Analog and Telecommunication Electronics

Similar documents
ATLCE - B5 07/03/2016. Analog and Telecommunication Electronics 2016 DDC 1. Politecnico di Torino - ICT School. Lesson B5: multipliers and mixers

TLCE - A3 08/09/ /09/ TLCE - A DDC. IF channel Zc. - Low noise, wide dynamic Ie Vo 08/09/ TLCE - A DDC

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics

Page 1. Telecommunication Electronics ETLCE - A2 06/09/ DDC 1. Politecnico di Torino ICT School. Amplifiers

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics

Analog Circuits and Systems

RF/IF Terminology and Specs

Analog and Telecommunication Electronics

Telecommunication Electronics

Lecture 17 - Microwave Mixers

Berkeley. Mixers: An Overview. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2014 by Ali M. Niknejad

RF Integrated Circuits

Mixer. General Considerations V RF VLO. Noise. nonlinear, R ON

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics

ATLCE - A3 01/03/2016. Analog and Telecommunication Electronics 2016 DDC 1. Politecnico di Torino - ICT School. Lesson A3: BJT Amplifiers

OBJECTIVES EQUIPMENT LIST

Analog and Telecommunication Electronics

Advanced RFIC Design ELEN359A, Lecture 3: Gilbert Cell Mixers. Instructor: Dr. Allen A Sweet

LINEAR IC APPLICATIONS

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation

Part I - Amplitude Modulation

Page 1. Telecommunication Electronics TLCE - C4 27/10/ DDC 1. Politecnico di Torino ICT School. Lesson C4: signal conditioning

Introduction to Receivers

Chapter VII. MIXERS and DETECTORS

Session 3. CMOS RF IC Design Principles

Introduction to Surface Acoustic Wave (SAW) Devices

444 Index. F Fermi potential, 146 FGMOS transistor, 20 23, 57, 83, 84, 98, 205, 208, 213, 215, 216, 241, 242, 251, 280, 311, 318, 332, 354, 407

Master Degree in Electronic Engineering

Amplitude Modulated Systems

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS

Understanding Mixers Terms Defined, and Measuring Performance

IC design for wireless system

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers

TSEK38: Radio Frequency Transceiver Design Lecture 3: Superheterodyne TRX design

Operational Amplifiers

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS

DMI COLLEGE OF ENGINEERING

Technician License Course Chapter 3 Types of Radios and Radio Circuits. Module 7

Low Distortion Mixer AD831

UNIT III ANALOG MULTIPLIER AND PLL

Wavedancer A new ultra low power ISM band transceiver RFIC

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS

ELEN 701 RF & Microwave Systems Engineering. Lecture 2 September 27, 2006 Dr. Michael Thorburn Santa Clara University

Analog and Telecommunication Electronics

LESSON PLAN. SUBJECT: LINEAR IC S AND APPLICATION NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE. Portions to be covered

HF Receivers, Part 2

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering)

High-Linearity CMOS. RF Front-End Circuits

RFIC DESIGN ELEN 351 Lecture 7: Mixer Design

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 678A 40MHZ TO 900MHZ DIRECT CONVERSION QUADRATURE DEMODULATOR

Low Distortion Mixer AD831

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering And Computer Sciences MULTIFREQUENCY CELL IMPEDENCE MEASUREMENT

Signal Conditioning Systems

NTE7047 Integrated Circuit TV Color Small Signal Sub System

Telecommunication Electronics. Alberto Tibaldi

PROJECT ON MIXED SIGNAL VLSI

Internally Trimmed Integrated Circuit Multiplier AD532

Code No: R Set No. 1

Radio Receiver Architectures and Analysis

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 5-6: Mixers

R (a) Explain characteristics and limitations of op-amp comparators. (b) Explain operation of free running Multivibrator using op-amp.

