM P C = 25 C Maximum Power Dissipation 120 Linear Derating Factor

V DSS R DS(on) max Qg

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

IRFR24N15DPbF IRFU24N15DPbF

Lower Conduction Losses Low Thermal Resistance to PCB ( 0.8 C/W)

Transcription:

Typical R S (on) (mω), Gate-to-Source Voltage (V) l RoHs Compliant Containing No Lead and Bromide l Low Profile (<0.7 mm) l ual Sided Cooling Compatible l Ultra Low Package Inductance l Optimized for High Frequency Switching l Ideal for High Performance Isolated Converter Primary Switch Socket l Optimized for Synchronous Rectification l Low Conduction Losses l Compatible with existing Surface Mount Techniques P - 97006 IRF6645 irectfet Power MOSFET Typical values (unless otherwise specified) V SS R S(on) 0V max ±20V max 28mΩ@ V Q g tot Q gd V gs(th) 4nC 4.8nC 4.0V Applicable irectfet Outline and Substrate Outline (see p.7,8 for details) SJ irectfet ISOMETRIC SH SJ SP MZ MN escription The IRF6645 combines the latest HEXFET Power MOSFET Silicon technology with the advanced irectfet TM packaging to achieve the lowest on-state resistance in a package that has the footprint of an Micro8 and only 0.7 mm profile. The irectfet package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-35 is followed regarding the manufacturing methods and processes. The irectfet package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6645 is optimized for primary side bridge topologies in isolated C-C applications, for wide range universal input Telecom applications (36V - 75V), and for secondary side synchronous rectification in regulated C-C topologies. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance isolated C-C converters. Absolute Maximum Ratings Parameter Max. Units V S rain-to-source Voltage 0 V Gate-to-Source Voltage ±20 I @ T A = 25 C Continuous rain Current, @ V e 5.7 I @ T A = 70 C Continuous rain Current, @ V e 4.5 A I @ T C = 25 C Continuous rain Current, @ V f 25 I M Pulsed rain Current g 45 E AS Single Pulse Avalanche Energy h 29 mj I AR Avalanche Currentg 3.4 A 80 70 I = 3.4A 2 I = 3.4A V S = 80V VS= 50V 60 50 T J = 25 C 8 6 40 4 30 T J = 25 C 2 20 4 6 8 2 4 6, Gate-to-Source Voltage (V) 0 0 4 8 2 6 Q G Total Gate Charge (nc) Fig. Typical On-Resistance vs. Gate Voltage Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage Notes: Click on this section to link to the appropriate technical paper. T C measured with thermocouple mounted to top (rain) of part. Click on this section to link to the irectfet Website. Repetitive rating; pulse width limited by max. junction temperature. ƒ Surface mounted on in. square Cu board, steady state. Starting T J = 25 C, L = 5.0mH, R G = 25Ω, I AS = 3.4A. www.irf.com 8/5/05

IRF6645 Electrical Characteristic @ T J = 25 C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions BV SS rain-to-source Breakdown Voltage 0 V = 0V, I = 250µA ΒV SS / T J Breakdown Voltage Temp. Coefficient 0.2 V/ C Reference to 25 C, I = ma R S(on) Static rain-to-source On-Resistance 28 35 mω = V, I = 5.7A c (th) Gate Threshold Voltage 3.0 4.9 V V S =, I = 50µA (th) / T J Gate Threshold Voltage Coefficient -2 mv/ C I SS rain-to-source Leakage Current 20 µa V S = 0V, = 0V 250 V S = 80V, = 0V, T J = 25 C I GSS Gate-to-Source Forward Leakage 0 na = 20V Gate-to-Source Reverse Leakage -0 = -20V gfs Forward Transconductance 7.4 S V S = V, I = 3.4A Q g Total Gate Charge 4 20 Q gs Pre-Vth Gate-to-Source Charge 3. V S = 50V Q gs2 Post-Vth Gate-to-Source Charge 0.8 nc = V Q gd Gate-to-rain Charge 4.8 7.2 I = 3.4A Q godr Gate Charge Overdrive 5.3 See Fig. 5 Q sw Switch Charge (Q gs2 Q gd ) 5.6 Q oss Output Charge 7.2 nc V S = 6V, = 0V R G Gate Resistance.0 Ω t d(on) Turn-On elay Time 9.2 V = 50V, = Vc t r Rise Time 5.0 I = 3.4A t d(off) Turn-Off elay Time 8 ns R G =6.2Ω t f Fall Time 5. C iss Input Capacitance 890 = 0V C oss Output Capacitance 80 pf V S = 25V C rss Reverse Transfer Capacitance 40 ƒ =.0MHz C oss Output Capacitance 870 = 0V, V S =.0V, f=.0mhz C oss Output Capacitance 0 = 0V, V S = 80V, f=.0mhz iode Characteristics Parameter Min. Typ. Max. Units Conditions I S Continuous Source Current 25 (Body iode) A I SM Pulsed Source Current 45 (Body iode)d V S iode Forward Voltage.3 V t rr Reverse Recovery Time 3 47 ns Q rr Reverse Recovery Charge 40 60 nc MOSFET symbol showing the integral reverse p-n junction diode. G S T J = 25 C, I S = 3.4A, = 0V c T J = 25 C, I F = 3.4A, V = 50V di/dt = 0A/µs c Notes: Pulse width 400µs; duty cycle 2%. Repetitive rating; pulse width limited by max. junction temperature. 2 www.irf.com

