30V GS = 10V 48nC GS = 4.5V

Similar documents
IRF6602/IRF6602TR1 HEXFET Power MOSFET

V DSS R DS(on) max Qg

IRF6609. HEXFET Power MOSFET V DSS R DS(on) max Qg. 20V GS = 10V 46nC GS = 4.5V

IRF6645 DirectFET Power MOSFET

IRF7821PbF. HEXFET Power MOSFET

IRF6646 DirectFET Power MOSFET

IRF6633 DirectFET Power MOSFET

IRF6612PbF IRF661TRPbF

V DSS R DS(on) max Qg (typ.) 60V GS = 10V 24nC

IRFR3709ZPbF IRFU3709ZPbF

V DSS R DS(on) max I D. 20V GS = 10V 8.9A. 71 P A = 25 C Power Dissipation 2.0 P A = 70 C Power Dissipation Linear Derating Factor

V DSS R DS(on) max Qg. 560 P C = 25 C Maximum Power Dissipation g 140 P C = 100 C Maximum Power Dissipation g Linear Derating Factor

IRF6614PbF IRF6614TRPbF DirectFET Power MOSFET

IRLR3717 IRLU3717 HEXFET Power MOSFET

IRLR8721PbF IRLU8721PbF

mj I AR Avalanche Currentc 22 Linear Derating Factor

IRF3709ZCS IRF3709ZCL

IRF6655PbF IRF6655TRPbF

V DSS R DS(on) max Qg. 380 P C = 25 C Maximum Power Dissipation 89 P C = 100 C Maximum Power Dissipation Linear Derating Factor

IRL3714Z IRL3714ZS IRL3714ZL

8 S1, D2. Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case )

IRF6691PbF IRF6691TRPbF

IRFS4227PbF IRFSL4227PbF

IRFR3704Z IRFU3704Z HEXFET Power MOSFET

V DSS R DS(on) max I D. 20V GS = 10V 20A. 160 P A = 25 C Power Dissipation 2.5 P A = 70 C Power Dissipation Linear Derating Factor

V DSS R DS(on) max Qg. 30V 3.3m: 34nC

IRL8113 IRL8113S IRL8113L

V DSS R DS(on) max Qg

IRF6665PbF IRF6665TRPbF

IRF6623PbF IRF6623TRPbF

IRF6608. Absolute Maximum Ratings Max. Thermal Resistance. HEXFET Power MOSFET V DSS R DS(on) max Qg. 30V GS = 10V 16nC GS = 4.

SMPS MOSFET. V DSS R DS(on) max I D

V DSS R DS(on) max Qg

IRF6668PbF IRF6668TRPbF

V DSS V GS R DS(on) R DS(on) Q g tot Q gd Q gs2 Q rr Q oss V gs(th)

IRLB8721PbF. V DSS R DS(on) max Qg (typ.) 30V GS = 10V 7.6nC. HEXFET Power MOSFET. Applications. Benefits. Absolute Maximum Ratings

V DSS R DS(on) max Qg (typ.) 30V GS = 10V 57nC

V DSS R DS(on) max Qg. 30V 4.8m: 15nC

IRLMS1503PbF. HEXFET Power MOSFET V DSS = 30V. R DS(on) = 0.10Ω. 1. Top View

IRF6641TRPbF DIGITAL AUDIO MOSFET. Key Parameters V DS 200 V R DS(ON) V GS = 10V 51 m Qg typ. 34 nc R G(int) typ. 1.0

Approved (Not Released) V DSS R DS(on) max Qg. 30V 3.5mΩ 36nC

mj I AR Avalanche Currentg 7.6

IRLR8726PbF IRLU8726PbF

V DSS R DS(on) max I D. 30V GS = 10V 13A. 100 P A = 25 C Power Dissipation 2.5 P A = 70 C Power Dissipation Linear Derating Factor

IRL3714ZPbF IRL3714ZSPbF IRL3714ZLPbF

IRF9910PbF HEXFET Power MOSFET R DS(on) max

SMPS MOSFET. V DSS R DS(on) max I D

V DSS R DS(on) max Qg 30V GS = 10V 5.4nC

SMPS MOSFET. Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case )

V DSS V GS R DS(on) Q g tot Q gd Q gs2 Q rr Q oss V gs(th)

IRLR8729PbF IRLU8729PbF HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D

G D S. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 6.7

IRFB3607PbF IRFS3607PbF IRFSL3607PbF

IRF6710S2TRPbF IRF6710S2TR1PbF

Applications DSS 150V RDS(on) typ. 12m max. 15m Benefits 85A Absolute Maximum Ratings Symbol Parameter Max. Units