Telecommunication Electronics

cosω t Y AD 532 Analog Multiplier Board EE18.xx Fig. 1 Amplitude modulation of a sine wave message signal

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5

ANALOG INTEGRATED CIRCUITS FOR COMMUNICATION Principles, Simulation and Design

Down-Converter Gilbert-Cell Mixer for WiMax Applications using 0.15µm GaAs HEMT Technology

Hours / 100 Marks Seat No.

2 REV. C. THERMAL CHARACTERISTICS H-10A: θ JC = 25 C/W; θ JA = 150 C/W E-20A: θ JC = 22 C/W; θ JA = 85 C/W D-14: θ JC = 22 C/W; θ JA = 85 C/W

250 MHz, Voltage Output 4-Quadrant Multiplier AD835

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

Phase-locked loop PIN CONFIGURATIONS

Low-Voltage IF Transceiver with Limiter/RSSI and Quadrature Modulator

Technician License Course Chapter 3. Lesson Plan Module 7 Types of Radio Circuits

Operational Amplifiers. Boylestad Chapter 10

Termination Insensitive Mixers By Howard Hausman President/CEO, MITEQ, Inc. 100 Davids Drive Hauppauge, NY

Analog and Telecommunication Electronics

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved.

Receiver Architecture

Analog and Telecommunication Electronics

RF Mixers. Iulian Rosu, YO3DAC / VA3IUL, A down-conversion system. An up-conversion system

Chapter 10: Operational Amplifiers

TSEK38 Radio Frequency Transceiver Design: Project work B

Page 1. Telecommunication Electronics TLCE - A1 03/05/ DDC 1. Politecnico di Torino ICT School. Lesson A1

Summer 2015 Examination

ICL MHz, Four Quadrant Analog Multiplier. Features. Ordering Information. Pinout. Functional Diagram. September 1998 File Number 2863.

Acknowledgments Introduction

KINGS COLLEGE OF ENGINEERING* DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

Solid State Devices & Circuits. 18. Advanced Techniques

GATE: Electronics MCQs (Practice Test 1 of 13)

Direct-Conversion I-Q Modulator Simulation by Andy Howard, Applications Engineer Agilent EEsof EDA

Electronics Prof D. C. Dube Department of Physics Indian Institute of Technology, Delhi

Analog and Telecommunication Electronics

UNIT- IV ELECTRONICS

Transcription:

Politecnico di Torino - ICT School Analog and Telecommunication Electronics B5 - Multipliers/mixer circuits» Error taxonomy» Basic multiplier circuits» Gilbert cell» Bridge MOS and diode circuits» Balanced mixers AY 2015-16 07/03/2016-1 ATLCE - B5-2016 DDC 2016 DDC 1

Lesson B5: multipliers and mixers Analog multipliers Parameters and errors Transconductance multipliers, 1/2/4 quadrant Gilbert cell Diode bridge Mixer parameters Balanced and I/Q mixers Noise, gain References: Elettronica per Telecom.: 2.2.4 Moltiplicatori Analogici Design with Op Amp : 13.2 Analog multipliers 07/03/2016-2 ATLCE - B5-2016 DDC 2016 DDC 2

Frequency translation basics (beats) Werner s relations sina x sinb = 0,5 [cos(a-b) - cos(a+b)] sina x cosb = 0,5 [sin(a-b) + sin(a+b)] cosa x cosb = 0,5 [cos(a-b) + cos(a+b)] Telecom applications Frequency translation: Heterodyne RX and TX» I, II, conversion, Image rejection mixers Mo-Demodulation» Standard AM mo-demod» Suppressed carrier (DSB), Single Side Band (SSB)» Digital AM (ASK. PAM)» Phase Detector». 07/03/2016-3 ATLCE - B5-2016 DDC 2016 DDC 3

Mixers and Multipliers Mixers: Frequency translation» Frequency conversion in heterodyne receivers and transmitters Phase detectors» PLL and demodulators Multipliers: Mo-demodulators» AM and PAM modulation and demodulation Variable gain amplifiers (analog computation) digital 07/03/2016-4 ATLCE - B5-2016 DDC 2016 DDC 4