Absolute Maximum Ratings IRF6645 Parameter Max. Units P @T A = 25 C Power issipation c 3.0 W P @T A = 70 C Power issipation c.4 P @T C = 25 C Power issipation f 42 T P Peak Soldering Temperature 270 C T J Operating Junction and -40 to 50 T STG Storage Temperature Range Thermal Resistance Parameter Typ. Max. Units R θja Junction-to-Ambient cg 58 R θja Junction-to-Ambient dg 2.5 R θja Junction-to-Ambient eg 20 C/W R θjc Junction-to-Case fg 3.0 R θj-pcb Junction-to-PCB Mounted.0 0 = 0.50 Thermal Response ( Z thja ) 0. 0.0 0.20 0. 0.05 0.02 0.0 SINGLE PULSE ( THERMAL RESPONSE ) R R 2 R 3 R R 2 R 3 τ J τ J τ τ τ 2 τ 3 τ 2 τ 3 Ci= τi/ri Ci= τi/ri E-006 E-005 0.000 0.00 0.0 0. 0 t, Rectangular Pulse uration (sec) R 4 R 4 τ 4 τ 4 R 5 R 5 0.6677 0.000066 Ri ( C/W) τi (sec) τ 5 τ 5 τ A C τ C.0463 0.000896.562 0.004386 29.2822 0.68680 25.4550 32 Notes:. uty Factor = t/t2 2. Peak Tj = Pdm x Zthja Ta Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Surface mounted on in. square Cu, steady state. Used double sided cooling, mounting pad. ƒ Mounted on minimum footprint full size board with metalized back and with small clip heatsink. T C measured with thermocouple incontact with top (rain) of part. R θ is measured at T J of approximately 90 C. Surface mounted on in. square Cu ƒ Mounted to a PCB with ƒ Mounted on minimum board (still air). small clip heatsink (still air) footprint full size board with metalized back and with small clip heatsink (still air) www.irf.com 3

C, Capacitance(pF) I, rain-to-source Current (Α) Typical R S(on) (Normalized) I, rain-to-source Current (A) I, rain-to-source Current (A) IRF6645 0 VGS TOP 5V V 8.0V 7.0V BOTTOM 6.0V 0 VGS TOP 5V V 8.0V 7.0V BOTTOM 6.0V 6.0V 6.0V 60µs PULSE WITH Tj = 25 C 0. 0. 0 V S, rain-to-source Voltage (V) Fig 4. Typical Output Characteristics 60µs PULSE WITH Tj = 50 C 0. 0 V S, rain-to-source Voltage (V) Fig 5. Typical Output Characteristics 0 V S = V 60µs PULSE WITH 2.0 I = 5.7A = V T J = 50 C T J = 25 C T J = -40 C.5.0 0. 4.0 5.0 6.0 7.0 8.0, Gate-to-Source Voltage (V) Fig 6. Typical Transfer Characteristics 0.5-60 -40-20 0 20 40 60 80 0 20 40 60 T J, Junction Temperature ( C) Fig 7. Normalized On-Resistance vs. Temperature 000 00 = 0V, f = MHZ C iss = C gs C gd, C ds SHORTE C rss = C gd C oss = C ds C gd C iss 60 50 = 7.0V = 8.0V = V = 5V T A = 25 C C oss 40 0 C rss Typical R S(on) (mω) 30 0 20 0 20 30 40 50 V S, rain-to-source Voltage (V) I, rain Current (A) Fig 8. Typical Capacitance vs.rain-to-source Voltage Fig 9. Typical On-Resistance vs. rain Current 4 www.irf.com