IRF6717MPbF IRF6717MTRPbF DirectFET Power MOSFET

HEXFET Power MOSFET V DS -20 V V GS max ±12 V. Top View. Orderable part number Package Type Standard Pack. IRLTS2242TRPbF TSOP-6 Tape and Reel 3000

HEXFET Power MOSFET for DC-DC Converters. Absolute Maximum Ratings Parameter Symbol IRF7828PbF Units Drain-Source Voltage V DS

SMPS MOSFET. V DSS R DS(on) max I D

IRF6618PbF IRF6618TRPbF

SMPS MOSFET. V DSS R DS(on) max I D

V DSS R DS(on) max Qg 30V GS = 10V 44nC

IRFR24N15DPbF IRFU24N15DPbF

SMPS MOSFET. V DSS R DS(on) max I D

Absolute Maximum Ratings Max. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

V DSS R DS(on) max I D

Lower Conduction Losses Low Thermal Resistance to PCB ( 0.5 C/W)

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 1.1 (10) N m (lbf in)

V DSS V GS R DS(on) R DS(on) Q g tot Q gd Q gs2 Q rr Q oss V gs(th)

IRLMS1503. HEXFET Power MOSFET V DSS = 30V. R DS(on) = 0.10Ω. 1. Top View

IRF6706S2TRPbF IRF6706S2TR1PbF DirectFET Power MOSFET

V DSS R DS(on) max (mw)

SMPS MOSFET. V DSS R DS(on) max I D

Absolute Maximum Ratings Parameter Symbol IRF7809A V Units Drain-Source Voltage V DS. 30 V Gate-Source Voltage V GS = 25 C I D

SMPS MOSFET. V DSS R DS(on) max I D

FASTIRFET IRFHE4250DPbF

SMPS MOSFET TO-220AB IRL3713. Symbol Parameter Max V DS Drain-Source Voltage 30 V GS Gate-to-Source Voltage ± 20

-280 P C = 25 C Power Dissipation 170 Linear Derating Factor. W/ C V GS Gate-to-Source Voltage ± 20

TO-220AB. IRF540ZPbF A I DM. 140 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

SMPS MOSFET. V DS 200 V V DS (Avalanche) min. 260 V R DS(ON) 10V 54 m: T J max 175 C TO-220AB. IRFB38N20DPbF

TO-220AB. IRF3710ZPbF. 240 P C = 25 C Maximum Power Dissipation 160 Linear Derating Factor

SMPS MOSFET HEXFET Power MOSFET. V DSS R DS(on) max I D. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor.

IRF3205S/L. HEXFET Power MOSFET V DSS = 55V. R DS(on) = 8.0mΩ I D = 110A

Lower Conduction Losses

Description Absolute Maximum Ratings Parameter Max. Units Thermal Resistance Parameter Typ. Max. Units

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

IRFR4105ZPbF IRFU4105ZPbF

V DSS R DS(on) max Qg 30V GS = 10V 20nC

I, Drain-to-Source Current (A) V GS, Gate-to-Source Voltage (V) I D, Drain-to-Source Current (A) I, Drain-to-Source Current (A)

V DSS R DS(on) max (mω)

T J = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V (BR)DSS DraintoSource Breakdown Voltage 24 V V (BR)DSS / T J

IRLMS1902. HEXFET Power MOSFET V DSS = 20V. R DS(on) = 0.10Ω Top View

IRF3808S IRF3808L HEXFET Power MOSFET

AUTOMOTIVE MOSFET. 30 Pulsed Drain Current c. I DM P C = 25 C Maximum Power Dissipation 120 Linear Derating Factor

IRF2804PbF IRF2804SPbF IRF2804LPbF HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D

Description Absolute Maximum Ratings Parameter Max. Units Thermal Resistance Ratings Parameter Typ. Max. Units

V DSS R DS(on) max Qg (typ.) 40V GS = 10V 33nC. Parameter Typ. Max. Units Junction-to-Drain Lead g 20 C/W Junction-to-Ambient fg 50