Mixers in the handset RF Mixers (first conversion) I/Q Mixers (second conversion) 07/03/2016-5 ATLCE - B5-2016 DDC 2016 DDC 5

Mixers in a GPS receiver Image reject mixer Mixer II 07/03/2016-6 ATLCE - B5-2016 DDC 2016 DDC 6

Many uses of multipliers: GP2015 Mixers Variable gain amplifier Phase detectors 07/03/2016-7 ATLCE - B5-2016 DDC 2016 DDC 7

Multiplier as mixer Mixing is achieved by multiplication sena x senb = 0,5 [cos(a-b) cos(a+b)] With sine inputs, the output of a multiplier includes Difference component Sum component Other terms, caused by nonlinearity and errors Only one term is used (sum or difference beat) Filters Cancellation 07/03/2016-8 ATLCE - B5-2016 DDC 2016 DDC 8

Ideal multipliers Ideal multiplier: Vo = Km Vx Vy Sine input signals, frequency Fx and Fy Vo spectrum includes only Fx - Fy and Fx + Fy f fx fy fx fx f fy-fx fy+fx 07/03/2016-9 ATLCE - B5-2016 DDC 2016 DDC 9

Errors in multipliers: real circuits Ideal multiplier: Vo = Km Vx Vy Sine input signals, frequency Fx and Fy Vo spectrum includes only Fx - Fy and Fx + Fy Actual multiplier Offset Vo = Km (Vx + ΔVx) (Vy + ΔVy) + ΔVo Vo = Km Vx Vy + ΔVy Vx + ΔVx Vy + Eo + other terms order >2 Vo = Km Vx Vy + Ex Vx + Ey Vy + Eo +.. Sine input signals, frequency Fx and Fy Feedthrough Vo spectrum includes Fx-Fy, Fx+Fy, Fx, Fy, DC + other higher order terms: 2Fx, 2Fx-Fy, 3Fx-2Fy,... Harmonics: M Fx ± N Fy Distortion 07/03/2016-10 ATLCE - B5-2016 DDC 2016 DDC 10

Spectrum with real mixer Vo = Km Vx Vy + Ex Vx + Ey Vy + Eo +. f fx fy fo fx fa fb fy-fx fy fy+fx fd f 07/03/2016-11 ATLCE - B5-2016 DDC 2016 DDC 11

Spurious outputs: feedthrough Input signals reach the output Mainly due to mixer unbalance or signal DC: Vo = Km Vx (Vy + ΔVy) = Km Vx Vy + Km Vx ΔVy DC error on Vy (offset) ΔVy causes Vx feedthrough f fo fx fy-fx fy fy+fx 07/03/2016-12 ATLCE - B5-2016 DDC 2016 DDC 12

Nonlinearity Nonlinearity causes higher order terms 2fx, 2fy, 2fx+fy, 2fx-fy, 2fx+2fy, 3fx, 3fy, 3fx+fy,.. Can be removed with tuned circuits fo fa fb fy-fx fc fy+fx fd f 07/03/2016-13 ATLCE - B5-2016 DDC 2016 DDC 13

Lesson B5: multipliers and mixers Analog multipliers Parameters and errors Transconductance multipliers, 1/2/4 quadrant Balanced mixer, Gilbert cell Diode bridge Mixer parameters Noise, gain, intermodulation, IP 07/03/2016-14 ATLCE - B5-2016 DDC 2016 DDC 14

Example of mixer with nonlinear circuit BJT amplifier with input Vx on B and Vy on E Effective input voltage: V BE = Vx Vy (or V BE = Vx + Vy) Nonlinearity makes Vx Vy appear in Ic Tuned circuit isolates desired component Constraints on Vx and Vy: V BE > 0, that is Vx > Vy Need DC component high feedthrough errors Merged with input amplifier and local oscillator in (old) low-cost receivers 07/03/2016-15 ATLCE - B5-2016 DDC 2016 DDC 15