E AS, Single Pulse Avalanche Energy (mj) I, rain Current (A) (th) Gate threshold Voltage (V) I, rain-to-source Current (A) IRF6645 I S, Reverse rain Current (A) 0.0 T J = 50 C T J = 25 C T.0 J = -40 C.0 = 0V 0. 0.3 0.4 0.5 0.6 0.7 0.8 0.9.0. V S, Source-to-rain Voltage (V) Fig. Typical Source-rain iode Forward Voltage 00 0 T A = 25 C Tj = 50 C Single Pulse OPERATION IN THIS AREA LIMITE BY R S (on) 0µsec msec msec 0. 0..0.0 0.0 00.0 V S, rain-tosource Voltage (V) Fig. Maximum Safe Operating Area 6.0 6.0 5.0 4.0 5.5 5.0 4.5 3.0 2.0.0 4.0 3.5 3.0 2.5 I =.0A I =.0mA I = 250µA I = 50µA 0.0 25 50 75 0 25 50 T J, Ambient Temperature ( C) Fig 2. Maximum rain Current vs. Ambient Temperature 20 0 2.0 I TOP.5A 2.4A BOTTOM 3.4A -75-50 -25 0 25 50 75 0 25 50 T J, Temperature ( C ) Fig 3. Typical Threshold Voltage vs. Junction Temperature 80 60 40 20 0 25 50 75 0 25 50 Starting T J, Junction Temperature ( C) Fig 4. Maximum Avalanche Energy vs. rain Current www.irf.com 5

IRF6645 Current Regulator Same Type as.u.t. Vds Id 2V.2µF 50KΩ.3µF Vgs.U.T. V - S Vgs(th) 3mA I G I Current Sampling Resistors Qgs Qgs2 Qgd Qgodr Fig 5a. Gate Charge Test Circuit Fig 5b. Gate Charge Waveform V (BR)SS 5V tp V S L RIVER R G 20V tp.u.t I AS 0.0Ω - V A I AS Fig 6b. Unclamped Inductive Test Circuit Fig 6c. Unclamped Inductive Waveforms V S R V S 90%.U.T. R G - V % V Pulse Width µs t d(on) t r t d(off) t f uty Factor 0. % Fig 7a. Switching Time Test Circuit Fig 7b. Switching Time Waveforms 6 www.irf.com

IRF6645 -.U.T ƒ - Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer - Reverse Recovery Current river Gate rive Period P.W..U.T. I S Waveform Body iode Forward Current di/dt.u.t. V S Waveform iode Recovery dv/dt = P.W. Period =V V * R G di/dt controlled by R G river same type as.u.t. I S controlled by uty Factor "".U.T. - evice Under Test V - Re-Applied Voltage Body iode Inductor Curent Current Forward rop Ripple 5% I S * = 5V for Logic Level evices Fig 8. iode Reverse Recovery Test Circuit for N-Channel HEXFET Power MOSFETs irectfet Substrate and PCB Layout, SJ Outline (Small Size Can, J-esignation). Please see irectfet application note AN-35 for all details regarding the assembly of irectfet. This includes all recommendations for stencil and substrate designs. G S S G = GATE = RAIN S = SOURCE www.irf.com 7

IRF6645 irectfet Outline imension, SJ Outline (Small Size Can, J-esignation). Please see irectfet application note AN-35 for all details regarding the assembly of irectfet. This includes all recommendations for stencil and substrate designs. COE A B C E F G H K L M N P IMENSIONS METRIC IMPERIAL MIN 4.75 3.70 2.75 0.35 0.58 0.58 0.68 0.68 0.98 2.28 0.48 0.03 0.08 MAX 4.85 3.95 2.85 0.45 0.62 0.62 0.72 0.72.02 2.32 0.58 0.08 0.7 MIN 0.87 0.46 0.8 0.04 0.023 0.023 0.027 0.027 0.039 0.090 0.09 0.00 0.003 ÃMAX 0.9 0.56 0.2 0.08 0.024 0.024 0.028 0.028 0.040 0.09 0.023 0.003 0.007 irectfet Part Marking 8 www.irf.com

irectfet Tape & Reel imension (Showing component orientation). IRF6645 NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6645). For 00 parts on 7" reel, order IRF6645TR REEL IMENSIONS STANAR OPTION (QTY 4800) TR OPTION (QTY 00) METRIC IMPERIAL METRIC IMPERIAL COE MIN MAX MIN MAX MIN MAX MIN MAX A 330.0 N.C 2.992 N.C 77.77 N.C 6.9 N.C B 20.2 N.C 0.795 N.C 9.06 N.C 0.75 N.C C 2.8 3.2 0.504 0.520 3.5 2.8 0.53 0.50.5 N.C 0.059 N.C.5 N.C 0.059 N.C E 0.0 N.C 3.937 N.C 58.72 N.C 2.3 N.C F N.C 8.4 N.C 0.724 N.C 3.50 N.C 0.53 G 2.4 4.4 0.488 0.567.9 2.0 0.47 N.C H.9 5.4 0.469 0.606.9 2.0 0.47 N.C NOTE: CONTROLLING IMENSIONS IN MM MIN 7.90 3.90.90 5.45 4.00 5.00.50.50 IMENSIONS METRIC MAX 8. 4. 2.30 5.55 4.20 5.20 N.C.60 IMPERIAL MAX 0.39 0.6 0.484 0.29 0.65 0.205 N.C 0.063 ata and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR s Web site. IR WORL HEAQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (3) 252-75 TAC Fax: (3) 252-7903 Visit us at www.irf.com for sales contact information.08/05 www.irf.com 9

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/