IRFR24N15D IRFU24N15D

Transcription:

l Application Specific MOSFETs l Ideal for CPU Core C-C Converters l Low Conduction Losses l High Cdv/dt Immunity l Low Profile (<0.7 mm) l ual Sided Cooling Compatible l Compatible with existing Surface Mount Techniques MT Applicable irectfet Outline and Substrate Outline (see p.9,10 for details) P - 94364F IRF6603 HEXFET Power MOSFET V SS R S(on) max Qg(typ.) 30V 3.4mΩ@V GS = 10V 48nC 5.5mΩ@V GS = 4.5V irectfet ISOMETRIC SQ SX ST MQ MX MT escription The IRF6603 combines the latest HEXFET Power MOSFET Silicon technology with the advanced irectfet TM packaging to achieve the lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The irectfet package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and process. The irectfet package allows dual sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%. The IRF6603 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency C-C converters that power the latest generation of processors operating at higher frequencies. The IRF6603 has been optimized for parameters that are critical in synchronous buck converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6603 offers particularly low Rds(on) and high Cdv/ dt immunity for synchronous FET applications. Absolute Maximum Ratings Parameter Max. Units V S rain-to-source Voltage 30 V V GS Gate-to-Source Voltage 20/-12 I @ T A = 25 C Continuous rain Current, V GS @ 10V f 27 A I @ T A = 70 C Continuous rain Current, V GS @ 10V f 22 I @ T C = 25 C Continuous rain Current, V GS @ 10V i 92 I M Pulsed rain Current c 200 P @T A = 25 C Power issipation f 3.6 P @T A = 70 C Power issipation f 2.3 W P @T C = 25 C Power issipation i 42 Linear erating Factor 0.029 W/ C T J Operating Junction and -40 to 150 C T STG Storage Temperature Range Thermal Resistance Parameter Typ. Max. Units R θja Junction-to-Ambient fj 35 R θja Junction-to-Ambient gj 12.5 R θja Junction-to-Ambient hj 20 C/W R θjc Junction-to-Case ij 3.0 R θj-pcb Junction-to-PCB Mounted 1.0 Notes through ˆ are on page 11 www.irf.com 1 12/22/05

Static @ T J = 25 C (unless otherwise specified) Parameter Min. Typ. Max. Units BV SS rain-to-source Breakdown Voltage 30 V V GS = 0V, I = 250µA ΒV SS / T J Breakdown Voltage Temp. Coefficient 28 mv/ C Reference to 25 C, I = 1mA R S(on) Static rain-to-source On-Resistance 2.4 3.4 mω V GS = 10V, I = 25A e 3.9 5.5 V GS = 4.5V, I = 20A e V GS(th) Gate Threshold Voltage 1.4 2.5 V V S = V GS, I = 250µA V GS(th) / TJ Gate Threshold Voltage Coefficient -6.3 mv/ C I SS rain-to-source Leakage Current 30 µa V S = 24V, V GS = 0V 50 µa V S = 30V, V GS = 0V V S = 24V, V GS = 0V, T J = 70 C I GSS Gate-to-Source Forward Leakage na V GS = 20V Gate-to-Source Reverse Leakage - V GS = -12V gfs Forward Transconductance 56 S V S = 15V, I = 20A Q g Total Gate Charge 48 72 Q gs1 Pre-Vth Gate-to-Source Charge 15.6 V S = 15V Q gs2 Post-Vth Gate-to-Source Charge 5.2 nc V GS = 4.5V Q gd Gate-to-rain Charge 16.1 I = 20A Q godr Gate Charge Overdrive 11.1 See Fig. 16 Q sw Switch Charge (Q gs2 Q gd ) 21.3 Q oss Output Charge 28 nc V S = 16V, V GS = 0V R G Gate Resistance 1.0 2.0 Ω t d(on) Turn-On elay Time 20 V = 15V, V GS = 4.5Ve t r Rise Time 9.9 I = 20A t d(off) Turn-Off elay Time 24 ns Clamped Inductive Load t f Fall Time 71 C iss Input Capacitance 6590 V GS = 0V C oss Output Capacitance 1250 pf V S = 15V C rss Reverse Transfer Capacitance 520 ƒ = 1.0MHz Avalanche Characteristics Parameter Typ. Max. Units E AS Single Pulse Avalanche Energyd 49 mj I AR Avalanche Currentc 20 A E AR Repetitive Avalanche Energy c 4.1 mj iode Characteristics Conditions Parameter Min. Typ. Max. Units Conditions I S Continuous Source Current 38 MOSFET symbol (Body iode) A showing the G I SM Pulsed Source Current 200 integral reverse S (Body iode)c p-n junction diode. V S iode Forward Voltage 1.0 1.3 V T J = 25 C, I S = 20A, V GS = 0V e t rr Reverse Recovery Time 45 68 ns T J = 25 C, I F = 20A Q rr Reverse Recovery Charge 60 90 nc di/dt = A/µs e 2 www.irf.com