Mixers with nonlinear networks Vi = Vx + Vy (frequency Fx and Fy) Vo = Fnonlin(Vi) With power series expansion»vo = A 0 + A 1 (Vx + Vy) + A 2 (Vx+Vy) 2 +.. Vo components» Vx, Vy frequency Fx e Fy»Vx Vy frequency Fx - Fy and Fx + Fy»Vx 2, Vy 2 frequency 2Fx, 2Fy» Other terms frequency M Fx + N Fy» Order III intermodulation (2Fx - Fy) Useful component (diff or sum beat) isolated by a tuned circuit 07/03/2016-16 ATLCE - B5-2016 DDC 2016 DDC 16

Transconductance multiplier For small-signal amplifier: Vo = - Vx g m Rc Gain proportional to transconductance g m g m depends from Ic (Id) Id is controlled by Vy: g m = K Vy Vo = K Rc Vx Vy Single transistor: Vx, Vy > 0: 1 quadrant DC components high feedthrough Differential circuits: 2/4-quadrants No DC, less feedthrough Limited to low-level signals 07/03/2016-17 ATLCE - B5-2016 DDC 2016 DDC 17

Transconductance circuit - 1 quadrant V O = V X g m1 R C g m1 = I C /V T R C I C g m2 V Y V O V X (g m2 V Y /V T )g m1 R C g m1 V O K V X V Y I C (polarity!) g m2 07/03/2016-18 ATLCE - B5-2016 DDC 2016 DDC 18

Transconductance circuit tuned load Z C (ω) to isolate desired component (sum or diff beat) Z C V O = K Z C (ω) V X V Y V X and V Y > 0 1 quadrant Feedtrough on X and Y! I C Can be extended to 2/4-quadrant 07/03/2016-19 ATLCE - B5-2016 DDC 2016 DDC 19

Transconductance circuit - 2 quadrant 2-quadrant: differential V X Balanced mixer No feedthrough from V Y If V X = 0, V O = 0 for any V Y (V Y seen as common mode) DC required on V Y Feedthrough from V X 07/03/2016-20 ATLCE - B5-2016 DDC 2016 DDC 20

Transconductance circuit - 4 quadrant Differential V X and V Y : double balanced mixer No feedthrough on V X and V Y Exploit g m Can use MOS or BJT 07/03/2016-21 ATLCE - B5-2016 DDC 2016 DDC 21

MOS Gilbert cell Output voltage V Z depends on Drain current unbalance; Drain currents depend on input voltage V X and Source current I 1, I 2 Source current unbalance must depend on input voltage V Y V DD G D V Z V X S I 1 I 2 07/03/2016-22 ATLCE - B5-2016 DDC 2016 DDC 22

Multipliers with Gilbert cell V I Conversion The differential V(I) is linear only for low V Limited dynamic range for both inputs» To limit spurious outputs, only small signals Corrective actions Linearize by negative feedback» Re pair in the differential amplifier Wide range V I converter Compensation of exponential nonlinearity» I = exp(log Vi) I = K Vi 07/03/2016-23 ATLCE - B5-2016 DDC 2016 DDC 23

Linearized differential stage Emitter feedback Lower gain Wider input dynamic range I 1 -I 2 = ΔI V X /(2R E ) Needs matched R E (hard for ICs!) R E R E 07/03/2016-24 ATLCE - B5-2016 DDC 2016 DDC 24

Wide dynamic V I converter Differential V I converter I 1 -I 2 = ΔI V X /R X Needs matched current sources (OK for ICs!) Used also for instrumentation amplifiers Errors from ΔV BE (I E ) 07/03/2016-25 ATLCE - B5-2016 DDC 2016 DDC 25