I, rain-to-source Current (Α) I, rain-to-source Current (A) I, rain-to-source Current (A) IRF6603 00 0 VGS TOP 10V 5.0V 4.5V 4.0V 3.5V 3.3V 3.0V BOTTOM 2.7V 0 VGS TOP 10V 5.0V 4.5V 4.0V 3.5V 3.3V 3.0V BOTTOM 2.7V 10 1 10 0.1 2.7V 20µs PULSE WITH Tj = 25 C 0.01 0.1 1 10 V S, rain-to-source Voltage (V) 1 2.7V 20µs PULSE WITH Tj = 150 C 0.1 1 10 V S, rain-to-source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 0.00 2.0 I = 25A.00 T J = 150 C 10.00 T J = 25 C 1.00 V S = 15V 20µs PULSE WITH 0.10 2.0 3.0 4.0 5.0 6.0 V GS, Gate-to-Source Voltage (V) R S(on), rain-to-source On Resistance (Normalized) 1.5 1.0 0.5 V GS = 10V 0.0-60 -40-20 0 20 40 60 80 120 140 160 T J, Junction Temperature ( C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature www.irf.com 3

I, rain-to-source Current (A) C, Capacitance(pF) V GS, Gate-to-Source Voltage (V) IRF6603 000 V GS = 0V, f = 1 MHZ C iss = C gs C gd, C ds SHORTE C rss = C gd C oss = C ds C gd 6.0 5.0 I = 20A V S = 15V 00 Ciss 4.0 Coss 3.0 0 Crss 2.0 1.0 1 10 V S, rain-to-source Voltage (V) 0.0 0 10 20 30 40 50 Q G Total Gate Charge (nc) Fig 5. Typical Capacitance Vs. rain-to-source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 0 0 OPERATION IN THIS AREA LIMITE BY R S (on) I S, Reverse rain Current (A) T = 150 J C 10 T = 25 J C 1 V GS= 0 V 0.1 0.2 0.5 0.7 1.0 1.2 1.5 V S,Source-to-rain Voltage (V) 10 1 0.1 Tc = 25 C Tj = 150 C Single Pulse µsec 1msec 10msec 0 1 10 0 V S, rain-tosource Voltage (V) Fig 7. Typical Source-rain iode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com

I, rain Current (A) V GS(th) Gate threshold Voltage (V) IRF6603 2.5 90 80 70 2.0 60 50 40 1.5 I = 250µA 30 20 10 0 25 50 75 125 150 T C, Case Temperature ( C) 1.0 0.5-75 -50-25 0 25 50 75 125 150 T J, Temperature ( C ) Fig 9. Maximum rain Current Vs. Case Temperature Fig 10. Threshold Voltage Vs. Temperature Thermal Response (Z thja ) 10 1 0.1 = 0.50 0.20 0.10 0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) P M t 1 t 2 Notes: 1. uty factor = t 1 / t 2 2. Peak T J = P M x Z thja T A 0.01 0.00001 0.0001 0.001 0.01 0.1 1 10 t 1, Rectangular Pulse uration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5

R G V S 20V V GS tp L.U.T IAS 0.01Ω Fig 12a. Unclamped Inductive Test Circuit tp 15V RIVER - V A V (BR)SS E AS, Single Pulse Avalanche Energy (mj) 120 80 60 40 20 TOP BOTTOM I 8.9A 16A 20A 0 25 50 75 125 150 Starting Tj, Junction Temperature ( C) Fig 12c. Maximum Avalanche Energy Vs. rain Current I AS Fig 12b. Unclamped Inductive Waveforms V S L V - Current Regulator Same Type as.u.t. V GS Pulse Width < 1µs uty Factor < 0.1%.U.T 50KΩ 12V.2µF.3µF Fig 14a. Switching Time Test Circuit.U.T. V - S V S 90% V GS 3mA 10% I G I Current Sampling Resistors Fig 13. Gate Charge Test Circuit Fig 14b. Switching Time Waveforms 6 www.irf.com V GS t d(on) t r t d(off) t f

-.U.T ƒ - Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer - Reverse Recovery Current river Gate rive Period P.W..U.T. I S Waveform Body iode Forward Current di/dt.u.t. V S Waveform iode Recovery dv/dt = P.W. Period V GS =10V V * R G dv/dt controlled by RG river same type as.u.t. I S controlled by uty Factor "".U.T. - evice Under Test V - Re-Applied Voltage Inductor Curent Body iode Forward rop Ripple 5% I S * V GS = 5V for Logic Level evices Fig 15. Peak iode Recovery dv/dt Test Circuit for N-Channel HEXFET Power MOSFETs Vds Id Vgs Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 16. Gate Charge Waveform www.irf.com 7

Power MOSFET Selection for Non-Isolated C/C Converters Control FET Special attention has been given to the power losses in the switching elements of the circuit - Q1 and Q2. Power losses in the high side switch Q1, also called the Control FET, are impacted by the R ds(on) of the MOSFET, but these conduction losses are only about one half of the total losses. Power losses in the control switch Q1 are given by; P loss = P conduction P switching P drive P output This can be expanded and approximated by; P loss = ( I 2 rms R ds(on ) ) I Q gd V in f i g ( ) Q g V g f Q oss 2 V f in I Q gs2 i g V in f This simplified loss equation includes the terms Q gs2 and Q oss which are new to Power MOSFET data sheets. Q gs2 is a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Q gs1 and Q gs2, can be seen from Fig 16. Q gs2 indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached and the time the drain current rises to I dmax at which time the drain voltage begins to change. Minimizing Q gs2 is a critical factor in reducing switching losses in Q1. Q oss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Q oss is formed by the parallel combination of the voltage dependant (nonlinear) capacitance s C ds and C dg when multiplied by the power supply input buss voltage. Synchronous FET The power loss equation for Q2 is approximated by; * P loss = P conduction P drive P output ( ) P loss = I rms 2 R ds(on) ( ) Q g V g f Q oss 2 V f in Q V f rr in *dissipated primarily in Q1. ( ) For the synchronous MOSFET Q2, R ds(on) is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge Q oss and reverse recovery charge Q rr both generate losses that are transfered to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs susceptibility to Cdv/dt turn on. The drain of Q2 is connected to the switching node of the converter and therefore sees transitions between ground and V in. As Q1 turns on and off there is a rate of change of drain voltage dv/dt which is capacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current. The ratio of Q gd /Q gs1 must be minimized to reduce the potential for Cdv/dt turn on. Figure A: Q oss Characteristic 8 www.irf.com

irectfet Outline imension, MT Outline (Medium Size Can, T-esignation). Please see irectfet application note AN-1035 for all details regarding the assembly of irectfet. This includes all recommendations for stencil and substrate designs. COE A B C E F G H J K L M N P IMENSIONS METRIC IMPERIAL MIN 6.25 4.80 3.85 0.35 0.78 0.88 1.78 0.98 0.63 0.88 2.46 0.59 0.03 0.08 MAX 6.35 5.05 3.95 0.45 0.82 0.92 1.82 1.02 0.67 1.01 2.63 0.70 0.08 0.17 MIN 0.246 0.189 0.152 0.014 0.031 0.035 0.070 0.039 0.025 0.035 0.097 0.023 0.001 0.003 MAX 0.250 0.199 0.156 0.018 0.032 0.036 0.072 0.040 0.026 0.039 0.104 0.028 0.003 0.007 www.irf.com 9

irectfet Substrate and PCB Layout, MT Outline (MediumSize Can, T-esignation). Please see irectfet application note AN-1035 for all details regarding the assembly of irectfet. This includes all recommendations for stencil and substrate designs. G = GATE = RAIN S = SOURCE G S S irectfet Part Marking 6603 10 www.irf.com

irectfet Tape & Reel imension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6603). For 0 parts on 7" reel, order IRF6603TR1 REEL IMENSIONS STANAR OPTION (QTY 4800) TR1 OPTION (QTY 0) METRIC IMPERIAL METRIC IMPERIAL COE A B C E F G H MIN 330.0 20.2 12.8 1.5.0 12.4 11.9 MAX 13.2 18.4 14.4 15.4 MIN 12.992 0.795 0.504 0.059 3.937 0.488 0.469 MAX 0.520 0.724 0.567 0.606 MIN 177.77 19.06 13.5 1.5 58.72 11.9 11.9 MAX 12.8 13.50 12.01 12.01 MIN 6.9 0.75 0.53 0.059 2.31 0.47 0.47 MAX 0.50 0.53 Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting T J = 25 C, L = 0.24mH R G = 25Ω, I AS = 20A. ƒ Pulse width 400µs; duty cycle 2%. Surface mounted on 1 in. square Cu board. Used double sided cooling, mounting pad. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. T C measured with thermal couple mounted to top (rain) of part. ˆ R θ is measured at T J of approximately 90 C. ata and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR s Web site. IR WORL HEAQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.12/05 www.irf.com 11

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/