V I dynamic range limits Actual voltage drop on R is not Vx V BE change with current unbalance Io matching Beta matching. V BE1 V BE2 07/03/2016-26 ATLCE - B5-2016 DDC 2016 DDC 26

Wide range multiplier: block diagram I V log ΔV = K log Vx Gilbert cell Vz ΔIx = K Vx ΔIy = K Vy Vx V I wide dynamic Vy V I wide dynamic 07/03/2016-27 ATLCE - B5-2016 DDC 2016 DDC 27

2016 DDC 28 07/03/2016-28 ATLCE - B5-2016 DDC Complete wide range circuit I 1 I 2 I 3 I 4 I A I B 7 8 5 6 Vo V X Y X Y X A C O A X X X X C O V V R R I R 2 V 2I 1 R V 2 R V 2 R V X X 1 2 R V 2 I I Y Y 4 3 R V 2 I I 1 2 7 8 V V' V V V 6 5 I I I I e e I I T X T BE6 BE5

Diode Mixer: single-balanced Single diode Single diode used as switch from Vx to GND Input Vi = Vx + Vy Small Vx, sign defined by Vy» Diode acts as switch controlled by Vy» Output Vx/0» Multiplication by 0/1 Diode half-bridge Couple of diodes as switch from Vx to GND» Diodes act as switches controlled by Vy» Output Vx/0» Multiplication by 0/1 07/03/2016-29 ATLCE - B5-2016 DDC 2016 DDC 29

Diode Mixer: double-balanced Couple of diodes Switches Vout between two opposite polarity Vx Output +Vx/-Vx Diode bridge 1 inverts Vx towards the output Diode bridge 2 Sine on Vx, low level signal Squarewave on Vy, large signal Vx + Vy applied to a diagonal Each diode is a switch controlled by Vy Vx direct/inverter on the other diagonal 07/03/2016-30 ATLCE - B5-2016 DDC 2016 DDC 30

Switch bridge Mixer Switch bridge (switches V X /-V X at output) Command: V Y Same as multiply by ±1 Strong nonlinearity Diode or MOS switches Double-balanced mixer Used for high frequencies V X V Y V z 07/03/2016-31 ATLCE - B5-2016 DDC 2016 DDC 31

Switch Mixer V X analog V Y digital Switches on linked side receive complementary commands The sign of the transfer function is controlled by V Y V Y = H V Z = + V X V X V Y = H V X V z = V x V z = -V x V Y = L V Z = - V X V Y = L 07/03/2016-32 ATLCE - B5-2016 DDC 2016 DDC 32

Diode bridge circuits Vx comes from a transformer with center tap V X V Z V Y >> V X (V X has no effect on diode bias) V Y + + V X V Z V X V Z + V Y + V Y 07/03/2016-33 ATLCE - B5-2016 DDC 2016 DDC 33

MOS/BJT bridge circuits Same structure as diode bridge Input X on diagonal H Input Y as command (on B or G) Output from diagonal V 07/03/2016-34 ATLCE - B5-2016 DDC 2016 DDC 34

Lesson B5: multipliers and mixers Analog multipliers Parameters and errors Transconductance multipliers, 1/2/4 quadrant Balanced mixer, Gilbert cell Diode bridges Mixer parameters Noise, gain, intermodulation, IP 07/03/2016-35 ATLCE - B5-2016 DDC 2016 DDC 35

Mixers and amplifiers Mixer seen as amplifier with variable gain (VGA) Constant input = fixed gain for other input Constant Vy amplifier for Vx Constant Vx amplifier for Vy Same requirements as amplifiers No harmonics, no distortion Low noise, wide dynamic Parameters as amplifier + additional 1 db compression, IP2, IP3 Insulation, reflection, Mixer-specific parameters 07/03/2016-36 ATLCE - B5-2016 DDC 2016 DDC 36

Mixer parameters Conversion gain IFrms/RFrms Isolation Leakage in unwanted paths Noise figure Nonlinearity Input dynamic range Intermodulation Compression level Intercept Point (order 2, 3, ) 07/03/2016-37 ATLCE - B5-2016 DDC 2016 DDC 37

Ideal multiplier linear mixer Only sum and difference spectral lines at output V X (f X ), V Y (f Y ) f X V Z (f X -f Y, f X + f Y ) V X V Y X V Z f Y f X -f Y, f X + f Y fx-fy fy fx fy+fx f 07/03/2016-38 ATLCE - B5-2016 DDC 2016 DDC 38

Ideal Mixer output spectrum Sine V Y (f Y ), Wideband V X (F A F B ) Output includes sum and difference beats V X spectrum translated around 0 and 2 f Y 0 Difference fy beat Fa Fb f Sum beat Fb-fy fy 2fy fy+fb f 07/03/2016-39 ATLCE - B5-2016 DDC 2016 DDC 39

Mixer and nonlinearity Input nonlinearity generates harmonics Inputs to ideal mixer with order 2, 3 terms With multicomponent input signals Vx = Vxa(Fa) + Vxb(Fb), V X V Y f Y f X ±f Y, 2f Y ± f X, 3f Y ± f X,... X f Y, 2f Y, 3f Y,... V Z possible intermodulation Same problems as amplifiers 07/03/2016-40 ATLCE - B5-2016 DDC 2016 DDC 40

Effects of mixer nonlinearity Input nonlinearity Products among Vx, Vy signals and their harmonics V X X V Z Fx±Fy, 2Fx±Fy, 2Fy±Fx, 2Fy±2Fx V Y Output nonlinearity Products among Vx, Vy signals V X Harmonics of the product X V Z Fx±Fy, 2(Fx±Fy), 3(Fy±Fx), V Y Inband terms more dangerous (intermodulation) 07/03/2016-41 ATLCE - B5-2016 DDC 2016 DDC 41

Actual mixer real multiplier nonlinearity harmonics V X f X f X, 2f X, 3f X,... V Y X f X -f Y, 2f X -f Y, f X -2f Y, 3f X,... V Z Harmonics beat and intermodulation 07/03/2016-42 ATLCE - B5-2016 DDC 2016 DDC 42

Spectrum with nonlinearities Nonlinearity on Vy: components f Y, 2f Y, 3f Y,... Multiple spectral translations: Vx to f Y, 2f Y, 3f Y, f 0 fy Fb 2fy 3fy 4fy-Fb fy-fb 2fy-Fb fy 3fy-Fb fy+fb 2fy+Fb 07/03/2016-43 ATLCE - B5-2016 DDC 2016 DDC 43

Mixer vs. amplifiers Input signal: Two sine signal, frequency f1 and f2 Amplifier output: Same frequency Mixer output: Difference/ sum frequency From both: Harmonics: 2f1, 2f2, 3f1,... III ord. beats (intermodulation): 2f1-f2, 2f2-f1,... 07/03/2016-44 ATLCE - B5-2016 DDC 2016 DDC 44

Mixer vs. amplifiers Good for an amplifier Good for a mixer 07/03/2016-45 ATLCE - B5-2016 DDC 2016 DDC 45

Lesson B5: final test Which are the techniques usable to build units with predefined nonlinearity? Which is the difference among 1/2/4 quadrant multipliers? Define feedthrough in a multiplier How can the Vx feedthrough error be compensated? Which is the main limit of transconductance multipliers? Draw the output spectrum for linear and nonlinear mixers with input signals: Vx: 2,3 + 2,5 MHz (2 components), Vy: 10 MHz An analog multiplier mixer receives on Vx a 100-120 MHz signal, and a pulse sequence (δ) a 25 MHz rate on Vy. Draw the complete output spectrum from 0 to 400 MHz at the output Vz (assume a fully linear multiplier). 07/03/2016-46 ATLCE - B5-2016 DDC 2016 DDC 46